Skip to main content
Log in

Screening of yeasts for production of xylitol fromd-xylose and some factors which affect xylitol yield inCandida guilliermondii

  • Original Papers
  • Published:
Journal of Industrial Microbiology

Summary

The ability to convertd-xylose to xylitol was screened in 44 yeasts from five genera. All but two of the strains produced some xylitol with varying rates and yields. The best xylitol producers were localized largely in the speciesCandida guilliermondii andC. tropicalis. Factors affecting xylitol production by a selectedC. guilliermondii strain, FTI-20037, were investigated. The results showed that xylitol yield by this strain was affected by the nitrogen source. Yield was highest at 30–35°C, and could be increased with decreasing aeration rate. Using high cell density and a defined medium under aerobic conditions, xylitol yield byC. guilliermondii FTI-20037 from 104 g/ld-xylose was found to be 77.2 g/l. This represented a yield of 81% of the theoretical value, which was computed to be 0.9 mol xylitol per mold-xylose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baillargeon, M.W., N.B. Jansen, C.-S. Gong and G.T. Tsao. 1983. Effect of oxygen uptake rate on ethanol production by a xylose-fermenting yeast mutant,Candida sp XF217. Biotechnol. Lett. 5: 339–344.

    Google Scholar 

  2. Bruinenberg, P.M., P.H.M. de Bot, J.P. van Dijken and W.A. Scheffers. 1984. NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts. Appl. Microbiol. Biotechnol. 19: 256–269.

    Google Scholar 

  3. Bruinenberg, P.M., R. Jonker. J.P. van Dijken and W.A. Scheffers. 1985. Utilization of formate as an additional energy source by glucose-limited chemostat cultures ofCandida utilis CBS 621 andSaccharomyces cerevisiae CBS 8066. Evidence for the absence of transhydrogenase activity in yeasts. Arch. Microbiol. 142: 302–306.

    Google Scholar 

  4. Bruinenberg, P.M., J.P. van Dijken and W.A. Scheffers. 1983. A theoretical analysis of NADPH production and consumption in yeasts. J. Gen. Microbiol. 129: 953–964.

    Google Scholar 

  5. Chen, L.F. and C.S. Gong. 1985. Fermentation of sugarcane bagasse hemicellulose hydrolysate to xylitol by a hydrolysate-acclimatized yeast. J. Food Sci. 50: 226–228.

    Google Scholar 

  6. Chung, I.S. and Y.Y. Lee. 1986. Effect of oxygen and redox potential ond-xylose fermentation by non-growing cells ofPachysolen tannophilus. Enzyme Microb. Technol. 8: 503–507.

    Google Scholar 

  7. Culbert, S.J. and Y.-M. Wang. 1986. Oral xylitol in American adults. Nutr. Res. 6: 913–922.

    Google Scholar 

  8. Emodi, A. 1978. Xylitol: its properties and food applications. Food Technol. January: 28–32.

    Google Scholar 

  9. Gong, C.-S., L.F. Chen and G.T. Tsao. 1981. Quantitative production of xylitol fromd-xylose by a high-xylitol producing yeast mutantCandida tropicalis HXP 2. Biotechnol. Lett. 3: 125–130.

    Google Scholar 

  10. Gong, C.S., T.A. Claypool, L.D. McCracken, C.M. Maun, P.P. Veng and G.T. Tsao. 1983. Conversion of pentoses by yeasts. Biotechnol. Bioeng. 15: 85–102.

    Google Scholar 

  11. Horecker, B.L. 1962. pentose metabolism in yeasts, p. 29, John Wiley & Sons, Inc., New York.

    Google Scholar 

  12. Lee, H., A.L. Atkin, M.F.S. Barbosa, D.R. Dorscheid and H. Schneider. 1988. Effect of biotin limitation on the conversion of xylose to ethanol and xylitol byPachysolen tannophilus andCandida guilliermondii. Enzyme Microb. Technol. 10: 81–84.

    Google Scholar 

  13. Lee, H., P. Biely, R.K. Latta, M.F.S. Barbosa and H. Schneider. 1986. Utilization of xylan by yeasts and its conversion to ethanol byPichia stipitis strains. Appl. Environ. Microbiol. 52: 320–324.

    Google Scholar 

  14. Lee, H., A.P. James, D.M. Zahab, G. Mahmourides, R. Maleszka and H. Schneider. 1986. Mutants ofPachysolen tannophilus with improved production of ethanol fromd-xylose. Appl. Environ. Microbiol. 51: 1252–1258.

    Google Scholar 

  15. Lehninger, A.L. 1982. Principles of Biochemistry. Worth Publishers, Inc., New York.

    Google Scholar 

  16. Onishi, H. and T. Suzuki. 1966. The production of xylitol,l-arabinitol and ribitol by yeasts. Agric. Biol. Chem. 30: 1139–1144.

    Google Scholar 

  17. Onishi, H. and T. Suzuki. 1969. Microbial production of xylitol from glucose. Appl. Microbiol. 18: 1031–1035.

    PubMed  Google Scholar 

  18. Slininger, P.J., P.C. Bolen and C.P. Kurtzman. 1987.Pachysolen tannophilus: properties and process considerations for ethanol production fromd-xylose. Enzyme Microb. Technol. 9: 5–15.

    Google Scholar 

  19. Wang, Y.-M. and J. van Eys. 1981. Nutritional significance of fructose and sugar alcohols. 1: 437–475.

    Google Scholar 

  20. Watson, N.E., B.A. Prior, J.C. du Preez and P.M. Lategan. 1984. Oxygen requirements ford-xylose fermentation to ethanol and polyols byPachysolen tannophilus. Enzyme Microb. Technol. 6: 447–450.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Issued as NRCC publication No. 28798.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbosa, M.F.S., de Medeiros, M.B., de Mancilha, I.M. et al. Screening of yeasts for production of xylitol fromd-xylose and some factors which affect xylitol yield inCandida guilliermondii . Journal of Industrial Microbiology 3, 241–251 (1988). https://doi.org/10.1007/BF01569582

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569582

Key words

Navigation