Skip to main content
Log in

Genetic instability in calamondin (Citrus madurensis Lour.) plants derived from somatic embryogenesis induced by diphenylurea derivatives

  • Genetics and Genomics
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Somatic embryos were regenerated in vitro from calamondin style–stigma explants cultured in the presence of N 6-benzylaminopurine (BAP) cytokinin and three synthetic phenylurea derivatives, N-(2-chloro-4-pyridyl)-N-phenylurea (4-CPPU), N-phenyl-N′-benzothiazol-6-ylurea (PBU) and N,N′-bis-(2,3-methilendioxyphenyl)urea (2,3-MDPU). The phenylurea derivative compounds tested at micromolar level (12 μM) were able to induce a percentage of responsive explants significantly higher from that obtained with BAP and hormone-free (HF) conditions. In order to verify the genetic stability of the regenerants, 27 plants coming from different embryogenic events were randomly selected from each different culture condition and evaluated for somaclonal variations using inter-simple sequence repeat and random amplified polymorphic DNA analyses. We observed that 2,3-MDPU and PBU gave 3.7% of somaclonal mutants, whereas 4-CPPU gave 7.4% of mutants. No somaclonal variability was observed when plantlets were regenerated in BAP or HF medium. Although diphenylurea derivatives show a higher embryogenic potential as compared to BAP, they induce higher levels of somaclonal variability. This finding should be taken in consideration when new protocols for clonal propagation are being developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BAP:

N 6-benzylaminopurine

4-CPPU:

N-(2-chloro-4-pyridyl)-N-phenylurea

HF:

Hormone-free

ISSR:

Inter-simple sequence repeats

2,3-MDPU:

N,N′-bis-(2,3-methilendioxyphenyl)urea

NO:

Nitric oxide

PBU:

N-phenyl-N′-benzothiazol-6-ylurea

RAPD:

Random amplified polymorphic DNA

ROS:

Reactive oxygen species

TDZ:

Thidiazuron

References

  • Bornet B, Branchard M (2001) Non-anchored inter simple sequence repeat (ISSR) markers: reproducible and specific tools for genome fingerprinting. Plant Mol Biol Rep 19:209–215

    CAS  Google Scholar 

  • Burch LR, Horgan R (1989) The purification of cytokinin oxidase from Zea mays kernels. Phytochemistry 28:1313–1319

    Article  CAS  Google Scholar 

  • Carimi F, Zottini M, Costa A, Cattelan I, De Michele R, Terzi M, Lo Schiavo F (2005) NO signaling in cytokinin-induced programmed cell death. Plant Cell Environ 28:1171–1178

    Article  CAS  Google Scholar 

  • Cassells AC (2000) Contamination detection and elimination. In: Spier RE (ed) Encyclopedia of plant cell biology. Wiley, Chichester, pp 577–586

  • Cassells AC, Curry RF (2001) Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers. Plant Cell Tissue Organs 64:145–157

    Article  CAS  Google Scholar 

  • Cassells AC, Doyle BM, Curry RF (2000) (eds) Methods and markers for quality assurance in micropropagation. Acta Horticulturae 530, p 437

  • Cerda S, Weitzman SA (1997) Influence of oxygen radical injury on DNA methylation. Mutat Res 386:141–152

    Article  PubMed  CAS  Google Scholar 

  • Chakravarty B, Goswami BC (1999) Plantlet regeneration from long-term callus cultures of Citrus acida Roxb. and the uniformity of regenerated plants. Sci Hortic 82:159–169

    Article  CAS  Google Scholar 

  • Chawla HS (2002) Introduction to plant biotechnology, 2nd edn. Science, Enfield, pp 110–122

  • Chowdari KV, Ramakrishna W, Tamhankar SA, Hendre RR, Gupta VS, Sahasrabudhe NA, Ranjekar (1998) Identification of minor DNA variations in rice somaclonal variants. Plant Cell Rep 18:55–58

    Article  CAS  Google Scholar 

  • Coletta Filho HD, Machado MA, Targon MLPN, Moreira MCPQDG, Pompeu Jr (1998) Analysis of the genetic diversity among mandarins (Citrus spp.) using RAPD markers. Euphytica 102:133–139

    Article  CAS  Google Scholar 

  • Czene M, Harms-Ringdahl M (1995) Detection of single-strand breaks and formamidopyimidine-DNA glycosylase-sensitive sites in DNA of cultured human fibroblasts. Mutat Res 336:235–242

    PubMed  CAS  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Fang DQ, Roose ML (1997) Identification of closely related Citrus cultivars with inter-simple sequence repeat markers. Theor Appl Genet 95:408–417

    Article  CAS  Google Scholar 

  • Fang DQ, Roose ML, Krueger RR, Federici CT (1997) Fingerprinting trifoliate orange germplasm accession with isozymes, RFLPs, and inter-simple sequence repeat markers. Theor Appl Genet 95:211–219

    Article  CAS  Google Scholar 

  • Ferguson JJ, Castle WS (1998) Observations on compatibility, growth and cropping of calamondin, ‘Meiwa’ and ‘Nagami’ kumquat on several rootstocks. Proc Fla State Hort Soc 111:180–182

    Google Scholar 

  • Fiore S, De Pasquale F, Carimi F, Sajeva M (2002) Effect of 2,4-D and 4-CPPU on somatic embryogenesis from stigma and style transverse thin layers of Citrus. Plant Cell Tissue Organs 68:57–63

    Article  CAS  Google Scholar 

  • Gairi A, Rashid A (2004) TDZ-induced somatic embryogenesis in non-responsive caryopses of rice using short treatment with 2,4-D. Plant Cell Tissue Organs 76:29–33

    Article  CAS  Google Scholar 

  • Gesteria AS, Otoni WC, Barros EG, Moreira MA (2002) RAPD-based detection of genomic instability in soybean plants derived from somatic embryogenesis. Plant Breed 121:269–271

    Article  Google Scholar 

  • Gille G, Siegler K (1995) Oxidative cells and living cells. Folia Microbiol 40:131–152

    CAS  Google Scholar 

  • Gille JJPO, Van Berkel CGM, Joenje H (1994) Mutagenicity of oxygen radicals in mammalian cell cultures. Carcinogenesis 15:2695–2699

    Article  PubMed  CAS  Google Scholar 

  • Gmitter FG, Grosser JW, Moore GA (1992) Citrus. In: Litz RE, Hammerschlag F (eds) Biotechnology of perennial fruit crops. CAB International, Oxon, pp 335–369

  • Goto S, Thakur RC, Ishii K (1998) Determination of genetic stability in long-term micropropagated shoots of Pinus thunbergii Parl. using RAPD markers. Plant Cell Rep 18:193–197

    Article  CAS  Google Scholar 

  • Grosser JW, Gmitter FG, Chandler JL (1997) Development of improved sweet orange cultivars using tissue culture methods. Proc Fla State Hort Soc 110:13–16

    Google Scholar 

  • Grosser JW, Chandler JL, Gmitter FG (2003) Development of improved sweet oranges via somaclonal variation. Proc Int Soc Citriculture, pp 42–45

  • Hagege D (1995) Habituation in plant cell cultures: adaptation to free radical attacks. C R Soc Biol 189:1183–1190

    CAS  Google Scholar 

  • Hashmi G, Huettel R, Meyer R, Krusberg L, Hammerschlag F (1997) RAPD analysis of somaclonal variants derived from embryo callus cultures of peach. Plant Cell Rep 16:624–627

    CAS  Google Scholar 

  • Hippeli S, Elstner EF (1996) Mechanism of oxygen activation during plant stress: biochemical; air pollution. J Plant Physiol 148:249–257

    CAS  Google Scholar 

  • Jain SM (2001) Tissue culture-derived variation in crop improvement. Euphytica 118:153–166

    Article  CAS  Google Scholar 

  • Jain SM, De Klerk GJ (1998) Somaclonal variation in breeding and propagation of ornamental crops. Plant Tissue Cult Biotechnol 4:63–75

    Google Scholar 

  • Karp A (1991) On the current understanding of somaclonal variation. Oxf Surv Plant Mol Cell Biol 7:1–58

    Google Scholar 

  • Kobayashi S (1987) Uniformity of plants regenerated from orange (Citrus sinensis Osb.) protoplasts. Theor Appl Genet 74:10–14

    Article  CAS  Google Scholar 

  • Kuksova VB, Piven NM, Gleba YY (1997) Somaclonal variation and in vitro induced mutagenesis in grapevine. Plant Cell Tissue Organs 49:17–27

    Article  CAS  Google Scholar 

  • Lambardi M, De Carlo A, Biricolti S, Puglia AM, Lombardo G, Siragusa M, De Pasquale F (2004) Zygotic and nucellar embryo survival following dehidration/cryopreservation of Citrus intact seeds. Cryo Letters 25:81–90

    PubMed  CAS  Google Scholar 

  • Lamboy WF (1994) Computing genetic similarity coefficients from RAPD data: the effects of PCR artifacts. In: PCR methods and applications. Cold Spring Harbor, New York, pp 31–37

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  Google Scholar 

  • Laval J (1996) Role of DNA repair enzyme in the cellular resistance to oxidative stress. Pathol Biol 44:14–24

    PubMed  CAS  Google Scholar 

  • Lee YI, Kang KK, Lee SJ (1996) Somaclonal variation induced by in vitro mutagenesis in sweet potato. In: Plant biotechnology for sustainable development of agriculture. Proceeding of second Asia-Pacific conference on plant cell and tissue culture, 28 July–1 August 1996, Beijing, pp 90–96

  • Lin W, Wei X, Xue H, Kelimu M, Tao R, Song Y, Zhou Z (2000) Study on DNA strand breaks induced by sodium nitroprusside, a nitric oxide donor, in vivo and in vitro. Mutat Res 466:187–195

    PubMed  CAS  Google Scholar 

  • Litz RE, Jaiswal VS (1991) Micropropagation of tropical and subtropical fruits. In: Debergh PC and Zimmerman RH (eds) Micropropagation. Kluwer, The Netherlands, pp 247–263

  • Mabberley DJ (1987) The plant book. A portable dictionary of the higher plants. Cambridge University Press, Cambridge, p 706

  • Martins M, Sarmento D, Oliveira MM (2004) Genetic stability of micropropagated almond plantlets, as assessed by RAPD and ISSR markers. Plant Cell Rep 23:492–496

    Article  PubMed  CAS  Google Scholar 

  • Michalczuk L, Cooke TJ, Cohen JD (1992) Auxin levels at different stages of carrot somatic embryogenesis. Phytochemistry 31:1097–1103

    Article  CAS  Google Scholar 

  • Milbourne D, Meyer R, Bradshaw JE, Baird E, Bonar N, Provan J, Powell W, Waugh R (1997) Comparison of PCR-based marker system for the analysis of genetic relationships in cultivated potato. Mol Breed 3:127–136

    Article  CAS  Google Scholar 

  • Mok MC, Mok DWS, Dixon SC, Armstrong DJ, Shaw G (1982) Cytokinin structure-activity relationships and the metabolism of N 6-(Δ2-isopentenyl)-adenosine-8-l4C in Phaseolus callus tissues. Plant Physiol 70:173–178

    Article  PubMed  CAS  Google Scholar 

  • Mok MC, Mok DWS, Turner JE, Mu-jer CV (1987) Biological and biochemical effects of cytokinin-active phenylurea derivative in tissue culture systems. HortScience 22:1194–1197

    CAS  Google Scholar 

  • Muler E, Brown PTH, Hartke S, Lorz H (1990) DNA variation in tissue-culture-derived rice plants. Theor Appl Genet 80:673–679

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Navarro L, Ortiz JM, Juarez J (1985) Aberrant citrus plants obtained by somatic embryogenesis of nucelli cultured in vitro. HortScience 20:214–215

    Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  PubMed  CAS  Google Scholar 

  • Nelson OE (1977) The applicability of plant cell and tissue culture techniques to plant improvement. In: Rubenstein I, Philips R, Green CE (eds) Molecular genetic modification of eukaryotes. Academic, New York, pp 67–76

  • Nkongolo KK, Klimaszewska K (1995) Cytological and molecular relationship between Larix decidua, L. leptolepis and Laris × eurolepis: identification of species-specific chromosomes and synchronization of mitotic cells. Theor Appl Genet 90:827–834

    Article  CAS  Google Scholar 

  • O’Brien EW, Smith DR, Gardner RC, Murray BG (1996) Flow cytometric determination of genome size in Pinus. Plant Sci 115:91–99

    Article  CAS  Google Scholar 

  • Palombi MA, Damiano C (2002) Comparison between RAPD and SSR molecular markers in detecting genetic variation in kiwifruit (Actinidia deliciosa A. Chev). Plant Cell Rep 20:1061–1066

    Article  CAS  Google Scholar 

  • Philips RL, Kaeppler SM, Olhoft P (1994) Genetic instability of plant tissue cultures: breakdown of normal control. Proc Natl Sci USA 91:5222–5226

    Article  Google Scholar 

  • Phoa N, Epe B (2002) Influence of nitric oxide on the generation and repair of oxidative DNA damage in mammalian cells. Carcinogenesis 23(3):469–475

    Article  PubMed  CAS  Google Scholar 

  • Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B (1997) A model for p53-induced apoptosis. Nature 389:300–305

    Article  PubMed  CAS  Google Scholar 

  • Preil W (1986) In vitro propagation and breeding of ornamental plants: advantages and disadvantages of variability. In: Horn W, Jensen CJ, Odenbach W, Schieder O (eds) Genetic manipulation in plant breeding. De Gruyter, Berlin, pp 377–403

  • Rakoczy-Trojanowska M (2002) The effects of growth regulators on somaclonal variation in rye (Secale cereale L.) and selection of somaclonal variants with increased agronomic traits. Cell Mol Biol Lett 7:1111–1120

    PubMed  CAS  Google Scholar 

  • Ricci A, Carra A, Torelli A, Maggiali CA, Vicini P, Zani F, Branca C (2001a) Cytokinin-like activity of N′-substituted N-phenylureas. Plant Growth Regul 34:167–172

    Article  CAS  Google Scholar 

  • Ricci A, Carra A, Torelli A, Maggiali CC, Morini G, Branca C (2001b) Cytokinin-activity of N,N′-diphenylureas. N,N′-bis-(2,3-methylenedioxyphenyl)urea and N,N′-bis-(3,4-methylenedioxyphenyl)urea enhance adventitious root formation in apple rootstock M26 (Malus pumila Mill.). Plant Sci (5) 160:1055–1065

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual, 2nd edn. Cold Spring Harbor, Cold Spring

  • Scarano MT, Abbate L, Ferrante S, Lucretti S, Tusa N (2002) ISSR-PCR techniques: a useful methods for characterizing new allotetraploid somatic hybrids of mandarin. Plant Cell Rep 20:1162–1166

    Article  CAS  Google Scholar 

  • Schaeffer GW (1981) Mutations and cell selections: increased protein from regenerated rice tissue culture. Environ Exp Bot 21:333–345

    Article  CAS  Google Scholar 

  • Shantz EM, Steward FC (1955) The identification of compound A from coconut milk as 1,3-diphenylurea. J Am Chem Soc 74:6133

    Article  Google Scholar 

  • Shaw G (1994) Chemistry of adenine cytokinins. In: Mok DWS, Mok MC (eds) Cytokinins: chemistry, activity and function. CRC, Boca Raton, pp 15–34

  • Shudo K (1994) Chemistry of diphenylurea cytokinins. In: Mok DWS, Mok MC (eds) Cytokinins: chemistry, activity and function. CRC, Boca Raton, pp 35–42

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–131

    Google Scholar 

  • Soniya EV, Banerjee NS, Das MR (2001) Genetic analysis of somaclonal variation among callus-derived plants of tomato. Curr Sci 80(9), 10 May 2001

    Google Scholar 

  • Tun NN, Holk A, Scherer GFE (2001) Rapid increase of NO release in plant cell cultures induced by cytokinin. FEBS Lett 509:174–176

    Article  PubMed  CAS  Google Scholar 

  • Vardi A, Spiegel-Roy P (1982) Plant regeneration from Citrus protoplasts: variability in methodological requirements among cultivars and species. Theor Appl Genet 62:171–176

    Article  Google Scholar 

  • Victor JMR, Murch SJ, KirshnaRaj S, Saxena PK (1999) Somatic embryogenesis and organogenesis in peanut: the role of thidiazuron and N 6-benzylaminopurine in the induction of plant morphogenesis. Plant Growth Regul 28:9–15

    Article  CAS  Google Scholar 

  • Wacksman JT (1997) DNA methylation and the association between genetic and epigenetic changes: relation to carcinogenesis. Mutat Res 375:1–8

    Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550

    Article  PubMed  CAS  Google Scholar 

  • Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313:17–29

    PubMed  CAS  Google Scholar 

  • Yang H, Tabei Y, Kamada H, Kayano T (1999) Detection of somaclonal variations in cultured rice cells using digoxigenin-based random amplified polymorphic DNA. Plant Cell Rep 18:520–526

    Article  CAS  Google Scholar 

  • Yeh, FC, Yang RC, Boyle T (1999) POPGENE, Version 1.31. CIFOR and University of Alberta, Edmonton

  • Ziv M (1991) Vitrification: morphological and physiological disorders of in vitro plants. In: Debergh PC, Zimmerman RH (eds) Micropropagation: technology and applications. Kluwer, Dordrecht, pp 45–70

Download references

Acknowledgments

This research was financed in part by the Regione Siciliana, Assessorato Agricoltura e Foreste, project “Coltura in vitro per la conservazione del germoplasma vegetale siciliano minacciato da erosione genetica”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Carimi.

Additional information

Communicated by D.A. Somers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siragusa, M., Carra, A., Salvia, L. et al. Genetic instability in calamondin (Citrus madurensis Lour.) plants derived from somatic embryogenesis induced by diphenylurea derivatives. Plant Cell Rep 26, 1289–1296 (2007). https://doi.org/10.1007/s00299-007-0326-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0326-7

Keywords

Navigation