Skip to main content
Log in

Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species

  • Original Paper
  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A glycolipid-producing bacterium, Pseudomonas aeruginosa GL1, was isolated from the soil contaminated with polycyclic aromatic hydrocarbons (PAH) from a manufactured gas plant. The glycolipid produced was characterized in detail by chromatographic procedures as a mixture of four rhamnolipids, consisting of different associations of rhamnose and hydroxy fatty acids: the main component was monorhamnosyl di-3-hydroxydecanoic acid. The rhamnolipid composition presented marked analogies with a defined part of P. aeruginosa outer membrane lipopolysaccharides (lipopolysaccharide band A). Rhamnolipid production was stimulated under conditions of nitrogen limitation. Glycerol yielded higher productions than did hydrophobic carbon sources. Cell hydrophobicity decreased during growth on glycerol and on n-hexadecane whereas glycolipid production increased. P. aeruginosa GL1 was found to be unable to grow on a variety of 2, 3 and 4 cycle PAH. However, it was shown to persist after at least 12 subcultures in a bacterial population growing on a mixture of pure PAH, suggesting a physiological role for rhamnolipid as a means to enhance PAH availability in a mutualistic PAH-degrading bacterial community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bergmeyer HU, Beutler HO (1985) In: Bergmeyer HU (ed) Methods of enzymatic analysis, 3rd edn, vol 8. Verlag Chemie, Weinheim, pp 454–461

    Google Scholar 

  • Beutler HO, Wurst B, Fisher S (1986) Eine neue Methode zur enzymatischen Bestimmung von Nitrat in Lebensmitteln. Dtsch Lebensm-Rundschau 82: 283–289

    CAS  Google Scholar 

  • Davila AM, Marchal R, Monin N, Vandecasteele JP (1993) Identification and determination of individual sophorolipids in fermentation products by gradient elution high-performance liquid chromatography with evaporative light scattering detection. J Chromatogr 648: 139–149

    Article  CAS  Google Scholar 

  • Edwards J, Hayashi J (1965) Structure of a rhamnolipid from Pseudomonas aeruginosa. Arch Biochem Biophys 111: 415–421

    Article  CAS  Google Scholar 

  • Francy DS, Thomas JM, Raymond RL, Ward CH (1991) Emulsification of hydrocarbons by subsurface bacteria. J Ind Microbiol 8: 237–246

    Article  CAS  Google Scholar 

  • Guerra-Santos L, KŠppeli O, Fiechter A (1984) Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl Environ Microbiol 48: 301–305

    CAS  Google Scholar 

  • Herbert D, Phipps PJ, Strange RE (1971) Chemical analysis of microbial cells. In: Norris JR, Ribbons DW (eds) Methods in Microbiology 5B: 266–291, Academic Press, London

    Google Scholar 

  • Hisatsuka K, Nakahara T, Yamada K (1972) Protein-like activator for n-alkane oxidation by Pseudomonas aeruginosa S7B1. Agric Biol Chem 36: 1361–1369

    CAS  Google Scholar 

  • Jain DK, Lee H, Trevors JT (1992) Effect of addition of Pseudomonas aeruginosa UG2 inocula or biosurfactants on biodegradation of selected hydrocarbons in soil. J Ind Microbiol 10: 87–93

    Article  Google Scholar 

  • Keith LH, Telliard WA (1979) Priority pollutants. I. A perspective review. Environ Sci Technol 13: 416–423

    Article  Google Scholar 

  • Koch AK, Käppeli O, Fiechter A, Reiser J (1991) Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J Bacteriol 173: 4212–4219

    CAS  Google Scholar 

  • Lazdunski A, Guzzo J, Filloux A, Bally M, Murgier M (1990) Secretion of extracellular proteins by Pseudomonas aeruginosa. Biochimie 72: 147–156

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NR, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275

    CAS  Google Scholar 

  • MacElwee CG, Lee H, Trevors JT (1990) Production of extracellular emulsifying agent by Pseudomonas aeruginosa UG1. J Ind Microbiol 5: 25–32

    Article  CAS  Google Scholar 

  • Marchal N, Bourdon JL (eds) (1973) Milieux de culture et identification biochimique des bactries. Doin Éditeurs, Paris

    Google Scholar 

  • Ng TK, Hu WS (1989) Adherence of emulsan-producing Acinetobacter calcoaceticus to hydrophobic liquids. Appl Microbiol Biotechnol 31: 480–485

    Article  CAS  Google Scholar 

  • Ochsner UA, Koch AK, Fiechter A, Reiser J (1994) Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol 176: 2044–2054

    CAS  Google Scholar 

  • Parra JL, Guinea M, Mansera M, Robert M, Mercade M, Comelles F, Bosch MP (1989) Chemical characterization and physicochemical behavior of biosurfactants. J Am Oil Chem Soc 66: 141–145

    Article  CAS  Google Scholar 

  • Persson A, Molin G (1987) Capacity for biosurfactant production of environmental Pseudomonas and Vibrionaceae growing on carbohydrates. Appl Microbiol Biotechnol 26: 439–442

    Article  CAS  Google Scholar 

  • Rendell NB, Taylor GW, Somerville M, Todd H, Wilson R, Cole PJ (1990) Characterization of Pseudomonas rhamnolipids. Biochim Biophys Acta 1045: 189–193

    CAS  Google Scholar 

  • Ridgway HF, Safarik J, Phipps D, Carl P, Clark D (1990) Identification and catabolic activity of well-derived gasoline-degrading bacteria from a contamined aquifer. Appl Environ Microbiol 56: 3565–3575

    CAS  Google Scholar 

  • Rivera M, McGroarty EJ (1989) Analysis of a common-antigen lipopolysaccharide from Pseudomonas aeruginosa. J Bacteriol 171: 2244–2248

    CAS  Google Scholar 

  • Rivera M, Bryan LE, Hancock REW, McGroarty EJ (1988) Heterogeneity of lipopolysaccharides from Pseudomonas aeruginosa: analysis of lipopolysaccharide chain length. J Bacteriol 170: 512–521

    CAS  Google Scholar 

  • Robert M, Mercade M, Bosch M, Parra JL, Espuny M, Mansera M, Guinea J (1989) Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44T1. Biotechnol Lett 11: 871–874

    Article  CAS  Google Scholar 

  • Rosenberg M, Rosenberg E (1981) Role of adherence in growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. J Bacteriol 148: 51–57

    CAS  Google Scholar 

  • Stieber M, Haeseler F, Werner P, Frimmel FH (1994) A rapid screening method for microorganisms degrading polycyclic aromatic hydrocarbons in microplates. Appl Microbiol Biotechnol 40: 753–755

    Article  CAS  Google Scholar 

  • Sweeley CC, Wells WW, Bentley R (1966) Gas chromatography of carbohydrates. Methods Enzymol 8: 95–108

    Article  CAS  Google Scholar 

  • Syldatk C, Lang S, Wagner F (1985) Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas spec. DSM 2874 grown on n-alkanes. Z Naturforsch Sect C Biosci 40: 51–60

    CAS  Google Scholar 

  • Van Dyke MI, Couture P, Brauer M, Lee H, Trevors JT (1993) Pseudomonas aeruginosa UG2 rhamnolipid biosurfactant: structural characterization and their use in removing hydrophobic compounds from soil. Can J Microbiol 39: 1071–1078

    Article  Google Scholar 

  • Van Loosdrecht MCM, Lyklema J, Norde W, Schraa G, Zehnder AJB (1987) The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol 53: 1893–1897

    Google Scholar 

  • Wilkinson SG, Galbraith L (1975) Studies of lipopolysaccharides from Pseudomonas aeruginosa. Eur J Biochem 52: 331–343

    Article  CAS  Google Scholar 

  • Zhang Y, Miller R (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 58: 3276–3282

    CAS  Google Scholar 

  • Zhang Y, Miller R (1994) Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol 60: 2101–2106

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arino, S., Marchal, R. & Vandecasteele, J.P. Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species. Appl Microbiol Biotechnol 45, 162–168 (1996). https://doi.org/10.1007/s002530050665

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002530050665

Keywords

Navigation