Skip to main content

Somatic Embryogenesis, In Vitro Selection and Plantlet Regeneration for Citrus Improvement

  • Chapter
  • First Online:
Biotechnologies of Crop Improvement, Volume 1

Abstract

Citrus is the most widely cultivated fruit crop across the globe. The commercially cultivated varieties and rootstocks are the adapted genotypes and need improvement for one or few traits. Such targeted improvement though the conventional breeding approaches is hindered by the complex biological attributes of Citrus such as polyembryony and sterility and sometimes sexual incompatibility with the donor sources. The cell- and tissue culture-based techniques such as somatic embryogenesis and in vitro selection are vital for the improvement of Citrus. The somatic embryogenesis facilitates improvement of Citrus through somatic hybridization and genetic transformation. Somatic hybridization has been used for the genetic improvement of both scion and rootstocks. Somatic hybridization-mediated scion improvement involves production of superior allotetraploids that can be used for crossing with diploid elite varieties to develop seedless triploids. The development of cybrids by combining cytoplasmic genome from Satsuma mandarin and nuclear genome from desired varieties is also an attractive approach. In the rootstock improvement, somatic hybridization targets packaging of resistance to different biotic and abiotic stresses in a single rootstock. The allotetraploid somatic hybrids reduce tree size and can improve adaptability of the composite trees by imparting resistance to different stresses. The in vitro selection has been used for improvement against biotic (mal secco, Phytophthora-induced diseases and canker) and abiotic stresses (salt, cold and Al toxicity) in Citrus. Techniques like shoot-tip grafting have shown promise for restoring the true yield potential of citrus cultivars by cleansing them from infectious virus and virus-like diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu IS, Carvalho CR, Clarindo WR (2014) Massal induction of Carica papaya L. ‘Golden’ somatic embryos and somaclone screening by flow cytometry and cytogenetic analysis. Cytologia 79:475–484

    Article  Google Scholar 

  • Al Bachchu MA, Jin SB, Park JW et al (2011) Agrobacterium-mediated transformation using embryogenic calli in Satsuma mandarin (Citrus unshiu Marc.) cv. Miyagawa wase. Hortic Environ Biotechnol 52:170–175

    Article  Google Scholar 

  • Aleza P, Garcia-Lor A, Juárez J et al (2016) Recovery of Citrus cybrid plants with diverse mitochondrial and chloroplastic genome combinations by protoplast fusion followed by in vitro shoot, root, or embryo micrografting. Plant Cell Tissue Organ Cult 126:205–217

    Article  CAS  Google Scholar 

  • Ananthakrishnan G, Calovic M, Serrano P et al (2006) Production of additional allotetraploid somatic hybrids combining mandarins and sweet orange with pre-selected pummelos as potential candidates to replace sour orange rootstock. In Vitro Cell Dev Biol Plant 42:367–371

    Article  CAS  Google Scholar 

  • von Arnold S, Sabala I, Bozhkov P et al (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult 69:233–249

    Article  Google Scholar 

  • Beloualy N (1991) Plant regeneration from callus cultures of three Citrus rootstocks. Plant Cell Tissue Organ Cult 24:29–34

    Article  CAS  Google Scholar 

  • Benelli C, Germanà MA, Ganino T et al (2010) Morphological and anatomical observations of abnormal somatic embryos from anther cultures of Citrus reticulata. Biol Plant 54:224–230

    Article  Google Scholar 

  • Ben-Hayyim G, Kochba J (1982) Growth characteristics and stability of tolerance of Citrus callus cells subjected to NaCl stress. Plant Sci Lett 27:87–94

    Article  CAS  Google Scholar 

  • Ben-Hayyim G and Kochba J (1983) Aspects of salt tolerance in a NaCl-selected stable cell line of Citrus sinensis. Plant Physiol 72: 685–690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ben-Hayyim G, Neumann H (1983) Stimulatory effect of glycerol on growth and somatic embryogenesis in Citrus callus cultures. Z Pflanzenphysiol 110:331–337

    Article  CAS  Google Scholar 

  • de Bona CM, Gould JH, Creighton Miller J et al (2009) Citrus asymmetric somatic hybrids produced via fusion of gamma-irradiated and iodoacetamide-treated protoplasts. Pesq Agropec Bras Brasilia 44:454–462

    Article  Google Scholar 

  • Bordon Y, Guardiola JL, García-Luis A (2000) Genotype affects the morphogenic response in vitro of epicotyl segments of Citrus rootstocks. Ann Bot 86:159–166

    Article  Google Scholar 

  • Britt AB (1996) DNA damage and repair in plants. Annu Rev Plant Biol 47:75–100

    Article  CAS  Google Scholar 

  • Broertjes C, Van Harten A (1988) Applied mutation breeding for vegetatively propagated crops. Elsevier, Amsterdam

    Google Scholar 

  • Cabasson C, Ollitrault P, Côte F-X et al (1995) Characteristics of Citrus cell cultures during undifferentiated growth on sucrose and somatic embryogenesis on galactose. Physiol Plant 93:464–470

    Article  CAS  Google Scholar 

  • Cai X, Fu J, Chen C et al (2009) Cybrid/hybrid plants regenerated from somatic fusions between male sterile Satsuma mandarin and seedy tangelos. Sci Hortic 122:323–327

    Article  CAS  Google Scholar 

  • Cardoso JC, Martinelli AP, Latado RR (2012) Somatic embryogenesis from ovaries of sweet orange cv. Tobias. Plant Cell Tissue Organ Cult 109:171–177

    Article  Google Scholar 

  • Carimi F, De Pasquale F, Crescimanno FG (1995) Somatic embryogenesis in Citrus from styles culture. Plant Sci 105:81–86

    Article  CAS  Google Scholar 

  • Carimi F, Tortorici MC, De Pasquale F et al (1998) Somatic embryogenesis and plant regeneration from undeveloped ovules and stigma/style explants of sweet orange navel group [Citrus sinensis (L.) Osb.] Plant Cell Tissue Organ Cult 54:183–189

    Article  Google Scholar 

  • Carimi F, De Pasquale F, Crescimanno FG (1999) Somatic embryogenesis and plant regeneration from pistil thin cell layers of Citrus. Plant Cell Rep 18:935–940

    Article  CAS  Google Scholar 

  • Carimi F, De Pasquale F, Fiore S et al (2001) Sanitation of citrus germplasm by somatic embryogenesis and shoot-tip grafting. In: D’Onghia AM, Menini U and Martelli GP (eds) Improvement of the citrus sector by the setting up of the common conservation strategies for the free exchange of healthy citrus genetic resources. CIHEAM- options Mediterraneennes: Serie B. Etudes et Recherches, n. 33, pp 61–65

    Google Scholar 

  • Carra A, De Pasquale F, Ricci A et al (2006) Diphenylurea derivatives induce somatic embryogenesis in Citrus. Plant Cell Tissue Organ Cult 87:41–48

    Article  CAS  Google Scholar 

  • Chiancone B, Tassoni A, Bagni N et al (2006) Effect of polyamines on in vitro anther culture of Citrus clementina Hort. ex Tan. Plant Cell Tissue Organ Cult 87:145–153

    Article  CAS  Google Scholar 

  • Chu CC (1978) The N6 medium and its applications to anther culture of cereal crops. In: Proceedings of symposium on plant tissue culture, 1978. Science Press, Peking, pp 43–50

    Google Scholar 

  • Clarindo WR, Carvalho CR, Mendonça MAC (2012) Ploidy instability in long-term in vitro cultures of Coffea arabica L. monitored by flow cytometry. Plant Growth Regul 68:533–538

    Article  CAS  Google Scholar 

  • Costa MGC, Alves VS, Lani ERG et al (2004) Morphogenic gradients of adventitious bud and shoot regeneration in epicotyl explants of Citrus. Sci Hortic 100:63–74

    Article  Google Scholar 

  • Currais L, Loureiro J, Santos C et al (2013) Ploidy stability in embryogenic cultures and regenerated plantlets of tamarillo. Plant Cell Tissue Organ Cult 114:149–159

    Article  Google Scholar 

  • Czene S, Harms-Ringdahl M (1995) Detection of single-strand breaks and formamidopyrimidine-DNA glycosylase-sensitive sites in DNA of cultured human fibroblasts. Mutat Res/DNA Repair 336:235–242

    Article  CAS  Google Scholar 

  • Deng ZA, Zhang WC, Wan SY (1991) Induction of somatic embryogenesis from habituated nucellar calluses in Citrus. J Fruit Sci 8(4):193–200

    Google Scholar 

  • Deng ZN, Gentile A, Domina F et al (1995) Selecting lemon protoplasts for insensitivity to Phoma tracheiphila toxin and regenerating tolerant plants. J Am Soc Hortic Sci 120:902–905

    Google Scholar 

  • Deng ZN, Gentile A, Nicolosi E et al (1996) Parentage determination of some Citrus hybrids by molecular markers. Proc Int Soc Citricul 2:849–854

    Google Scholar 

  • Deng X, Guo W, Yu G (2000) Diploid mesophyll parent type plants regenerated from nine symmetrical protoplast fusion combinations in Citrus. Acta Hortic 27:1–5

    Google Scholar 

  • Dey T, Saha S, Ghosh PD (2015) Somaclonal variation among somatic embryo derived plants - evaluation of agronomically important somaclones and detection of genetic changes by RAPD in Cymbopogon winterianus. S Afr J Bot 96:112–121

    Article  Google Scholar 

  • Duncan RR (1996) Tissue culture-induced variation and crop improvement. Adv Agron 58:201–240

    Article  Google Scholar 

  • Dutt M, Grosser JW (2010) An embryogenic suspension cell culture system for Agrobacterium-mediated transformation of Citrus. Plant Cell Rep 29:1251–1260

    Article  PubMed  CAS  Google Scholar 

  • FAO (2014) Production of Citrus fruits. http://www.fao.org/faostat/en/#data/QC. Accessed 23 June 2016

  • Fiore S, De Pasquale F, Carimi F et al (2002) Effect of 2,4-D and 4-CPPU on somatic embryogenesis from stigma and style transverse thin cell layers of Citrus. Plant Cell Tissue Organ Cult 68:57–63

    Article  CAS  Google Scholar 

  • Garcia-Agustin P, Primo-Millo E (1995) Selection of a NaCl-tolerant Citrus plant. Plant Cell Rep 14:314–318

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Luis A, Molina RV, Varona V et al (2006) The influence of explant orientation and contact with the medium on the pathway of shoot regeneration in vitro in epicotyl cuttings of ‘Troyer’ citrange. Plant Cell Tissue Organ Cult 85:137–144

    Article  Google Scholar 

  • Gavish H, Vardi A, Fluhr R (1992) Suppression of somatic embryogenesis in Citrus cell cultures by extracellular proteins. Planta 186:511–517

    Article  PubMed  CAS  Google Scholar 

  • Ge XX, Fan G-E, Chai LJ et al (2010) Cloning, molecular characterization and expression analysis of a somatic embryogenesis receptor-like kinase gene (CitSERK1-like) in Valencia sweet orange. Acta Physiol Plant 32:1197–1207

    Article  CAS  Google Scholar 

  • Ge H, Li Y, Fu H et al (2015) Production of sweet orange somaclones tolerant to Citrus canker disease by in vitro mutagenesis with EMS. Plant Cell Tissue Organ Cult 123:29–38

    Article  CAS  Google Scholar 

  • Gentile A, Tribulato E, Deng Z et al (1992) In vitro selection of nucellar lemon callus and regeneration of plants tolerant to Phoma tracheiphila toxin. Adv Hortic Sci 4:151–154

    Google Scholar 

  • George EF (1993) Plant propagation by tissue culture. Part 1: The technology. Exegetics Limited, Westbury

    Google Scholar 

  • Ghazvini RF, Shirani S (2002) Study of the effects of somatic embryogenesis of unfertilized ovules from Mexican lime (Citrus aurantifolia L.) on different media. J Sci Technol Agric Nat Resour 6:44–52

    Google Scholar 

  • Gill M, Singh Z, Dhillon B et al (1994) Somatic embryogenesis and plantlet regeneration on calluses derived from seedling explants of ‘Kinnow’mandarin (Citrus nobilis Lour,× Citrus deliciosa Tenora). J Hortic Sci 69:231–236

    Article  Google Scholar 

  • Gill MIS, Singh Z, Dhillon BS et al (1995) Somatic embryogenesis and plantlet regeneration in mandarin (Citrus reticulata Blanco). Sci Hortic 63:167–174

    Article  Google Scholar 

  • Gmitter FG, Moore GA (1986) Plant regeneration from undeveloped ovules and embryogenic calli of Citrus: embryo production, germination, and plant survival. Plant Cell Tissue Organ Cult 6:139–147

    Article  CAS  Google Scholar 

  • Goh CJ, Sim GE, Morales CL et al (1995) Plantlet regeneration through different morphogenic pathways in pommelo tissue culture. Plant Cell Tissue Organ Cult 43:301–303

    Google Scholar 

  • Goldman MHS, Ando A (1990) Radiosensitivity of protoplasts of orange (Citrus sinensis). Mutation breeding. Newsletter 36:11

    Google Scholar 

  • Gong XQ, Liu JH (2013) Genetic transformation and genes for resistance to abiotic and biotic stresses in Citrus and its related genera. Plant Cell Tissue Organ Cult 113:137–147

    Article  CAS  Google Scholar 

  • Gonzaga DL, Latado RR, Neto AT et al (2011) Radiossensitivity of two propagules of Citrus. Bragantia 70:13–18

    Article  Google Scholar 

  • Grosser JW (1994) Observations and suggestions for improving somatic hybridization by plant protoplast isolation, fusion and culture. Hortscience 29:1241–1243

    Google Scholar 

  • Grosser JW, Chandler JL (2003) New Citrus rootstocks via protoplast fusion. Acta Hortic 622:491–497

    Article  Google Scholar 

  • Grosser JW, Gmitter FG (2005) 2004 SIVB congress symposium proceedings thinking outside the cell-applications of somatic hybridization and cybridization in crop improvement, with Citrus as a model. In Vitro Cell Dev Biol Plant 41:220–225

    Article  Google Scholar 

  • Grosser JW, Gmitter FG (2011) Protoplast fusion for production of tetraploids and triploids: applications for scion and rootstock breeding in Citrus. Plant Cell Tissue Organ Cult 104:343–357

    Article  CAS  Google Scholar 

  • Grosser JW, Gmitter FG, Louzada ES et al (1992) Production of somatic hybrid and autotetraploid breeding parents for seedless Citrus development. Hortscience 27:1125–1127

    Google Scholar 

  • Grosser JW, Mourao-Fo FAA, Gmitter FGJ et al (1996) Allotetraploid hybrids between citrus and seven related genera produced by somatic hybridization. Theor Appl Genet 92:577–582

    Article  PubMed  CAS  Google Scholar 

  • Grosser JW, Ollitrault P, Olivares-Fuster O (2000) Somatic hybridization in Citrus: an effective tool to facilitate variety improvement. In Vitro Cell Dev Biol Plant 36:434–449

    Article  Google Scholar 

  • Guan Y, Li SG, Fan XF et al (2016) Application of somatic embryogenesis in woody plants. Front Plant Sci 7:938

    PubMed  PubMed Central  Google Scholar 

  • Gulsen O, Uzun A, Pala H et al (2007) Development of seedless and mal secco tolerant mutant lemons through budwood irradiation. Sci Hortic 112:184–190

    Article  Google Scholar 

  • Guo WW, Deng XX (1998) Somatic hybrid plantlets regeneration between Citrus and its wild relative, Murraya paniculata via protoplast electrofusion. Plant Cell Rep 18:297–300

    Article  CAS  PubMed  Google Scholar 

  • Guo WW, Grosser JW (2005) Somatic hybrid vigor in Citrus: direct evidence from protoplast fusion of an embryogenic callus line with a transgenic mesophyll parent expressing the GFP gene. Plant Sci 168:1541–1545

    Article  CAS  Google Scholar 

  • Guo W, Deng X, Shi Y (1998) Optimization of electrofusion parameters and interspecific somatic hybrid regeneration in Citrus. Acta Bot Sin 40:417–424

    CAS  Google Scholar 

  • Guo W, Cheng Y, Deng X (2002) Regeneration and molecular characterization of intergeneric somatic hybrids between Citrus reticulata and Poncirus trifoliata. Plant Cell Rep 20:829–834

    Article  CAS  Google Scholar 

  • Guo WW, Cai XD, Grosser JW (2004) Somatic cell cybrids and hybrids in plant improvement. In: Daniell H, Chase C (eds) Molecular biology and biotechnology of plant organelles: chloroplasts and mitochondria. Springer Netherlands, Dordrecht, pp 635–659

    Chapter  Google Scholar 

  • Guo W, Duan Y, Olivares-Fuster O et al (2005) Protoplast transformation and regeneration of transgenic Valencia sweet orange plants containing a juice quality-related pectin methylesterase gene. Plant Cell Rep 24:482–486

    Article  PubMed  CAS  Google Scholar 

  • Guo WW, Wu RC, Cheng YJ et al (2007) Production and molecular characterization of Citrus intergeneric somatic hybrids between red tangerine and citrange. Plant Breed 126:72–76

    Article  CAS  Google Scholar 

  • Guo WW, Xiao S-X, Deng X-X (2013) Somatic cybrid production via protoplast fusion for Citrus improvement. Sci Hortic 163:20–26

    Article  Google Scholar 

  • Heinze B, Schmidt J (1995) Mutation work with somatic embryogenesis in woody plants. In: Jain SM, Gupta K, Newton J (eds) Somatic embryogenesis in Woody Plants, vol 1. Kluwer Academic Publishers, Dordrecht, pp 379–398

    Google Scholar 

  • Helaly MNM, El-Hosieny HAMR (2011) Effectiveness of gamma irradiated protoplasts on improving salt tolerance of lemon (Citrus limon L. Burm. F.) Am J Plant Physiol 6(4):190–208

    Article  CAS  Google Scholar 

  • Hossain MM, Kant R, Van PT et al (2013) The application of biotechnology to orchids. Crit Rev Plant Sci 32:69–139

    Article  CAS  Google Scholar 

  • Jain SM (2005) Major mutation-assisted plant breeding programs supported by FAO/IAEA. Plant Cell Tissue Organ Cult 82:113–123

    Article  CAS  Google Scholar 

  • Jimenez VM, Guevara E, Herrera J et al (2001) Endogenous hormone levels in habituated nucellar Citrus callus during the initial stages of regeneration. Plant Cell Rep 20:92–100

    Article  CAS  PubMed  Google Scholar 

  • Jin SB, Song KJ, Riu-Key Z (2007) Several factors affecting embryogenic culture maintenance and shoot regeneration in ‘Miyagawa Wase’ satsuma mandarin (Citrus unshiu). Hortic Environ Biotechnol 48(3):165–170

    CAS  Google Scholar 

  • Juarez J, Aleza P, Navarro L (2015) Applications of citrus shoot-tip grafting in vitro. Acta Hortic 1065:635–642

    Article  Google Scholar 

  • Jumin HB, Nito N (1996) Plant regeneration via somatic embryogenesis from protoplasts of six plant species related to Citrus. Plant Cell Rep 15:332–336

    Article  PubMed  CAS  Google Scholar 

  • Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188

    Article  CAS  PubMed  Google Scholar 

  • Kar B, Kuanar A, Singh S et al (2014) In vitro induction, screening and detection of high essential oil yielding somaclones in turmeric (Curcuma longa L.) Plant Growth Regul 72:59–66

    Article  CAS  Google Scholar 

  • Kaur S, Rattanpal HS (2010) Effect of mutagens on in vitro seed germination and growth of rough lemon (Citrus jambhiri) seedlings. Indian J Agric Sci 80:773–776

    Google Scholar 

  • Kayim M, Koc NK (2006) The effects of some carbohydrates on growth and somatic embryogenesis in Citrus callus culture. Sci Hortic 109:29–34

    Article  CAS  Google Scholar 

  • Kiong ALP, Leong SW, Hussein S et al (2008) Induction of somatic embryos from different explants of Citrus sinensis. J Plant Sci 3:18–32

    Article  CAS  Google Scholar 

  • Koc NK, Can C (1992) Effects of auxin, cytokinin and media composition on callus cultures of sour orange (Citrus aurantium L.) Doga Turk Tarm ve Ormanclk Dergisi 16(1):148–157

    CAS  Google Scholar 

  • Koc NK, Bas B, Koc M et al (2009) Investigations of in vitro selection for salt tolerant lines in sour orange (Citrus aurantium L.) Biotech 8:155–159

    Article  Google Scholar 

  • Kochba J, Spiegel-Roy P, Saad S et al (1978) Stimulation of embryogenesis in Citrus tissue culture by galactose. Naturwissenschaften 65:261–262

    Article  CAS  Google Scholar 

  • Kochba J, Spiegel-Roy P, Neumann H et al (1982) Effect of carbohydrates on somatic embryogenesis in sub cultured nucellar callus of Citrus cultivars. Z Pflanzenphysiol 105:359–368

    Article  CAS  Google Scholar 

  • Koltunow AM (1993) Apomixis: embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell 5:1425

    Article  PubMed  PubMed Central  Google Scholar 

  • Koltunow AM, Hidaka T, Robinson SP (1996) Polyembryony in Citrus: accumulation of seed storage proteins in seeds and in embryos cultured in vitro. Plant Physiol 110:599–609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krishna H, Singh SK (2007) Biotechnological advances in mango (Mangifera indica L.) and their future implication in crop improvement – a review. Biotechnol Adv 25:223–243

    Article  PubMed  CAS  Google Scholar 

  • Krishna H, Alizadeh M, Singh D et al (2016) Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech 6:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Cocking EC (1987) Protoplast fusion: a novel approach to organelle genetics in higher plants. Am J Bot 74:1289–1303

    Article  Google Scholar 

  • Kumar K, Gill MIS, Kaur H et al (2010) In vitro mutagenesis and somaclonal variation assisted salt tolerance in ‘Rough Lemon’ (Citrus jambhiri Lush.) Eur J Hortic Sci 75:233–238

    Google Scholar 

  • Kunitake H, Kagami H, Mii M (1991) Somatic embryogenesis and plant regeneration from protoplasts of ‘Satsuma’ mandarin (Citrus unshiu Marc.) Sci Hortic 47:27–33

    Article  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation – a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  PubMed  CAS  Google Scholar 

  • Latado RR, Neto AT, Figueira A (2012) In vivo and in vitro mutation breeding of Citrus. Induced mutagenesis in crop plants. Biorem Biodiv Bioavail 6:40–45

    Google Scholar 

  • Li D, Shi W, Deng X (2003) Factors influencing Agrobacterium-mediated embryogenic callus transformation of Valencia sweet orange (Citrus sinensis) containing the pTA29-barnase gene. Tree Physiol 23:1209–1216

    Article  PubMed  CAS  Google Scholar 

  • Lin D, Yan Q, Shen D (1999) Selection of cold tolerant somaclonal variant from Citrus sinensis cv. Jincheng and genetic stability evaluation of its cold tolerance. Acta Bot Sin 41:136–141

    CAS  Google Scholar 

  • Ling J-T, Iwamasa M (1994) Somatic hybridization between Citrus reticulata and Citropsis gabunensis through electrofusion. Plant Cell Rep 13:493–497

    Article  PubMed  CAS  Google Scholar 

  • Ling J-T, Iwamasa M (1997) Plant regeneration from embryogenic calli of six Citrus related genera. Plant Cell Tissue Organ Cult 49:145

    Article  Google Scholar 

  • Ling APK, Chia JY, Hussein S et al (2008) Physiological responses of Citrus sinensis to gamma irradiation. World Appl Sci J 5:12–19

    Google Scholar 

  • Lloyd G, McCown B (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Int Plant Propagators Soc Proc 30:421–427

    Google Scholar 

  • Louzada ES, Grosseti JW, Gmitter FG et al (1992) Eight new somatic hybrid Citrus rootstocks with potential for improved disease resistance. Hortscience 27:1033–1036

    Google Scholar 

  • Maretzki A, Thom M (1978) Characteristics of a galactose-adapted sugarcane cell line grown in suspension culture. Plant Physiol 61:544–548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maul P, Bausher M, McCollum G et al (2006) CsHPt1, a putative histidine-containing phosphotransmitter protein induced during early somatic embryogenesis in Valencia sweet orange. Plant Sci 170:44–53

    Article  CAS  Google Scholar 

  • Mendes BMJ, Filho FAAM, Farias PCDM et al (2001) Citrus somatic hybridization with potential for improved blight and CTV resistance. In Vitro Cell Dev Biol Plant 37:490–495

    Article  CAS  Google Scholar 

  • Moiseeva NA, Serebryakova VN, Nardi L et al (2006) Organization of initial stages of somatic embryogenesis in tissue culture of Citrus sinensis cv. Tarocco at the organismal level. Russ J Plant Physiol 53:548–555

    Article  CAS  Google Scholar 

  • Moore GA (1985) Factors affecting in vitro embryogenesis from undeveloped ovules of mature Citrus fruit. J Am Soc Hortic Sci 110:66–70

    CAS  Google Scholar 

  • Mordhorst AP, Toonen MA, de Vries SC et al (1997) Plant embryogenesis. Crit Rev Plant Sci 16:535–576

    Article  Google Scholar 

  • Mourao Filho FAA, Pio R, Mendes BMJ et al (2008) Evaluation of Citrus somatic hybrids for tolerance to Phytophthora nicotianae and Citrus tristeza virus. Sci Hortic 115:301–308

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murashige T, Tucker D (1969) Growth factor requirements of Citrus tissue culture. Proc 1st Int Citrus Symp 3:1155–1161

    Google Scholar 

  • Murashige T, Bitters WP, Rangan TS et al (1972) A technique of shoot apex grafting and its utilization towards recovering virus-free citrus clones. Hortscience 7:118–119

    Google Scholar 

  • Nadel B, Spiegel-Roy P (1987) Selection of Citrus limon cell culture variants resistant to the mal secco toxin. Plant Sci 53:177–182

    Article  CAS  Google Scholar 

  • Navarro L (1992) Citrus shoot-tip grafting in vitro. In: YPS B (ed) High-Tech and Micropropagation II. Biotechnology in Agriculture and Forestry, vol 18. Springer-Verlag, Berlin, Heidelberg, pp 327–338

    Google Scholar 

  • Navarro L, Roistacher CN, Murashige T (1975) Improvement of shoot tip grafting in vitro for virus-free citrus. J Am Soc Hortic Sci 100:471–479

    Google Scholar 

  • Navarro-Garcia N, Morte A, Perez-Tornero O (2016) In vitro adventitious organogenesis and histological characterization from mature nodal explants of Citrus limon. In Vitro Cell Dev Biol Plant 52:161

    Article  CAS  Google Scholar 

  • Nicolosi E, Deng ZN, Gentile A et al (2000) Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet 100:1155–1166

    Article  CAS  Google Scholar 

  • Niedz RP, McKendree WL, Shatters RG (2003) Electroporation of embryogenic protoplasts of sweet orange (Citrus sinensis Osbeck) and regeneration of transformed plants. In Vitro Cell Dev Biol Plant 39:586–594

    Article  CAS  Google Scholar 

  • Nito N, Iwamasa M (1990) In vitro plantlet formation from juice vesicle callus of Satsuma (Citrus unshiu Marc.) Plant Cell Tissue Organ Cult 20:137–140

    Article  Google Scholar 

  • Novak F (1991) In vitro mutation system for crop improvement. In: Plant mutation breeding for crop improvement, vol 2. IAEA, Viena, pp 327–342

    Google Scholar 

  • Ohgawara T, Kobayashi S (1991) Application of protoplast fusion to Citrus breeding. Food Biotechnol 5:169–184

    Article  Google Scholar 

  • Oiyama I, Kobayashi S, Yoshinaga K et al (1991) Use of pollen from a somatic hybrid between Citrus and Poncirus in the production of triploids. Hortscience 26:1082–1082

    Google Scholar 

  • Olivares-Fuster O, Duran-Vila N, Navarro L (2005) Electrochemical protoplast fusion in Citrus. Plant Cell Rep 24:112–119

    Article  PubMed  CAS  Google Scholar 

  • Ollitrault P, Dambier D (1997) Sudahono et al Biotechnology for triploid mandarin breeding. In: 5th Int. Congr. Citrus Nurserymen Montpellier, France, 5–8 Mar 1997

    Google Scholar 

  • Ollitrault P, Dambier D, Sudahono et al (1996) Somatic hybridisation in Citrus: some new hybrid and alloplasmic plants. Proc Int Soc Citricult 2:907–912

    Google Scholar 

  • Ollitrault P, Vanel F, Froelicher Y et al (2000) Creation of triploid Citrus hybrids by electrofusion of haploid and diploid protoplasts. Acta Hortic 535:191–198

    Article  Google Scholar 

  • Omar AA, Dutt M, Gmitter FG et al (2016) Somatic embryogenesis: still a relevant technique in Citrus improvement. In: Germana MA, Lambardi M (eds) In vitro embryogenesis in higher plants. Springer, New York, pp 289–327

    Chapter  Google Scholar 

  • Pan Z, Zhu S, Guan R et al (2010) Identification of 2,4-D-responsive proteins in embryogenic callus of Valencia sweet orange (Citrus sinensis Osbeck) following osmotic stress. Plant Cell Tissue Organ Cult 103:145–153

    Article  CAS  Google Scholar 

  • Pasquale FD, Carimi F, Crescimanno FG (1994) Somatic embryogenesis from styles of different cultivars of Citrus limon (L.) Burm. Aus J Bot 42(5):587–594

    Article  Google Scholar 

  • Patena LF, Endonela LE, Refuerzo LC et al (2005) Somatic embryogenesis and plantlet regeneration in calamansi (x Citrofortunella microcarpa Bunge.) Acta Hortic 694:141–144

    Article  Google Scholar 

  • Pathak H, Dhawan V (2012) ISSR assay for ascertaining genetic fidelity of micropropagated plants of apple rootstock Merton 793. In Vitro Cell Dev Biol Plant 48:137–143

    Article  CAS  Google Scholar 

  • Penna S, Vitthal SB, Yadav PV (2012) In vitro mutagenesis and selection in plant tissue cultures and their prospects for crop improvement. Biorem Biodiversity Bioavailability 6:6–14

    Google Scholar 

  • Perez RM, Galiana AM, Navarro L et al (1998) Embryogenesis in vitro of several Citrus species and cultivars. J Hortic Sci Biotechnol 73:796–802

    Article  Google Scholar 

  • Perez-Clemente RM, Gomez-Cadenas A (2012) In vitro tissue culture, a tool for the study and breeding of plants subjected to abiotic stress conditions. In: Leva A, Rinaldi MRR (eds) Recent advances in plant in vitro culture. INTECH Open Access Publisher, Rijeka, pp 91–108

    Google Scholar 

  • Pijut PM, Beasley RR, Lawson SS et al (2012) In vitro propagation of tropical hardwood tree species – a review. Propagation of ornamental. Plants 12:25–51

    Google Scholar 

  • Piqueras A, Hellin E (1992) Selection and characterization of a salt tolerant lemon cell line. Soil Plant 2:629–640

    CAS  Google Scholar 

  • Polito VS, McGranahan G, Pinney K et al (1989) Origin of somatic embryos from repetitively embryogenic cultures of walnut (Juglans regia L.): implications for Agrobacterium-mediated transformation. Plant Cell Rep 8:219–221

    Article  PubMed  CAS  Google Scholar 

  • Predieri S (2001) Mutation induction and tissue culture in improving fruits. Plant Cell Tissue Organ Cult 64:185–210

    Article  CAS  Google Scholar 

  • Rattanpal HS, Kaur G, Kaur M (2011) In vitro plant regeneration in rough lemon (Citrus jambhiri Lush) by direct organogenesis. Afr J Biotechnol 10(63):13724–13728

    Article  CAS  Google Scholar 

  • Ricci AP, Mourao Filho FAA, Mendes BMJ et al (2002) Somatic embryogenesis in Citrus sinensis, C. reticulata and C. nobilis x C. deliciosa. Sci Agric 59:41–46

    Article  Google Scholar 

  • Rodriguez DOJL, Villalobos-Arambula VM, Azpiroz-Rivero HS, Villalobos-Pietrini R (1999) Effect of malt extract and ammonium nitrate on in vitro cultures to obtain somatic embryos of 11 Citrus genotypes. Revista Chapingo Serie Horticultura 5(2):115–123

    Article  Google Scholar 

  • Roistacher CN (2004) Diagnosis and Management of Virus and Virus like diseases of Citrus. In: Naqvi SAMH (ed) Diseases of fruits and vegetables, vol 1. Springer, Dordrecht, pp 109–189

    Google Scholar 

  • Rojanasiriwongse W, Suriyapananont S, Phansiri S and Suriyapananont V (2004) Somatic embryogenesis from immature seed culture of Citrus reticulata Blanco cv. ‘Shogun’. Proc 42nd Kasetsart Univ Annual Conference, Kasetsart University, Thailand, pp 126–133

    Google Scholar 

  • Sahijram L, Soneji JR, Bollamma KT (2003) Invited review: Analyzing somaclonal variation in micropropagated bananas (Musa spp.) In vitro Cell Dev Biol Plant 39:551–556

    Article  Google Scholar 

  • Saini HK, Gill MS, Gill MIS (2010) Direct shoot organogenesis and plant regeneration in rough lemon (Citrus jambhiri Lush.) Indian. J Biotechnol 9:419–423

    CAS  Google Scholar 

  • Savita, Virk GS, Nagpal A (2011) In vitro selection of calli of Citrus jambhiri Lush. For tolerance to culture filtrate of Phytophthora parasitica and their regeneration. Physiol Mol Biol Plants 17:41–47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Savita, Pati PK, Virk GS et al (2015) An efficient somatic embryogenesis protocol for Citrus jambhiri and assessment of clonal fidelity of plantlets using RAPD markers. J Plant Growth Regul 34:309–319

    Article  CAS  Google Scholar 

  • Sharma S, Singh B, Rani G et al (2007) Production of Indian citrus ringspot virus free plants of Kinnow employing chemotherapy coupled with shoot tip grafting. J Cent Eur Agric 8:1–8

    Google Scholar 

  • Sharma S, Singh B, Rani G et al (2008) In vitro production of Indian citrus ringspot virus (ICRSV) free Kinnow plants employing thermotherapy coupled with shoot tip grafting. Plant Cell Tissue Organ Cult 92:85–92

    Article  Google Scholar 

  • Shaw G (1994) Chemistry of adenine cytokinins. In: DWS M, Mok MC (eds) Cytokinins: chemistry, activity and function. CRC Press, Boca Raton, pp 15–34

    Google Scholar 

  • Shimada T, Hirabayashi T, Endo T et al (2005) Isolation and characterization of the somatic embryogenesis receptor-like kinase gene homologue (CitSERK1) from Citrus unshiu Marc. Sci Hortic 103:233–238

    Article  CAS  Google Scholar 

  • Shudo K (1994) Chemistry of diphenylurea cytokinins. In: DWS M, Mok MC (eds) Cytokinins: chemistry, activity and function. CRC Press, Boca Raton, pp 35–42

    Google Scholar 

  • Siragusa M, Carra A, Salvia L et al (2007) Genetic instability in calamondin (Citrus madurensis Lour.) plants derived from somatic embryogenesis induced by diphenylurea derivatives. Plant Cell Rep 26:1289–1296

    Article  PubMed  CAS  Google Scholar 

  • Skirvin RM, McPheeters KD, Norton M (1994) Sources and frequency of somaclonal variation. Hortscience 29:1232–1237

    Google Scholar 

  • Smulders MJM, de Klerk GJ (2011) Epigenetics in plant tissue culture. Plant Growth Regul 63:137–146

    Article  CAS  Google Scholar 

  • Song WS, Oh SD, Kim JS (1991) In vitro propagation of Yooza (Citrus junos Sieb. et Tanaka). III. Plant regeneration from cotyledon, hypocotyl and leaf of plantlets induced from somatic embryos. J Korean Soc Hort Sci 32(3):345–354

    Google Scholar 

  • Sonkar R, Huchche A, Ram L et al (2002) Citrus rootstocks scenario with special reference to India–a review. Agric Rev Agric Res Commun Cent India 23:93–109

    Google Scholar 

  • Spiegel-Roy P, Kochba J (1973) Stimulation of differentiation in orange (Citrus sinensis) ovular callus in relation to irradiation of the media. Radiat Bot 13:97–103

    Article  CAS  Google Scholar 

  • Spiegel-Roy P, Saad S (1997) Regeneration from salt tolerant callus in Citrus. Adv Hortic Sci 11:3–9

    Google Scholar 

  • Tallon CI, Porras I, Pérez-Tornero O (2013) High efficiency in vitro organogenesis from mature tissue explants of Citrus macrophylla and C. aurantium. In Vitro Cell Dev Biol Plant 49:145–155

    Article  CAS  Google Scholar 

  • Tallon CI, Córdoba F, Porras I et al (2015) Radiosensitivity of seeds and nodal segments of Citrus rootstocks irradiated in vitro with γ-rays from 137 Cs. Acta Hortic 1065:549–555

    Article  Google Scholar 

  • Tazima ZH, Neves CSVJ, Yada IFU et al (2013) Performance of ‘Okitsu’ Satsuma mandarin on nine rootstocks. Sci Agric 70:422–427

    Article  Google Scholar 

  • Toan NB, Ve NB, Debergh PC (2004) Tissue culture approaches for the selection of aluminium-tolerant Citrus species in the Mekong delta of Vietnam. J Hortic Sci Biotechnol 79:911–916

    Article  Google Scholar 

  • Tomaz ML, Mendes BMJ, Mourao Filho FAA et al (2001) Somatic embryogenesis in Citrus spp.: carbohydrate stimulation and histodifferentiation. In Vitro Cell Dev Biol Plant 37:446–452

    Article  CAS  Google Scholar 

  • Tulmann Neto A, Cristofani M, Mendes BMJ et al (1994) In vitro mutagenesis in Citrus breeding: gamma rays sensitivity of cultivar Pera explants. Bragantia 53:167–176

    Article  Google Scholar 

  • Tusa N, Fatta Del Bosco S, Nardi L et al (1996) Obtaining triploid plants by crossing Citrus limon cv.‘Femminello’ 2N× 4N allotetraploid somatic hybrids. Proc Int Soc Citricult 1:133–136

    Google Scholar 

  • Vardi A, Spiegel-Roy P, Galun E (1975) Citrus cell culture: isolation of protoplasts, plating densities, effect of mutagens and regeneration of embryos. Plant Sci Lett 4:231–236

    Article  Google Scholar 

  • Vasil IK (1999) Molecular improvement of cereal crops. In: Advances in cellular and molecular biology of plant, vol 5. Kluwer, Dordrecht

    Google Scholar 

  • Viloria Z, Drouillard DL, Graham JH et al (2004) Screening triploid hybrids of ‘Lakeland’ limequat for resistance to Citrus canker. Plant Dis 88:1056–1060

    Article  PubMed  Google Scholar 

  • Viloria Z, Grosser JW, Bracho B (2005) Immature embryo rescue, culture and seedling development of acid Citrus fruit derived from interploid hybridization. Plant Cell Tissue Organ Cult 82:159–167

    Article  CAS  Google Scholar 

  • Vu JCV, Niedz RP, Yelenosky G (1993) Glycerol stimulation of chlorophyll synthesis, embryogenesis, and carboxylation and sucrose metabolism enzymes in nucellar callus of ‘Hamlin’ sweet orange. Plant Cell Tissue Organ Cult 33:75–80

    Article  CAS  Google Scholar 

  • Vujovic T, Ružić Đ, Cerović R et al (2010) Adventitious regeneration in blackberry (Rubus fruticosus L.) and assessment of genetic stability in regenerants. Plant Growth Regul 61:265–275

    Article  CAS  Google Scholar 

  • Wachsman JT (1997) DNA methylation and the association between genetic and epigenetic changes: relation to carcinogenesis. Mutat Res Fund Mol M 375:1–8

    Article  CAS  Google Scholar 

  • Wang X, Xu Y, Zhang S et al (2017) Genomic analyses of primitive, wild and cultivated Citrus provide insights into asexual reproduction. Nat Genet 49:765–772

    Article  PubMed  CAS  Google Scholar 

  • Wu X-B, Wang J, Liu J-H et al (2009) Involvement of polyamine biosynthesis in somatic embryogenesis of Valencia sweet orange (Citrus sinensis) induced by glycerol. J Plant Physiol 166:52–62

    Article  PubMed  CAS  Google Scholar 

  • Wu GA, Prochnik S, Jenkins J et al (2014) Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during Citrus domestication. Nat Biotechnol 32:656–662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yacoubi HEI, Rochdi A (2011) Improvement of cellular salt tolerance of ‘Troyer’ citrange in vitro. Acta Hortic 911:337–348

    Article  CAS  Google Scholar 

  • Yamamoto M, Kobayashi S (1995) A cybrid plant produced by electrofusion between Citrus unshiu (Satsuma mandarin) and C. sinensis (sweet orange). Plant Tiss Cult Lett 12:131–137

    Article  CAS  Google Scholar 

  • Yamamoto M, Matsumoto R, Okudai N et al (1997) Aborted anthers of Citrus result from gene-cytoplasmic male sterility. Sci Hortic 70:9–14

    Article  Google Scholar 

  • Zheng BB, Wu XM, Ge XX et al (2012) Comparative transcript profiling of a male sterile cybrid pummelo and its fertile type revealed altered gene expression related to flower development. PLoS One 7:e43758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manav Indra Singh Gill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, K., Gill, M.I.S., Gosal, S.S. (2018). Somatic Embryogenesis, In Vitro Selection and Plantlet Regeneration for Citrus Improvement. In: Gosal, S., Wani, S. (eds) Biotechnologies of Crop Improvement, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-78283-6_11

Download citation

Publish with us

Policies and ethics