Skip to main content

Exploiting Innate and Imported Fungal Capacity for Xylitol Production

  • Chapter
  • First Online:
Fungal Biorefineries

Part of the book series: Fungal Biology ((FUNGBIO))

  • 720 Accesses

Abstract

Xylitol, a pentahydroxy chiral polyol, is a natural noncaloric sweetener with a wide spectrum of applications in food, confectionary, and pharmaceutical industries because of its advantageous properties. Industrial-scale production of xylitol from D-xylose derived from hemicellulosic hydrolysates is usually done by a chemical process by catalytic hydrogenation under high pressure and temperature. However, the sustainability issue boosted the biotechnological process. Much of the research is being focused on engineering metabolic pathways to improve the biological production of xylitol in both native xylitol-producing and nonproducing-fungal strains. This chapter provides a limelight on native fungal strains and the advances made in fungal metabolic engineering to increase the production of xylitol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad I, Shim WY, Jeon WY et al (2012) Enhancement of xylitol production in Candida tropicalis by co-expression of two genes involved in pentose phosphate pathway. Bioprocess Biosyst Eng 35:199–204

    Article  CAS  PubMed  Google Scholar 

  • Alexander MA, Chapman TW, Jeffries TW (1988) Xylose metabolism by Candida shehatae in continuous culture. Appl Microbiol Biotechnol 28:478–486

    Article  CAS  Google Scholar 

  • de Arruda PV, Rodrigues Rde C, da Silva DD et al (2011) Evaluation of hexose and pentose in pre-cultivation of Candida guilliermondii on the key enzymes for xylitol production in sugarcane hemicellulosic hydrolysate. Biodegradation 22:815–822

    Article  CAS  PubMed  Google Scholar 

  • Bae SM, Park YC, Lee TH et al (2004) Production of xylitol by recombinant Saccharomyces cerevisiae containing xylose reductase gene in repeated fed-batch and cell-recycle fermentations. Enzym Microb Technol 35:545–549

    Article  CAS  Google Scholar 

  • Barbosa MFS, Medeiros MB, Mancilha IM et al (1988) Screening of yeasts for production of xylitol from d-xylose and some factors which affect xylitol yield in Candida guilliermondii. J Ind Microbiol 3:241–251

    Article  CAS  Google Scholar 

  • Bruinenberg PM, de Bot PHM, Van dijken JP et al (1984) NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts. Appl Microbiol Biotechnol 19:256–260

    Article  CAS  Google Scholar 

  • Carvalheiro F, Duarte LC, Medeiros R et al (2007) Xylitol production by Debaryomyces hansenii in brewery spent grain dilute-acid hydrolysate: effect of supplementation. Biotechnol Lett 29:1887–1891

    Article  CAS  PubMed  Google Scholar 

  • Cheng KK, Zhang JA, Ling HZ et al (2009) Optimization of pH and acetic acid concentration for bioconversion of hemicellulose from corncobs to xylitol by Candida tropicalis. Biochem Eng J 43:203–207

    Article  CAS  Google Scholar 

  • Cheng H, Lv J, Wang H et al (2014) Genetically engineered Pichia pastoris yeast for conversion of glucose to xylitol by a single-fermentation process. Appl Microbiol Biotechnol 98:3539–3552

    Article  CAS  PubMed  Google Scholar 

  • Chung YS, Kim MD, Lee WJ et al (2002) Stable expression of xylose reductase gene enhances xylitol production in recombinant Saccharomyces cerevisiae. Enzym Microb Technol 30:809–816

    Article  CAS  Google Scholar 

  • Dashtban M, Kepka G, Seiboth B et al (2013) Xylitol production by genetically engineered Trichoderma reesei strains using barley straw as feedstock. Appl Biochem Biotechnol 169:554–569

    Article  CAS  PubMed  Google Scholar 

  • Debus D, Methner H, Schulze D et al (1983) Fermentation of xylose with the yeast Pachysolen tannophilus. Eur J Appl Microbiol Biotechnol 17:287–291

    Article  CAS  Google Scholar 

  • Dubey R, Jakeer S, Gaur NA (2016) Screening of natural yeast isolates under the effects of stresses associated with second-generation biofuel production. J Biosci Bioeng 121:509–516

    Article  CAS  PubMed  Google Scholar 

  • Fuente-hernandez A, Corcos PO, Beauchet R et al (2013) Biofuels and co-products out of hemicelluloses. Intech publishing, Croatia

    Book  Google Scholar 

  • García martín JF, Sánchez S, Bravo V et al (2011) Xylitol production from olive-pruning debris by sulphuric acid hydrolysis and fermentation with Candida tropicalis. Holzforschung 65:59–65

    Article  Google Scholar 

  • Garcia-dieguez C, Salgado JM, Roca E et al (2011) Kinetic modelling of the sequential production of lactic acid and xylitol from vine trimming wastes. Bioprocess Biosyst Eng 34:869–878

    Article  CAS  PubMed  Google Scholar 

  • Granstrom TB, Izumori K, Leisola M (2007) A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Appl Microbiol Biotechnol 74:273–276

    Article  CAS  PubMed  Google Scholar 

  • Hahn-Hagerdal B, Karhumaa K, Fonseca C et al (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Article  CAS  PubMed  Google Scholar 

  • Hallborn J, Walfridsson M, Airaksinen U et al (1991) Xylitol production by recombinant Saccharomyces cerevisiae. Biotechnology (N Y) 9:1090–1095

    Article  CAS  Google Scholar 

  • Hallborn J, Gorwa MF, Meinander N et al (1994) The influence of cosubstrate and aeration on xylitol formation by recombinant Saccharomyces cerevisiae expressing the XYL1 gene. Appl Microbiol Biotechnol 42:326–333

    PubMed  CAS  Google Scholar 

  • Huang CF, Jiang YF, Guo GL et al (2011) Development of a yeast strain for xylitol production without hydrolysate detoxification as part of the integration of co-product generation within the lignocellulosic ethanol process. Bioresour Technol 102:3322–3329

    Article  CAS  PubMed  Google Scholar 

  • Jeon WY, Yoon BH, Ko BS et al (2012) Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis. Bioprocess Biosyst Eng 35:191–198

    Article  CAS  PubMed  Google Scholar 

  • Jeun YS, Kim MD, Park YC et al (2003) Expression of Azotobacter vinelandii soluble transhydrogenase perturbs xylose reductase-mediated conversion of xylose to xylitol by recombinant Saccharomyces cerevisiae. J Mol Catal B Enzym 26:251–256

    Article  CAS  Google Scholar 

  • Jin YS, Cruz J, Jeffries TW (2005) Xylitol production by a Pichia stipitis D-xylulokinase mutant. Appl Microbiol Biotechnol 68:42–45

    Article  CAS  PubMed  Google Scholar 

  • Ko BS, Kim J, Kim JH (2006) Production of xylitol from D-xylose by a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis. Appl Environ Microbiol 72:4207–4213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko CH, Chiang PN, Chiu PC et al (2008) Integrated xylitol production by fermentation of hardwood wastes. J Chem Technol Biotechnol 83:534–540

    Article  CAS  Google Scholar 

  • Ko BS, Kim DM, Yoon BH et al (2011) Enhancement of xylitol production by attenuation of intracellular xylitol dehydrogenase activity in Candida tropicalis. Biotechnol Lett 33:1209–1213

    Article  CAS  PubMed  Google Scholar 

  • Kotter P, Ciriacy M (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776–783

    Article  Google Scholar 

  • Kumar J, Reddy MS, Rao LV (2010) Strain improvement of Candida tropicalis OVC5 for xylitol production by random mutagenesis. IIOABJ 1:24–28

    Google Scholar 

  • Kwon DH, Kim MD, Lee TH et al (2006a) Elevation of glucose 6-phosphate dehydrogenase activity increases xylitol production in recombinant Saccharomyces cerevisiae. J Mol Catal B Enzym 43:86–89

    Article  CAS  Google Scholar 

  • Kwon SG, Park SW, Oh DK (2006b) Increase of xylitol productivity by cell-recycle fermentation of Candida tropicalis using submerged membrane bioreactor. J Biosci Bioeng 101:13–18

    Article  CAS  PubMed  Google Scholar 

  • Lee WJ, Ryu YW, Seo JH (2000) Characterization of two-substrate fermentation processes for xylitol production using recombinant Saccharomyces cerevisiae containing xylose reductase gene. Process Biochem 35:1199–1203

    Article  CAS  Google Scholar 

  • Lee JK, Koo BS, Kim SY (2003) Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis. Appl Environ Microbiol 69:6179–6188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Meng X, Diao E et al (2012) Xylitol production by Candida tropicalis from corn cob hemicellulose hydrolysate in a two-stage fed-batch fermentation process. J Chem Technol Biotechnol 87:387–392

    Article  CAS  Google Scholar 

  • Ligthelm ME, Prior BA, du Preez JC (1988) The oxygen requirements of yeasts for the fermentation of d-xylose and d-glucose to ethanol. Appl Microbiol Biotechnol 28:63–68

    Article  CAS  Google Scholar 

  • Ling H, Cheng K, Ge J et al (2011) Statistical optimization of xylitol production from corncob hemicellulose hydrolysate by Candida tropicalis HDY-02. New Biotechnol 28:673–678

    Article  CAS  Google Scholar 

  • Mahmud A, Hattori K, Hongwen C et al (2013) Xylitol production by NAD(+)-dependent xylitol dehydrogenase (xdhA)- and l-arabitol-4-dehydrogenase (ladA)-disrupted mutants of aspergillus oryzae. J Biosci Bioeng 115:353–359

    Article  CAS  PubMed  Google Scholar 

  • Martínez ML, Sánchez S, Bravo V (2012) Production of xylitol and ethanol by Hansenula polymorpha from hydrolysates of sunflower stalks with phosphoric acid. Ind Crop Prod 40:160–166

    Article  CAS  Google Scholar 

  • Meinander NQ, Hahn-Hägerdal B (1997) Fed-batch xylitol production with two recombinant Saccharomyces cerevisiae strains expressing XYL1 at different levels, using glucose as a cosubstrate: a comparison of production parameters and strain stability. Biotechnol Bioeng 54:391–399

    Article  CAS  PubMed  Google Scholar 

  • Min-Soo K (2000) Enhancement of xylitol yield by xylitol dehydrogenase defective mutant of Pichia stipitis. Korean J Biotechnol Bioeng 15:113–119

    Google Scholar 

  • Miura M, Watanabe I, Shimotori Y et al (2012) Microbial conversion of bamboo hemicellulose hydrolysate to xylitol. Wood Sci Technol 47:515–522

    Article  CAS  Google Scholar 

  • Moyses DN, Reis VC, de Almeida JR et al (2016) Xylose fermentation by Saccharomyces cerevisiae: challenges and prospects. Int J Mol Sci 17:207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mussatto SI, Roberto IC (2003) Xylitol production from high xylose concentration: evaluation of the fermentation in bioreactor under different stirring rates. J Appl Microbiol 95:331–337

    Article  CAS  PubMed  Google Scholar 

  • Oh YJ, Lee TH, Lee SH et al (2007) Dual modulation of glucose 6-phosphate metabolism to increase NADPH-dependent xylitol production in recombinant Saccharomyces cerevisiae. J Mol Catal B Enzym 47:37–42

    Article  CAS  Google Scholar 

  • Oh EJ, Bae YH, Kim KH et al (2012) Effects of overexpression of acetaldehyde dehydrogenase 6 and acetyl-CoA synthetase 1 on xylitol production in recombinant Saccharomyces cerevisiae. Biocatal Agric Biotechnol 1:15–19

    CAS  Google Scholar 

  • Pal S, Choudhary V, Kumar A et al (2013) Studies on xylitol production by metabolic pathway engineered Debaryomyces hansenii. Bioresour Technol 147:449–455

    Article  CAS  PubMed  Google Scholar 

  • Pal S, Mondal AK, Sahoo DK (2016) Molecular strategies for enhancing microbial production of xylitol. Process Biochem 51:809–819

    Article  CAS  Google Scholar 

  • Park YC, Kim SK, Seo JH (2014) Recent advances for microbial production of xylitol. Wiley, Chichester, pp 497–518

    Google Scholar 

  • Ping Y, Ling HZ, Song G et al (2013) Xylitol production from non-detoxified corncob hemicellulose acid hydrolysate by Candida tropicalis. Biochem Eng J 75:86–91

    Article  CAS  Google Scholar 

  • Prakash G, Varma AJ, Prabhune A et al (2011) Microbial production of xylitol from D-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresour Technol 102:3304–3308

    Article  CAS  PubMed  Google Scholar 

  • Prakasham RS, RS R, PJ H (2009) Current trends in biotechnological production of xylitol and future prospects. Curr Trends Biotechnol 3:8–36

    CAS  Google Scholar 

  • Rao RS, Jyothi CP, Prakasham RS et al (2006) Strain improvement of Candida tropicalis for the production of xylitol: biochemical and physiological characterization of wild-type and mutant strain CT-OMV5. J Microbiol 44:113–120

    PubMed  CAS  Google Scholar 

  • Rizzi M, Erlemann P, Bui-thanh NA et al (1988) Xylose fermentation by yeasts. Appl Microbiol Biotechnol 29:148–154

    Article  CAS  Google Scholar 

  • Rocha MV, Rodrigues TH, Melo VM et al (2011) Cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025. J Ind Microbiol Biotechnol 38:1099–1107

    Article  CAS  PubMed  Google Scholar 

  • Rocha MVP, Rodrigues THS, Albuquerque d et al (2014) Evaluation of dilute acid pretreatment on cashew apple bagasse for ethanol and xylitol production. Chem Eng J 243:234–243

    Article  CAS  Google Scholar 

  • Rodrigues RC, Kenealy WR, Jeffries TW (2011) Xylitol production from DEO hydrolysate of corn Stover by Pichia stipitis YS-30. J Ind Microbiol Biotechnol 38:1649–1655

    Article  CAS  PubMed  Google Scholar 

  • Roseiro JC, Peito MA, Gírio FM et al (1991) The effects of the oxygen transfer coefficient and substrate concentration on the xylose fermentation by Debaryomyces hansenii. Arch Microbiol 156:484–490

    CAS  Google Scholar 

  • Sampaio FC, Silveira WBD, Chaves-alves VM et al (2003) Screening of filamentous fungi for production of xylitol from D-xylose. Braz J Microbiol 34:321–324

    Article  Google Scholar 

  • Sampaio FC, Torre P, Passos FM et al (2004) Xylose metabolism in Debaryomyces hansenii UFV-170. Effect of the specific oxygen uptake rate. Biotechnol Prog 20:1641–1650

    Article  CAS  PubMed  Google Scholar 

  • Skim MD, Jeun YS, Kim SG et al (2002) Comparison of xylitol production in recombinant Saccharomyces cerevisiae strains harboring XYL1 gene of Pichia stipitis and GRE3 gene of S. cerevisiae. Enzym Microb Technol 31:862–866

    Article  Google Scholar 

  • Smiley KL, Bolen PL (1982) Demonstration of D-xylose reductase and D-xylitol dehydrogenase in Pachysolen tannophilus. Biotechnol Lett 4:607–610

    Article  CAS  Google Scholar 

  • Sonderegger M, Jeppsson M, Hahn-Hagerdal B et al (2004) Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl Environ Microbiol 70:2307–2317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walfridsson M, Anderlund M, Bao X et al (1997) Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl Microbiol Biotechnol 48:218–224

    Article  CAS  PubMed  Google Scholar 

  • Wang TH, Zhong YH, Huang W et al (2005) Antisense inhibition of xylitol dehydrogenase gene, xdh1 from Trichoderma reesei. Lett Appl Microbiol 40:424–429

    Article  CAS  PubMed  Google Scholar 

  • Winkelhausen E, Kuzmanova S (1998) Microbial conversion of d-xylose to xylitol. J Ferment Bioeng 86:1–14

    Article  CAS  Google Scholar 

  • Yadav M, Mishra DK, Hwang JS (2012) Catalytic hydrogenation of xylose to xylitol using ruthenium catalyst on NiO modified TiO2 support. Appl Catal A Gen 425–-426:110–116

    Article  CAS  Google Scholar 

  • Zhang J, Geng A, Yao C et al (2012) Xylitol production from D-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18. Bioresour Technol 105:134–141

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Li L, Zhang J et al (2013) Improving ethanol and xylitol fermentation at elevated temperature through substitution of xylose reductase in Kluyveromyces marxianus. J Ind Microbiol Biotechnol 40:305–316

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang B, Wang D et al (2014) Xylitol production at high temperature by engineered Kluyveromyces marxianus. Bioresour Technol 152:192–201

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Zong H, Zhuge B et al (2015) Production of xylitol from D-xylose by overexpression of xylose reductase in osmotolerant yeast Candida glycerinogenes WL2002-5. Appl Biochem Biotechnol 176:1511–1527

    Article  CAS  PubMed  Google Scholar 

  • Zikou E, Chatzifragkou A, Koutinas AA et al (2013) Evaluating glucose and xylose as cosubstrates for lipid accumulation and gamma-linolenic acid biosynthesis of Thamnidium elegans. J Appl Microbiol 114:1020–1032

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaik Jakeer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jakeer, S. (2018). Exploiting Innate and Imported Fungal Capacity for Xylitol Production. In: Kumar, S., Dheeran, P., Taherzadeh, M., Khanal, S. (eds) Fungal Biorefineries. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-90379-8_6

Download citation

Publish with us

Policies and ethics