Skip to main content
Log in

Identification of 2,4-D-responsive proteins in embryogenic callus of Valencia sweet orange (Citrus sinensis Osbeck) following osmotic stress

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The compound 2,4-Dicholorophenoxyacetic acid (2,4-D) is an important growth regulator which is used in the majority of embryogenic cell and tissue culture systems. However, 2,4-D also appears to have a negative effect on growth and development of plant tissues and organs cultured in vitro. For example, 2,4-D exerts inhibition on in vitro somatic embryo initiation and/or development of most citrus species. To understand the molecular mechanism by which 2,4-D inhibits somatic embryogenesis (SE), proteomic changes of Valencia sweet orange (Citrus sinensis) embryogenic callus induced by treatments with a high concentration of 2,4-D (6 mg l−1) was investigated. Nine 2,4-D-responsive proteins were identified, of which eight were up-regulated and one was down-regulated. Interestingly, three of the eight up-regulated proteins were osmotic stress-associated, suggesting that 2,4-D induced osmotic stress in Valencia embryogenic callus. This speculation was supported by results from our physiological studies: 2,4-D treated callus cells exhibited increased cytoplasm concentration with a significant reduction in relative water content (RWC) and an obvious increase in levels of two osmolytes (proline and soluble sugar). Taken together, our results suggested that 2,4-D could inhibit somatic embryo initiation by, at least in part, inducing osmotic stress to citrus callus cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxy acetic acid

2-DE:

Two-dimensional gel electrophoresis

ACN:

Acetonitril

CBB:

Coomassie brilliant blue

CHAPS:

3-[(3-Cholamidopropyl)dimethylammonio]propanesulfonic acid

DTT:

DL-Dithiothreitol

EST:

Expressed sequence tag

FW:

Fresh weight

GSH:

Glutathione

MALDI-TOF:

Matrix-assisted laser desorption ionization time-of-flight

MS:

Mass spectrum

RWC:

Relative water content

SE:

Somatic embryogenesis

TFA:

Trifluoroacetic acid

References

  • Anil VS, Rao KS (2000) Calcium-mediated signaling during sandalwood somatic embryogenesis. Role for exogenous calcium as second messenger. Plant Physiol 123:1301–1311

    Article  CAS  PubMed  Google Scholar 

  • Balibrea ME, Rus-Alvarez AM, Bolarin MC, Perez-Alfocea F (1997) Fast changes in soluble carbohydrates and proline contents in tomato seedlings in response to ionic and non-ionic iso-osmotic stresses. J Plant Physiol 151:221–226

    CAS  Google Scholar 

  • Bouché N, Yellin A, Snedden WA, Fromm H (2005) Plant-specific calmodulin-binding proteins. Annu Rev Plant Biol 56:435–466

    Article  PubMed  Google Scholar 

  • Chugh A, Khurana P (2002) Gene expression during somatic embryogenesis-recent advances. Curr Sci 86:715–730

    Google Scholar 

  • Dai SJ, Chen TT, Chong K, Xue YB, Liu SQ, Wang T (2007) Proteomic identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen. Mol Cell Proteomics 6:207–230

    CAS  PubMed  Google Scholar 

  • Davletova S, Mészáros T, Miskolczi P, Oberschall A, Török K, Magyar Z, Dudits D, Deák M (2001) Auxin and heat shock activation of a novel member of the calmodulin like domain protein kinase gene family in cultured alfalfa cells. J Exp Bot 52:215–221

    Article  CAS  PubMed  Google Scholar 

  • Edward JV, Helen LM, Ramachandran K, Ishita C, Bernard AK (1998) DNA repair in higher plants. Mutat Res 400:187–200

    Google Scholar 

  • Fanous A, Weiland F, Lűck C, Görg A, Friess A, Parlar H (2007) A proteome analysis of Corynebacterium glutamicum after exposure to the herbicide 2,4-Dichlorophenoxy acetic acid (2,4-D). Chemosphere 69:25–31

    Article  CAS  PubMed  Google Scholar 

  • Fehér A, Pasternak T, Miskolczi P, Ayaydin F, Dudits D (2001) Induction of the embryogenic pathway in somatic plant cells. Acta Hort 560:293–298

    Google Scholar 

  • Fehér A, Pasternak T, Ötvös K, Miskolczi P, Dudits D (2002) Induction of embryogenic competence in somatic plant cells: a review. Biologia 57:5–12

    Google Scholar 

  • Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228

    Article  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  Google Scholar 

  • Gillm IS, Zora S, Dhillon BS, Gosal SS (1994) Somatic embryogenesis and plantlet regeneration on calluses derived from seedlings explants of ‘Kinnow’ mandarin (Citrus nobilis Lour.×Citrus deliciosa Tenora). J Hortic Sci 69:231–236

    Google Scholar 

  • Giovanni C, Maurizio B, Luca M, Laura S, Gian Marco G, Barbara C, Paola O, Luciano Z, Pier GR (2004) Blue silver: a very sensitive colloidal coomassie G-250 staining for proteome analysis. Electrophoresis 25(:1327–1333

    Article  Google Scholar 

  • Goldsworthy A, Mina MG (1991) Electrical patterns of tobacco cells in media containing indole-3-acetic acid or 2,4-Dichloro-phenoxyacetic acid. Planta 183:368–373

    Article  CAS  Google Scholar 

  • Hadrami I, D’auzac J (1992) Effects of growth regulators on polyamine content and peroxidase activity in Hevea brasiliensis callus. Ann Bot 69:323–325

    Google Scholar 

  • Hao JU, Deng XX (2002) Occurrence of chromosomal variations and plant regeneration from long-term-cultured citrus callus. In Vitro Cell Dev Biol Plant 38:472–476

    Google Scholar 

  • Huo HQ, Deng XX (2000) Induction, storage and utilization of embryogenic calli of citrus. Plant Physiol Rep 36:181–187 (in Chinese)

    CAS  Google Scholar 

  • Ikeda-Iwai M, Umehara M, Satoh S, Kamada H (2003) Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J 34:107–114

    Article  CAS  PubMed  Google Scholar 

  • Jansen MAK, Booij H, Schel JHN, de Vries SC (1990) Calcium increases the yield of somatic embryos in carrot embryogenic suspension cultures. Plant Cell Rep 9:221–223

    Article  CAS  Google Scholar 

  • Kamada H, Ishikawa K, Saga H, Harada H (1993) Induction of somatic embryogenesis in carrot by osmotic stress. Plant Tissue Cult Lett 10:38–44

    CAS  Google Scholar 

  • Kearus EV, Assmann SM (1993) The guard cell-environment connection. Plant Physiol 102:711–715

    Google Scholar 

  • Kennedy CD, Stewart RA (1980) The effect of 2,4-Dichlorophenoxyacetic acid on ion uptake by maize roots. J Exp Bot 31:135–140

    Article  CAS  Google Scholar 

  • Lloyd CW, Lowe SB, Peace GW (1980) The mode of action of 2,4-D in counter-acting the elongation of carrot cells grown in culture. J Cell Sci 195:309–312

    Google Scholar 

  • LoSchiavo F, Filippini F, Cozzani F, Vallone D, Terzi M (1991) Modulation of auxin-binding proteins in cell suspensions I Differential responses of carrot embryo cultures. Plant Physiol 97:60–64

    Article  CAS  PubMed  Google Scholar 

  • Michalczuk L, Ribnicky DM, Cooke TJ, Cohen JD (1992) Regulation of indole-3-acetic acid biosynthetic pathways in carrot cell cultures. Plant Physiol 100:1346–1353

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Breusegem FV (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Moore GA (1985) Factors affecting in vitro embryogenesis from undeveloped ovules of mature citrus fruit. J Am Soc Hort Sci 110:66–70

    CAS  Google Scholar 

  • Moyen C, Bonmort J, Roblin G (2007) Membrane effects of 2,4-Dichlorophenoxyacetic acid in motor cells of Mimosa pudica L. Plant Physiol Biochem 45:420–426

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Tucker DPH (1969) Growth factors requirement of citrus tissue cultures. In: Chapman HD (ed) Proceedings of the international citrus symposium, vol 3. Riverside, California, pp 1155–1161

    Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Pan ZY, Guan R, Zhu SP, Deng XX (2009) Proteomic analysis of somatic embryogenesis in Valencia sweet orange (Citrus sinensis Osbeck). Plant Cell Rep 28:281–289

    Article  PubMed  Google Scholar 

  • Pasternak T, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen H, Dudits D, Fehér A (2002) The role of auxin, pH and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa (Medicago sativa L.). Plant Physiol 129:1807–1819

    Article  CAS  PubMed  Google Scholar 

  • Roblin G (1979) Mimosa Pudica: a model for the study of the excitability in plants. Biol Rev 54:135–153

    Article  Google Scholar 

  • Saladin G, Clément C, Magné C (2003) Stress effects of flumioxazin herbicide on grapevine (Vitis vinifera L.) grown in vitro. Plant Cell Rep 21:1221–1227

    Article  CAS  PubMed  Google Scholar 

  • Sasaki K, Shimomura K, Kamada H, Harada H (1994) IAA metabolism in embryogenic and non-embryogenic carrot cells. Plant Cell Physiol 35:1159–1164

    CAS  Google Scholar 

  • Schauf CL, Bringle B, Stillwell W (1987) Membrane-directed effects of the plant hormones abscisic acid, indole-3-acetic acid and 2,4-Dichlorophenoxyacetic acid. Biochem Biophys Res Commun 143:1085–1091

    Article  CAS  PubMed  Google Scholar 

  • Shimabukuro RH, Walsh WC, Wright JP (1989) Effect of diclofop-methyl and 2,4-D on transmembrane proton gradient: a mechanism for their antagonistic interaction. Plant Physiol 77:107–114

    Article  CAS  Google Scholar 

  • Stefania F, Fabio DP, Francesco C, Maurizio S (2002) Effect of 2,4-D and 4-CPPU on somatic embryogenesis from stigma and style transverse thin cell layers of citrus. Plant Cell Tissue Organ Cult 68:57–63

    Article  Google Scholar 

  • Wang HL, Lee PD, Chen WL, Huang DJ, Su JC (2000) Osmotic stress-induced changes of sucrose metabolism in cultured sweet potato cells. J Exp Bot 51:1991–1999

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  CAS  PubMed  Google Scholar 

  • Yang QS, Wang YQ, Zhang JJ, Shi WP, Qian CM, Peng XX (2007) Identification of aluminum-responsive proteins in rice roots by a proteomic approach: cysteine synthase as a key player in Al response. Proteomics 7:737–749

    Article  CAS  PubMed  Google Scholar 

  • Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38:1095–1102

    CAS  PubMed  Google Scholar 

  • Youssefian S, Nakamura M, Orudgev E, Kondo N (2001) Increased cysteine biosynthesis capacity of transgenic tobacco overexpressing an o-acetylserine(thiol) lyase modifies plant responses to oxidative stress. Plant Physiol 126:1001–1011

    Article  CAS  PubMed  Google Scholar 

  • Zhang JE, Guo WW, Deng XX (2006) Relationship between ploidy variation of citrus calli and competence for somatic embryogenesis. Acta Genet Sin 33:647–654

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Xiao Shunyuan (Center for Biosystems Research, University of Maryland Biotechnology Institute, USA) and Dr Xu Qiang for their suggestions on manuscript preparation. The research was financially supported by the National Natural Science Foundation of China (No. 30570973, 30830078, 30921002), and the Ministry of Education of China (IRT0548).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuxin Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, Z., Zhu, S., Guan, R. et al. Identification of 2,4-D-responsive proteins in embryogenic callus of Valencia sweet orange (Citrus sinensis Osbeck) following osmotic stress. Plant Cell Tiss Organ Cult 103, 145–153 (2010). https://doi.org/10.1007/s11240-010-9762-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9762-0

Keywords

Navigation