Skip to main content
Log in

Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Corn stover that had been treated with vapor-phase diethyl oxalate released a mixture of mono- and oligosaccharides consisting mainly of xylose and glucose. Following overliming and neutralization, a d-xylulokinase mutant of Pichia stipitis, FPL-YS30 (xyl3-∆1), converted the stover hydrolysate into xylitol. This research examined the effects of phosphoric or gluconic acids used for neutralization and urea or ammonium sulfate used as nitrogen sources. Phosphoric acid improved color and removal of phenolic compounds. d-Gluconic acid enhanced cell growth. Ammonium sulfate increased cell yield and maximum specific cell growth rate independently of the acid used for neutralization. The highest xylitol yield (0.61 gxylitol/gxylose) and volumetric productivity (0.18 gxylitol/gxylose l) were obtained in hydrolysate neutralized with phosphoric acid. However, when urea was the nitrogen source the cell yield was less than half of that obtained with ammonium sulfate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alves LA, Felipe MGA, Silva JBA, Silva SS, Prata AMR (1998) Pretreatment of sugar cane bagasse hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Appl Biochem Biotechnol 70–72:89–98

    Article  Google Scholar 

  2. Blomberg A (2000) Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol Lett 182:1–8

    Article  PubMed  CAS  Google Scholar 

  3. Clark TA, Mackie KL (1984) Fermentation inhibitors in wood hydrolysates derived from the softwood Pinus radiate. J Chem Technol Biotechnol 2(34b):101–110

    Google Scholar 

  4. Cho JY, Jeffries TW (1998) Pichia stipitis genes for alcohol dehydrogenase with fermentative and respiratory functions. Appl Environ Microbiol 64:1350–1358

    PubMed  CAS  Google Scholar 

  5. Dominguez JM, Cruz JM, Roca E, Dominguez H, Parajo JC (1999) Xylitol production from wood hydrolyzates by entrapped Debaryomyces hansenii and Candida guilliermondii cells. Appl Biochem Biotechnol 81(2):119–130

    Article  PubMed  CAS  Google Scholar 

  6. Dominguez JM, Gong CS, Tsao GT (1996) Pretreatment of sugar cane bagasse hemicellulose hydrolysate for xylitol production by yeast. Appl Biochem Biotechnol 57–58:49–56

    Article  PubMed  Google Scholar 

  7. Fischer K, Bipp HP (2002) Removal of heavy metals from soil components and soils by natural chelating agents Part II. Soil extraction by sugar acids. Water Air Soil Pollut 138:271–288

    Article  CAS  Google Scholar 

  8. Grahama R, Nelson R, Sheehan J, Perlacka R, Wrighta LL (2007) Current and potential US corn stover supplies. Agron J 99:1–11

    Article  Google Scholar 

  9. Guebel D, Nudel C (1994) Antagonism between growth and flocculation in Pichia stipitis NRRL Y-7124. Biotechnol Lett 14:1193–1198

    Article  Google Scholar 

  10. Jeffries TW, Jin YS (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63(5):495–509

    Article  PubMed  CAS  Google Scholar 

  11. Jin YS, Cruz J, Jeffries TW (2005) Xylitol production by a Pichia stipitis d-xylulokinase mutant. Appl Microbiol Biotechnol 68(1):42–45

    Article  PubMed  CAS  Google Scholar 

  12. Jin YS, Jones S, Shi NQ, Jeffries TW (2002) Molecular cloning of XYL3 (d-xylulokinase) from Pichia stipitis and characterization of its physiological function. Appl Environ Microbiol 68(3):1232–1239

    Article  PubMed  CAS  Google Scholar 

  13. Kenealy W, Horn E, Houtman C (2007) Vapor-phase diethyl oxalate pretreatment of wood chips: Part 1. Energy savings and improved pulps. Holzforschung 61:223–229

    Article  CAS  Google Scholar 

  14. Kenealy W, Horn E, Davis M, Swaney R, Houtman C (2007) Vapor-phase diethyl oxalate pretreatment of wood chips: Part 2. Release of hemicellulosic carbohydrates. Holzforschung 61:230–235

    Article  CAS  Google Scholar 

  15. Kim MS, Chung YS, Seo JH, Jo DH, Park YH, Ryu YW (2001) High-yield production of xylitol from xylose by a xylitol dehydrogenase defective mutant of Pichia stipitis. J Microbiol Biotechnol 11:564–569

    CAS  Google Scholar 

  16. Kim TB, Oh DK (2003) Xylitol production by Candida tropicalis in a chemically defined medium. Biotechnol Lett 25(24):2085–2088

    Article  PubMed  CAS  Google Scholar 

  17. Larsson S, Palmqvist E, Hägerdal BH, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol 24:151–159

    Article  CAS  Google Scholar 

  18. Le Duy A, Zajic JE (1976) A geometrical approach for differentiation of an experimental function at a point: applied to growth and product formation. Biotechnol Bioeng 15:805–810

    Article  Google Scholar 

  19. Lunzer R, Mamnun Y, Haltrich D, Kulbe KD, Nidetzky B (1998) Structural and functional properties of a yeast xylitol dehydrogenase, a Zn2+-containing metalloenzyme similar to medium-chain sorbitol dehydrogenases. Biochem J 336(Pt 1):91–99

    PubMed  CAS  Google Scholar 

  20. Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Prog 15(5):777–793

    Article  PubMed  CAS  Google Scholar 

  21. Mäkinen KK (1978) Biochemical principles of the use of xylitol in medicine and nutrition with special consideration of dental aspects. Basel, Birkhäuser Verlag

    Google Scholar 

  22. Montague I (2003) Lignin process design confirmation and capital cost evaluation NREL/SR-5I0-31579 Oct. National Renewable Energy Laboratory, Golden, Colorado

  23. Napoles I, Silva S, Mancilha I, Felipe MGA (1998) Application of ion-exchange resins in upstream processing of sugar cane bagasse hydrolsayte for its utilization in bioprocesses. In: Abstracts of the 2nd European symposium on biochemical engineering science, Porto, Portugal, 16–19 September 1998

  24. Oh DK, Kim SY, Kim JH (1998) Increase of xylitol production rate by controlling redox potential in Candida parapsilosis. Biotechnol Bioeng 58(4):440–444

    Article  PubMed  CAS  Google Scholar 

  25. Ostergaard S, Olsson L, Nielsen J (2000) Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 64(1):34–50

    Article  PubMed  CAS  Google Scholar 

  26. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification. Bioresour Technol 74(1):17–24

    Article  CAS  Google Scholar 

  27. Rodrigues RC, Sene L, Matos GS, Roberto IC, Pessoa A Jr, Felipe MGA (2006) Enhanced xylitol production by precultivation of Candida guilliermondii cells in sugarcane bagasse hemicellulosic hydrolysate. Curr Microbiol 53(1):53–59

    Article  PubMed  CAS  Google Scholar 

  28. Rodrigues RCLB, Felipe MGA, Almeida e Silva JB, Vitolo M, Gomez PV (2001) The influence of pH, temperature and hydrolysate concentration on the removal of volatile and nonvolatile compounds from sugarcane bagasse hemicellulosic hydrolysate treated with activated charcoal before or after vacuum evaporation. Braz J Chem Eng 18:299–311

    Article  CAS  Google Scholar 

  29. Sanghi R (2000) What’s up with chelates. Curr Sci 78(11):1–5

    Google Scholar 

  30. Singleton VL, Rossi JA Jr (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  31. E Vandeska, Kuzmanova S, Jeffries TW (1995) Effects of environmental conditions on production of xylitol by Candida boidinii. World J Microbiol Biotechnol 11:213–218

    Article  Google Scholar 

Download references

Acknowledgments

Rita de C.L.B. Rodrigues gratefully acknowledges financial support by CNPq, Brazil, grant number 200702/2006-8. We thank Tim Scott from Forest Products Laboratory, Madison-WI, USA, for the corn stover.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita C. L. B. Rodrigues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, R.C.L.B., Kenealy, W.R. & Jeffries, T.W. Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30. J Ind Microbiol Biotechnol 38, 1649–1655 (2011). https://doi.org/10.1007/s10295-011-0953-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-0953-4

Keywords

Navigation