Skip to main content
Log in

ISSR assay for ascertaining genetic fidelity of micropropagated plants of apple rootstock Merton 793

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

With the current trends in high density plantations of fruit trees, numerous clonal rootstocks of apple have been developed through various breeding programs. Among them, Merton 793 is the most popular in India because of the desirable traits of vigorous growth and resistance to woolly apple aphid and collar rot. The planting material of this rootstock cannot be multiplied at a desirable rate by means of conventional vegetative propagation methods, so micropropagation techniques are being explored to augment scarce planting material. Large number of plants can be produced in vitro under aseptic conditions, but there is always a danger of producing somaclonal variants by tissue culture technology. Thus, it is advisable to check the clonal fidelity of in vitro raised plants, especially of perennials prior to their field transplantation. The genetic stability of in vitro raised plants of apple rootstock Merton 793, multiplied through enhanced axillary bud proliferation up to 22 subculture passages, was tested by intersimple sequence repeat (ISSR) assay. Of 24 ISSR primers screened, 15 primers produced clear reproducible bands, resulting in a total of 134 distinct bands with an average of 8.9 bands per primer. Apple rootstock MM 111 and scion Jonathan, taken as outliers with tissue culture-raised progenies of Merton 793, ruled out the possibility that the invariant banding pattern occurred because of inefficiency of ISSR primers in detecting variations. The homogenous amplification profile observed for all the micropropagated plants compared to the donor plant confirmed the clonal fidelity of the tissue culture-raised Merton 793 plants. This suggests that axillary bud multiplication is the safest mode for multiplication of true-to-type plants. This is the first study that evaluates the applicability of ISSR markers in establishing clonal fidelity of tissue culture-raised apple plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

References

  • Agarwal M.; Shrivastava N.; Padh H. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep. 27: 617–631; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Alizadeh M.; Singh S. K. Molecular assessment of clonal fidelity in micropropagated grape (Vitis spp.) rootstock genotypes using RAPD and ISSR markers. Iranian J. Biotech. 7: 37–44; 2009.

    CAS  Google Scholar 

  • Bhatia R.; Singh K. P.; Jhang T.; Sharma T. R. Assessment of clonal fidelity of micropropagated gerbera plants by ISSR markers. Sci. Hortic. 119: 208–211; 2009.

    Article  CAS  Google Scholar 

  • Bindiya K.; Kanwar K. Random amplified polymorphic DNA (RAPDs) markers for genetic analysis in micropropagated plants of Robinia pseudoacacia L. Euphytica 132: 41–47; 2003.

    Article  Google Scholar 

  • Bopana N.; Saxena S. In vitro regeneration of clonally uniform plants of Crataeva magna: a high value medicinal tree by axillary branching method. New. For. 38: 53–65; 2009.

    Article  Google Scholar 

  • Caboni E.; Lauri P.; Damiano C.; D’Angeli S. Somaclonal variation induced by adventitious shoot regeneration in pear and apple. Acta Hortic. 530: 195–202; 2000.

    Google Scholar 

  • Chowdari K. V.; Ramakrishna W.; Tamhankar S. A.; Hendre R. R.; Gupta V. S.; Sahasrabudhe N. A.; Ranjekar P. K. Identification of minor DNA variations in rice somaclonal variants. Plant Cell Rep. 18: 55–58; 1998.

    Article  CAS  Google Scholar 

  • Chuang S. J.; Chen C. L.; Chen J. J.; Chou W. Y.; Sung J. M. Detection of somaclonal variation in micro-propagated Echinacea purpurea using AFLP marker. Sci. Hortic. 120: 121–126; 2009.

    Article  CAS  Google Scholar 

  • Devarumath R. M.; Nandy S.; Rani V.; Marimuthu S.; Muraleedharan N.; Raina S. N. RAPD, ISSR and RFLP fingerprints as useful markers to evaluate genetic integrity of micropropagated plants of three diploid and triploid elite tea clones representing Camellia sinensis (China type) and C. asamica ssp. Assamica (Assam-India type). Plant Cell Rep. 21: 166–173; 2002.

    Article  CAS  Google Scholar 

  • Doyle J. J.; Doyle J. L. Isolation of plant DNA from fresh tissue. Focus 12: 13–15; 1990.

    Google Scholar 

  • Fang D. Q.; Roose M. L. Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theor. Appl. Genet. 95: 408–417; 1997.

    Article  CAS  Google Scholar 

  • Grandbastien M. A.; Spielman A.; Caboche M. Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337: 376–380; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Harris S. A.; Robinson J. P.; Juniper B. E. Genetic clues to the origin of the apple. Trends Genet. 18: 426–430; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Hirochika H.; Sugimoto K.; Otsuki Y.; Tsugawa H.; Kanda M. Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl. Acad. Sci. USA. 93: 7783–7788; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Huang W. J.; Ning G. G.; Liu G. F.; Bao M. Z. Determination of genetic stability of long-term micropropagated plantlets of Platanus acerifolia using ISSR markers. Biol. Plant. 53: 159–163; 2009.

    Article  Google Scholar 

  • Jaligot E.; Beulé T.; Rival A. Methylation-sensitive RFLPs: characterisation of two oil palm markers showing somaclonal variation-associated polymorphism. Theor. Appl. Genet. 104: 1263–1269; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Jones O. P. Propagation of apple in vitro. In: Ahuja M. R. (ed) Micropropagation of woody plants. Kluwer Academic, Dordrecht, pp 169–186; 1993.

    Google Scholar 

  • Joshi P.; Dhawan V. Assessment of genetic fidelity of micropropagated Swertia chirayita Plantlets by ISSR marker assay. Biol. Plant. 51: 22–26; 2007.

    Article  CAS  Google Scholar 

  • Karp A.; Seberg O. L. E.; Buiatti M. Molecular techniques in the assessment of botanical diversity. Ann. Bot. 78: 143–149; 1996.

    Article  CAS  Google Scholar 

  • Kojima T.; Nagaoka T.; Noda N.; Ogihara Y. Genetic linkage map of ISSR and RAPD markers in Einkorn wheat in relation to that of RFLP markers. Theor. Appl. Genet. 96: 37–45; 1998.

    Article  CAS  Google Scholar 

  • Korbin M.; Kuras A.; Zurawicz E. Fruit plant germplasm characterization using molecular markers generated in RAPD and ISSR-PCR. Cell. Mol. Biol. Lett. 7: 785–794; 2002.

    PubMed  CAS  Google Scholar 

  • Larkin P. J.; Scrowcroft W. Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60: 197–214; 1981.

    Article  Google Scholar 

  • Lattoo S. K.; Bamotra S.; Sapru D. R.; Khan S.; Dha A. K. Rapid plant regeneration and analysis of genetic fidelity of Chlorophytum arundinaceum Baker—an endangered medicinal herb. Plant Cell Rep. 25: 499–506; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Leroy X. J.; Leon K.; Charles G.; Branchard M. Cauliflower somatic embryogenesis and analysis of regenerant stability by ISSRs. Plant Cell Rep. 19: 1102–1107; 2000.

    Article  CAS  Google Scholar 

  • Martin K. P.; Pachathudikandi S.; Zhang C. L.; Slater A.; Madassery J. RAPD analysis of a variant of banana (Musa sp.) cv. Grande naine and its propagation via shoot tip culture. In Vitro Cell. Dev. Biol. Plant. 42: 188–192; 2006.

    Article  CAS  Google Scholar 

  • Martins M.; Sarmento D.; Oliveira M. M. Genetic stability of micropropagated almond plantlets as assessed by RAPD and ISSR markers. Plant Cell Rep. 23: 492–496; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Modgil M.; Mahajan K.; Chakrabarti S. K.; Sharma D. R.; Sobti R. C. Molecular analysis of genetic stability in micropropagated apple rootstock MM 106. Sci. Hortic. 104: 151–210; 2005.

    Article  CAS  Google Scholar 

  • Mohan J. S. Tissue culture-derived variation in crop improvement. Euphytica 118: 153–166; 2001.

    Article  Google Scholar 

  • Montecelli S.; Gentile A.; Damino C. In vitro shoot regeneration of apple cultivar Gala. Acta Hortic. 530: 219–234; 2000.

    Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant. 15: 473–497; 1962.

    Article  CAS  Google Scholar 

  • Nagaoka T.; Ogihara Y. Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor. Appl. Genet. 94: 597–602; 1997.

    Article  CAS  Google Scholar 

  • Negi D.; Saxena S. Ascertaining clonal fidelity of tissue culture raised plants of Bambusa balcoa Roxb. using inter simple sequence repeat markers. New. For. 40: 1–8; 2010.

    Article  Google Scholar 

  • Palombi M. A.; Damiano C. Comparison between RAPD and SSR molecular markers in detecting genetic variation in kiwifruit (Actinidia deliciosa A. Chev). Plant Cell Rep. 20: 1061–1066; 2002.

    Article  CAS  Google Scholar 

  • Pathak H.; Dhawan V. Molecular analysis of micropropagated apple rootstock MM 111 using ISSR markers for ascertaining clonal fidelity. Acta. Hortic. 865: 73–80; 2010.

    CAS  Google Scholar 

  • Phillips R. L.; Kaeppler S. M.; Olhoft P. Genetic instability of plant tissue cultures: breakdown of normal controls. Proc. Natl. Acad. Sci. USA 91: 5222–5226; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Piola F.; Rohr R.; Heizmann P. Rapid detection of genetic variation within and among in vitro propagated cedar (Cedrus ibani Loudon) clones. Plant. Sci. 141: 159–163; 1999.

    Article  CAS  Google Scholar 

  • Rani V.; Raina S. N. Genetic analysis of enhanced axillary branching derived Eucalyptus treticornis and E. camaldulensis plants. Plant Cell Rep. 17: 236–242; 1998.

    Article  CAS  Google Scholar 

  • Rani V.; Raina S. N. Genetic fidelity of organized meristem derived micropropagated plants: a critical reappraisal. In Vitro Cell. Dev. Biol. Plant. 36: 319–330; 2000.

    Article  CAS  Google Scholar 

  • Rani V.; Raina S. N. Molecular DNA marker analysis to assess the genetic fidelity of micropropagated woody plants. In: Jain S. M.; Ishii K. (eds) Micropropagation of woody trees and fruits. Kluwer Academic, Dordrecht, pp 75–102; 2003.

    Chapter  Google Scholar 

  • Ray T.; Dutta I.; Saha P.; Das S.; Roy S. C. Genetic stability of three economically important micropropagated banana (Musa spp.) cultivars of lower Indo-Gangetic plains, as assessed by RAPD and ISSR markers. Plant Cell Tiss. Org. Cult. 85: 11–21; 2006.

    Article  CAS  Google Scholar 

  • Reddy P. M.; Saral N.; Siddiq E. A. Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128: 9–17; 2002.

    Article  Google Scholar 

  • Sreedhar R. V.; Lakshmanan V.; Bhagyalakshmi N. Genetic fidelity of long-term micropropagated shoot cultures of vanilla (Vanilla planifolia Andrews) as assessed by molecular markers. Biotech. J. 2: 1007–1013; 2007.

    Article  CAS  Google Scholar 

  • Venkatachalam L.; Sreedhar R. V.; Bhagyalakshmi. Micropropagation in banana using high levels of cytokinins does not involve any genetic changes as revealed by RAPD and ISSR markers. Plant Growth Regul. 51: 193–205; 2007.

    Article  CAS  Google Scholar 

  • Virscek-Marn M.; Javornik B.; Stampar F.; Bohanec B. Assessment of genetic variation among regenerants from in vitro apple leaves using molecular markers. Acta. Hortic. 484: 299–303; 1998.

    CAS  Google Scholar 

  • Wallner E.; Weising K.; Rompf R.; Kahl G.; Kopp B. Oligonucleotide and RAPD analysis of Achillea species: characterization and long-term monitoring of micropropagated clones. Plant Cell Rep. 15: 647–652; 1996.

    Article  CAS  Google Scholar 

  • Webster A. D. Temperate fruit tree rootstock propagation. New Zealand J. Crop. Hortic. Sci. 23: 355–372; 1995.

    Article  Google Scholar 

  • Weising K.; Nybom H.; Wolff K.; Kahl G. DNA fingerprinting in plants: principles, methods, and applications. CRC, New York; 2005.

    Book  Google Scholar 

  • Williams J. G. K.; Kubelik A.; Livak K. J.; Rafalski J. A.; Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids. Res. 18: 6531–6535; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Yang W.; de Oliveira A. C.; Godwin I.; Schertz K.; Bennetzen J. L. Comparison of DNA marker technologies in characterizing plant genome diversity: variability in Chinese sorghums. Crop. Sci. 36: 1669–1676; 1996.

    Article  Google Scholar 

  • Zietkiewicz E.; Rafalski A.; Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20: 176–183; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman R. H. Micropropagation of temperate zone fruit and nut crops. In: Debergh P. C.; Zimmerman R. H. (eds) Micropropagation. Kluwer Academic, Dordrecht, pp 231–246; 1991.

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. RK Pachauri, Director General, TERI, for infrastructure support. Thanks are due to Dr. Anandita Singh, Dr. SB Tripathi, and Mr. MS Negi for their assistance. The Senior Research Fellowship from the Council of Scientific and Industrial Research to Ms. Harshita Pathak is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harshita Pathak.

Additional information

Editor: J. Finer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pathak, H., Dhawan, V. ISSR assay for ascertaining genetic fidelity of micropropagated plants of apple rootstock Merton 793. In Vitro Cell.Dev.Biol.-Plant 48, 137–143 (2012). https://doi.org/10.1007/s11627-011-9385-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-011-9385-0

Keywords

Navigation