Skip to main content

Advertisement

Log in

Genetic transformation and genes for resistance to abiotic and biotic stresses in Citrus and its related genera

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Citrus is the most important tree fruit crop in the world. However, citrus production is affected by both biotic and abiotic stresses, including drought, extreme temperature, salinity, citrus canker, citrus tristeza virus, and Huanglongbing (or citrus greening), among others. These stresses can severely influence growth and development of both rootstocks and/or scions of citrus trees, thus reducing both fruit production and fruit quality. Modern advances in the tools of plant biotechnology and advances in genomics play important roles in understanding how citrus crops can cope with diseases and adverse environmental conditions. Within the last decades, much progress has been made in identifying and cloning of genes involved in resistance to biotic and abiotic stresses as well in genetic transformation of Citrus and its related genera, such as Poncirus trifoliata and Fortunella spp. In this review, we will provide information on advances and insights on genetic transformation protocols as well as availability of characterized genes involved in resistance to both abiotic and biotic stresses. This will be followed with a discussion on perspectives of future developments in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albrecht U, Bowman KD (2012) Transcriptional response of susceptible and tolerant citrus to infection with Candidatus Liberibacter asiaticus. Plant Sci 185(186):118–130

    Article  PubMed  Google Scholar 

  • Almeida WAB, Mourão Filho FAA, Pino LE, Boscariol RL, Rodriguez APM, Mendes BMJ (2003) Genetic transformation and plant recovery from mature tissues of Citrus sinensis L. Osbeck. Plant Sci 164:203–211

    Article  CAS  Google Scholar 

  • Altman A (2003) From plant tissue culture to biotechnology: scientific revolutions, abiotic stresses tolerance, and forestry. In Vitro Cell Dev Biol Plant 39:75–84

    Article  CAS  Google Scholar 

  • Ballester A, Cervera M, Peña L (2007) Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of marker gene by site-specific recombination. Plant Cell Rep 26:39–45

    Article  PubMed  CAS  Google Scholar 

  • Ballester A, Cervera M, Peña L (2008) Evaluation of selection strategies alternative to nptII in genetic transformation of citrus. Plant Cell Rep 27:1005–1015

    Article  PubMed  CAS  Google Scholar 

  • Barbosa-Mendes JM, Filho FAAM, Filho AB, Harakava R, Beer SV, Mendes BMJ (2009) Genetic transformation of Citrus sinensis cv. Hamlin with hrpN gene from Erwinia amylovara and evaluation of transgenic lines for resistance to citrus canker. Sci Hortic 122:109–115

    Article  CAS  Google Scholar 

  • Bausher M, Shatters R, Chaparro J, Dang P, Hunter W, Niedz R (2003) An expressed sequence tag (EST) set from Citrus sinensis L. Osbeck whole seedlings and the implications of further perennial source investigations. Plant Sci 165:415–422

    Article  CAS  Google Scholar 

  • Boscariol RL, Almeida WAB, Derbyshire MTVC, Mourão Filho FAA, Mendes BMJ (2003) The use of the PMI/mannose selection system to recover transgenic sweet orange plants (Citrus sinensis L. Osbeck). Plant Cell Rep 22:122–128

    Article  PubMed  CAS  Google Scholar 

  • Boscariol RL, Monteiro M, Tkahashi EK, Chabregas SM, Vieira MLC, Vieira LGE, Pereira LFP, Filho FAAM, Cardoso SC, Christiano RSC, Filho AB, Barbosa JM, Azevedo FA, Mendes BMJ (2006) Attacin A gene from TrieloPlusia ni reduces susceptibility to Xanthomonas axonopodis pv. Citri in transgenic Citrus sinensis ‘Hamlin’. J Am Soc Hortic Sci 131:530–536

    CAS  Google Scholar 

  • Cai Q, Moore GA, Guy CL (1995) An unusual group 2 LEA gene family in citrus responsive to low temperature. Plant Mol Biol 29:11–23

    Article  PubMed  CAS  Google Scholar 

  • Cardoso SC, Barbosa-Mendes JM, Boscariol-Camargo RL, Christiano RSC, Filho AB, Vieira MLC, Mendes BMJ, Filho FAAM (2010) Transgenic sweet orange (Citrus sinensis L. Osbeck) expressing the attacin A gene for resistance to Xanthomonas citri subsp. Citri. Plant Mol Biol Rep 28:185–192

    Article  CAS  Google Scholar 

  • Cervera M, Juárez J, Navarro A, Pina JA, Duran-Vila N, Navarro L, Peña L (1998) Genetic transformation and regeneration of mature tissues of woody fruit plants by passing the juvenile stage. Transgenic Res 7:51–59

    Article  CAS  Google Scholar 

  • Cervera M, Ortega C, Navarro A, Navarro L, Peña L (2000) Generation of transgenic citrus plants with the tolerance-to-salinity gene HAL2 from yeast. J Hortic Sci Biotech 75:26–30

    CAS  Google Scholar 

  • Cervera M, Esteban O, Gil M, Gorris MT, Martínez MC, Peña L, Cambra M (2010) Transgenic expression in citrus of single-chain antibody fragments specific to Citrus tristeza virus confers virus resistance. Transgenic Res 19:1001–1015

    Article  PubMed  CAS  Google Scholar 

  • Cevik BV, Lee R, Niblett CL (2006) Genetic transformation of citrus paradise with antisense and untranslatable RNA-dependent RNA polymerase genes of citrus tristeza closterovirus. Turk J Agric For 30:173–182

    CAS  Google Scholar 

  • Chen X, Kim J (2009) Callose synthesis in higher plants. Plant Signal Behav 4:489–492

    Article  PubMed  CAS  Google Scholar 

  • Chen CX, Costa MGC, Yu QB, Moore GA, Gmitter FG (2010) Identification of novel members in sweet orange carotenoid biosynthesis gene families. Tree Genet Genomes 6:905–914

    Article  Google Scholar 

  • Deng Z, Gmitter FG (2003) Cloning and characterization of receptor kinase class disease resistance gene candidates in Citrus. Theor Appl Genet 108:53–61

    Article  PubMed  CAS  Google Scholar 

  • Deng Z, Huang S, Xiao S, Gmitter FG (1997) Development and characterization of SCAR markers linked to the citrus tristeza virus resistance gene from Poncirus trifoliata. Genome 40:697–704

    Article  PubMed  CAS  Google Scholar 

  • Deng Z, Huang S, Ling P, Chen C, Yu C, Weber CA, Moore GA, Gmitter FG (2000) Cloning and characterization of NBS-LRR class resistance-gene candidate sequences in citrus. Theor Appl Genet 101:814–822

    Article  CAS  Google Scholar 

  • Deng Z, Huang S, Ling P, Yu C, Tao Q, Chen C, Wendell MK, Zhang HB, Gmitter FG (2001a) Fine genetic mapping and BAC contig development for the citrus tristeza virus resistance gene locus in Poncirus trifoliata (Raf.). Mol Genet Genomics 265:739–747

    Article  PubMed  CAS  Google Scholar 

  • Deng Z, Tao Q, Chang YL, Huang S, Ling P, Yu C, Chen C, Gmitter FG, Zhang HB (2001b) Construction of a bacterial artificial chromosome (BAC) library for citrus and identification of BAC contigs containing resistance gene candidates. Theor Appl Genet 102:1177–1184

    Article  CAS  Google Scholar 

  • Distefano G, Malfa SL, Vitale A, Lorito M, Deng ZN, Gentile A (2008) Defence-related gene expression in transgenic lemon plants producing an antimicrobial Trichoderma harzianum endochitinase during fungal infection. Transgenic Res 17:873–879

    Article  PubMed  CAS  Google Scholar 

  • Domínguez A, Guerri J, Cambra M, Navarro L, Moreno P, Peña L (2000) Efficient production of transgenic citrus plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep 19:427–433

    Article  Google Scholar 

  • Domínguez A, Mendoza AH, Guerri J, Cambra M, Navarro L, Moreno P, Peña L (2002) Pathogen derived resistance to citrus tristeza virus (CTV) in transgenic Mexican lime (Citrus aurantifolia (Christ.) Swing.) plants expressing its p25 coat protein gene. Mol Breed 10:1–10

    Article  Google Scholar 

  • Dutt M, Ananthakrishnan G, Jaromin MK, Brlansky RH, Grosser JW (2011) Evaluation of four phloem-specific promoters in vegetative tissues of transgenic citrus plants. Tree Physiol 32:83–93

    Article  Google Scholar 

  • Enrique R, Siciliano F, Favaro MA, Gerhardt N, Roeschlin R, Rigano L, Sendin L, Castagnaro A, Vojnov A, Marano MR (2011) Novel demonstration of RNAi in citrus reveals importance of citrus callose synthase in defence against Xanthomonas citri subsp. Citri. Plant Biotechnol J 9:394–407

    Article  PubMed  CAS  Google Scholar 

  • Fagoaga C, Rodrigo I, Conejero V, Hinarejos C, Tuset JJ, Arnau J, Pina JA, Navarro L, Peña L (2001) Increased tolerance to Phytophthora citrophthora in transgenic orange plants constitutively expressing a tomato pathogenesis related protein PR-5. Mol Breed 7:175–185

    Article  CAS  Google Scholar 

  • Fagoaga C, Lopez C, Moreno P, Navarro L, Flores R, Peña L (2005) Viral-like symptoms induced by the ectopic expression of the p23 gene of Citrus tristeza virus are citrus specific and do not correlate with the pathogenicity of the virus strain. Mol Plant Microbe Interact 18:435–445

    Article  PubMed  CAS  Google Scholar 

  • Fagoaga C, Lopez C, Mendoza AH, Moreno P, Navarro L, Flores R, Peña L (2006) Post-transcriptional gene silencing of the p23 silencing suppressor of citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Plant Mol Biol 60:153–165

    Article  PubMed  CAS  Google Scholar 

  • Fávero P, de Assis Francisco, Mourão FA (2012) Genetic transformation of three sweet orange cultivars from explants of adult plants. Acta Physiol Plant 34:471–477

    Article  Google Scholar 

  • Febres VJ, Niblett CL, Lee RF, Moore GA (2003) Characterization of grapefruit Plants (Citrus Paradisi Macf.) transformed with citrus tristeza closterovirus genes. Plant Cell Rep 21:421–428

    PubMed  CAS  Google Scholar 

  • Fleming GH, Olivares-Fuster O, Fatta Del-Bosco A, Grosser JW (2000) An alternative method for the genetic transformation of sweet orange. In Vitro Cell Dev Plant 36:450–456

    Article  CAS  Google Scholar 

  • Frydman A, Weisshaus O, Bar-Peled M, Huhman DV, Sumner LW, Marin FR, Lewinsohn E, Fluhr R, Gressel J, Eyal Y (2004) Citrus fruit bitter flavors: isolation and functional characterization of the gene Cm1, 2RhaT encoding a 1,2 rhamnosyltransferase, a key enzyme in the biosynthesis of the bitter flavonoids of citrus. Plant J 40:88–100

    Article  PubMed  CAS  Google Scholar 

  • Fu XZ, Chen CW, Wang Y, Liu JH, Moriguchi T (2011a) Ectopic expression of MdSPDS1 in sweet orange (Citrus sinensis Osbeck) reduces canker susceptibility: involvement of H2O2 production and transcriptional alteration. BMC Plant Biol 11:55

    Article  PubMed  CAS  Google Scholar 

  • Fu XZ, Ehsan UK, Hu SS, Fan QJ, Liu JH (2011b) Overexpression of the betaine aldehyde dehydrogenase gene from Atriplex hortensis enhances salt tolerance in the transgenic trifoliate orange (Poncirus trifoliata L. Raf.). Environ Exp Bot 74C:106–113

    Article  Google Scholar 

  • Fu XZ, Gong XQ, Zhang YX, Wang Y, Liu JH (2012) Different transcriptional response to Xanthomonas citri subsp. Citri between kumquat and sweet orange with contrasting canker tolerance. PLoS ONE 7(7):e41790. doi:10.1371/journal.pone.0041790

    Article  PubMed  CAS  Google Scholar 

  • Ghorbel R, Juárez J, Navarro L, Peña L (1999) Green fluorescent protein as a screenable marker to increase the efficiency of generating transgenic woody fruit plants. Theor Appl Genet 99:350–358

    Article  Google Scholar 

  • Guo WW, Grosser JW (2004) Transfer of a potential canker resistance gene into citrus protoplasts using GFP as the selectable marker. Acta Hortic 632:255–258

    CAS  Google Scholar 

  • Guo WW, Grosser JW (2005) Somatic hybrid vigor in Citrus: direct evidence from protoplast fusion of an embryogenic callus line with a transgenic mesophyll parent expressing the GFP gene. Plant Sci 168:1541–1545

    Article  CAS  Google Scholar 

  • Gutiérrez-E MA, Luth D, Moore GA (1997) Factors affecting Agrobacterium-mediated transformation in Citrus and production of sour orange (Citrus aurantium L.) plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep 16:745–753

    Article  Google Scholar 

  • Hamilton AJ, Lycett GW, Grierson AJ (1990) Antisense gene that inhibits the synthesis of the hormone ethylene in transgenic plants. Nature 346:284–287

    Article  CAS  Google Scholar 

  • Hara M, Wakasugi Y, Ikoma Y, Yano M, Ogawa K, Kuboi T (1999) cDNA sequence and expression of a cold-responsive gene in Citrus unshiu. Biosci Biotechnol Biochem 63:433–437

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Fujinaga M, Kuboi T (2005) Metal binding by citrus dehydrin with histidine-rich domains. J Exp Bot 56:2695–2703

    Article  PubMed  CAS  Google Scholar 

  • Hidaka T, Omura M, Ugaki M, Tomiyama M, Kato A, Ohshima M, Motoyoshi F (1990) Agrobacterium-mediated transformation and regeneration of Citrus spp. from suspension cells. Jpn J Breed 40:199–207

    Google Scholar 

  • Huang XS, Liu JH, Chen XJ (2010) PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol 100:230

    Article  Google Scholar 

  • Huang XS, Luo T, Fu XZ, Fan QJ, Liu JH (2011) Cloning and molecular characterization of a mitogen-activated protein kinase gene from Poncirus trifoliata whose ectopic expression confers dehydration/drought tolerance in transgenic tobacco. J Exp Bot 62:5191–5206

    Article  PubMed  CAS  Google Scholar 

  • Iwanami T, Shimizu T, Ito T, Hirabayashi T (2004) Tolerance of citrus mosaic virus in transgenic trifoliate orange lines harboring capsid polyprotein gene. Plant Dis 88:865–868

    Article  CAS  Google Scholar 

  • Jia Y, del Rio HS, Robbins AL, Louzada ES (2004) Cloning and sequence analysis of a low temperature-induced gene from trifoliate orange with unusual pre-mRNA processing. Plant Cell Rep 23:159–166

    Article  PubMed  CAS  Google Scholar 

  • Junior VS, Celloto VR, Vieira LGE, Goncalves JE, Goncalves RAC, Oliveira AJB (2008) Floral nectar chemical composition of floral nectar in conventional and transgenic sweet orange, Citrus sinensis (L.) Osbeck, expressing an antibacterial peptide. Plant Syst Evol 275:1–7

    Article  Google Scholar 

  • Kayim M, Ceccardi TL, Berretta MJG, Barthe GA, Derrick KS (2004) Introduction of a citrus blight-associated gene into Carrizo citrange [Citrus sinensis (L.) Osb. × Poncirus trifoliata (L.) Raf.] by Agrobacterium-mediated transformation. Plant Cell Rep 23:377–385

    Article  PubMed  CAS  Google Scholar 

  • Khalaf AA, Gmitter FG, Conesa A, Dopazo J, Moore GA (2011) Fortunella margarita transcriptional reprogramming triggered by Xanthomonas citri subsp. citri. BMC Plant Biol 11:159

    Article  PubMed  Google Scholar 

  • Kobayashi S, Uchimiya H (1989) Expression and integration of a foreign gene in orange (Citrus sinensis Osb.) protoplasts by direct DNA transfer. Jpn J Genet 64:91–97

    Article  Google Scholar 

  • Komatsu A, Takanokura Y, Omura M, Akihama T (1996) Cloning and molecular analysis of cDNAs encoding three sucrose phosphate synthase isoforms from a citrus fruit (Citrus unshiu Marc.). Mol Gen Genet 252:346–351

    PubMed  CAS  Google Scholar 

  • Lang P, Zhang C, Ebel RC, Dane F, Dozier WA (2005) Identification of cold acclimated genes in leaves of Citrus unshiu by mRNA differential display. Gene 359:111–118

    Article  PubMed  CAS  Google Scholar 

  • Li DD, Shi W, Deng XX (2002) Agrobacterium-mediated transformation of embryogenic calluse of Ponkan mandarin and the regeneration of plants containing the chimeric ribonuclease gene. Plant Cell Rep 21:153–156

    Article  CAS  Google Scholar 

  • Li D, Song S, Xia X, Yin W (2012) Two CBL genes from Populus euphratica confer multiple stress tolerance in transgenic triploid white poplar. Plant Cell, Tissue Organ Cult 109:477–489

    Article  CAS  Google Scholar 

  • Liu JH, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007) Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechol 24:117–126

    Article  CAS  Google Scholar 

  • Liu DC, He LG, Wang HL, Xu M, Sun ZH (2010) Molecular cloning, characterization and expression analysis of PtrHOS1, a novel gene of cold responses from trifoliate orange [Poncirus trifoliata (L.) Raf.]. Acta Physiol Plant 32:271–279

    Article  CAS  Google Scholar 

  • Liu DC, He LG, Wang HL, Xu M, Sun ZH (2011) Expression profiles of PtrLOS2 encoding an enolase required for cold-responsive gene transcription from trifoliate orange. Biol Plant 55:35–42

    Article  CAS  Google Scholar 

  • Liu M, Li D, Wang Z, Meng F, Li Y, Wu X, Teng W, Han Y, Li W (2012) Transgenic expression of ThIPK2 gene in soybean improves stress tolerance, oleic acid content and seed size. Plant Cell, Tissue Organ Cult 111:277–289

    Article  CAS  Google Scholar 

  • Lyu JI, Min SR, Lee JH, Lim YH, Kim JK, Bae CH, Liu JR (2012) Overexpression of a trehalose-6-phosphate synthase/phosphatase fusion gene enhances tolerance and photosynthesis during drought and salt stress without growth aberrations in tomato. Plant Cell Tissue Organ Cult doi: 10.1007/s11240-012-0225-7

  • Mendes BMJ, Cardoso SC, Boscariol-Camargo RL, Cruz RB, Mouráo Filho FAA, Filho AB (2010) Reduction in susceptibility to Xanthomonas axonopodis pv. citri in transgenic Citrus sinensis expressing the rice Xa21 gene. Plant Pathol 59:68–75

    Article  CAS  Google Scholar 

  • Meng S, Dane F, Si Y, Ebel R, Zhang C (2008) Gene expression analysis of cold treated versus cold acclimated Poncirus trifoliata. Euphytica 164:209–219

    Article  CAS  Google Scholar 

  • Molinari HBC, Marur CJ, Filho JCB, Kobayashi AK, Pileggi M, Júnior RPL, Pereira LFP, Vieira LGE (2004) Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.) overproducing proline. Plant Sci 167:1375–1381

    Article  CAS  Google Scholar 

  • Moore GA, Jacono CC, Neidigh JL, Lawrence SD, Cline K (1992) Agrobacterium- mediated transformation of Citrus stem segments and regeneration of transgenic plants. Plant Cell Rep 11:238–242

    Article  CAS  Google Scholar 

  • Nairn CJ, Lewandowski DJ, Burns JK (1998) Genetics and expression of two pectinesterase genes in Valencia orange. Physiol Plant 102:226–235

    Article  CAS  Google Scholar 

  • Naot D, Holland D, Avsian-Kretchmer O, Eshdat Y, Ben-Hayyim G (1995a) Induction of a gene encoding an oleosinhomologue in cultured citrus cells exposed to salt stress. Gene 161:171–173

    Article  PubMed  CAS  Google Scholar 

  • Naot D, Ben-Hayyim G, Eshdat Y, Holland D (1995b) Drought, heat and salt stress induce the expression of a citrus homologue of an atypical late-embryogenesis Lea5 gene. Plant Mol Biol 27:619–622

    Article  PubMed  CAS  Google Scholar 

  • Ohtani K, Yamamoto H, Akimitsu K (2002) Sensitivity to Alternaria alternata toxin in citrus because of altered mitochondrial RNA processing. Proc Natl Acad Sci USA 99:2439–2444

    Article  PubMed  CAS  Google Scholar 

  • Oliveira TM, Cidade LC, Gesteira AS, Filho MAC, Filho WSS, Costa MGC (2011) Analysis of the NAC transcription factor gene family in citrus reveals a novel member involved in multiple abiotic stress responses. Tree Genet Genomes 7:1123–1134

    Article  Google Scholar 

  • Omar AA, Grosser JW (2004) Transfer of cDNA of the Xa21 Xanthomonas resistance gene from rice into ‘Hamlin’ sweet orange [Citrus sinensis (L.) Osbeck] using a protoplast-GFP transformation system. In Vitro Cell Dev Plant 45:2038

    Google Scholar 

  • Paris R, Cova V, Pagliarani G, Tartarini S, Komjanc M, Sansavini S (2009) Expression profiling in HcrVf2-transformed apple plants in response to Venturia inaequalis. Tree Genet Genome 5:81–91

    Article  Google Scholar 

  • Peña L, Cervera M, Juárez J, Navarro A, Pina JA, Durán-Vila N, Navarro L (1995a) Agrobacterium-mediated transformation of sweet orange and regeneration of transgenic plants. Plant Cell Rep 14:616–619

    Article  Google Scholar 

  • Peña L, Cervera M, Juárez J, Ortega C, Pina JA, Duran-Vila N, Navarro L (1995b) High efficiency Agrobacterium-mediated transformation and regeneration of citrus. Plant Sci 104:183–191

    Article  Google Scholar 

  • Peña L, Cervera M, Juárez J, Navarro A, Pina JA, Navarro L (1997) Genetic transformation of lime (Citrus aurantifolia Swing.): factors affecting transformation and regeneration. Plant Cell Rep 16:731–737

    Article  Google Scholar 

  • Peña L, Cervera M, Fagoga C, Perez R, Rometro J, Juarez J, Pina JA, Navarro L (2004) Agrobaterium-mediated transformation of citrus In: Citrus IS (ed) Transgenic crops of the world-essential protocols. The Netherlands, pp 145–157

  • Porat R, Vinokur V, Holland D, McCollum TG, Droby S (2001) Isolation of a citrus chitinase cDNA and characterization of its expression in response to elicitation of fruit pathogen resistance. J Plant Physiol 158:1585–1590

    Article  CAS  Google Scholar 

  • Porat R, Pavoncello D, Lurie S, Mccollum TG (2002) Identification of a grapefruit cDNA belonging to a unique class of citrus dehydrins and characterization of its expression patterns under temperature stress conditions. Physiol Plant 115:598–603

    Article  PubMed  CAS  Google Scholar 

  • Porat R, Pasentsis K, Rozentzvieg D, Gerasopoulos D, Falara V, Samach A, Lurie S, Kanellis AK (2004) Isolation of a dehydrin cDNA from orange and grapefruit citrus fruit that is specifically induced by the combination of heat followed by chilling temperatures. Physiol Plant 120:256–264

    Article  PubMed  CAS  Google Scholar 

  • Rai M (2006) Refinement of the Citrus tristeza virus resistance gene (Ctv) positional map in Poncirus trifoliata and generation of transgenic grapefruit (Citrus paradisi) plant lines with candidate resistance genes in this region. Plant Mol Biol 61:399–414

    Article  PubMed  CAS  Google Scholar 

  • Reyes CA, Zanek MC, Velázquez K, Costa N, Plata MI, Garcia ML (2011a) Generation of sweet orange transgenic lines and evaluation of Citrus psorosis virus-derived resistance against Psorosis A and Psorosis B. J Pathol 159:531–537

    CAS  Google Scholar 

  • Reyes CA, Francesco AD, Peña EJ, Costa N, Plata MI, Sendin L, Castagnaro AP, Garcia ML (2011b) Resistance to Citrus psorosis virus in transgenic sweet orange plants is triggered by coat protein-RNA silencing. J Biotechnol 151:151–158

    Article  PubMed  CAS  Google Scholar 

  • Rhim SL, Kim GI, Jin TE, Lee JH, Kuo C, Sun SC, Huang LC (2004) Transformation of citrus with coleopteran specific delta-endotoxin gene from Bacillus thuringiensis ssp tenebrionis. J Pant Biotechnol 6:21–24

    Google Scholar 

  • Rodrigo MJ, Alquezar B, Zacaría L (2006) Cloning and characterization of two 9-cis-epoxycarotenoid dioxygenase genes, differentially regulated during fruit maturation and under stress conditions, from orange (Citrus sinensis L. Osbeck). J Exp Bot 57:633–643

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez A, Andrés VS, Cervera M, Redondo A, Alquézar B, Shimada T, Gadea J, Rodrigo MJ, Zacarías L, Palou L, López MM, Castañera P, Peña L (2011) Terpene down-regulation in orange reveals the role of fruit aromas in mediating interactions with insect herbivores and pathogens. Plant Physiol 156:793–802

    Article  PubMed  Google Scholar 

  • Rodríguez-Gamir J, Ancillo G, Legaz F, Primo-Millo E, Forner-Giner MA (2012) Influence of salinity on pip gene expression in citrus roots and its relationship with root hydraulic conductance, transpiration and chloride exclusion from leaves. Environ Exp Bot 78:163–166

    Article  Google Scholar 

  • Rosales-Mendoza S, Paz-Maldonado LMT, Govea-Alonso DO, Korban SS (2012) Engineering production of antihypertensive peptides in plants. Plant Cell Tissue Organ Cult. doi: 10.1007/s11240-012-0231-9

  • Sanchez-Ballesta MT, Lafuente MT, Zacarias L, Granell A (2000) Involvement of phenylalanine ammonia-lyase in the response of Fortune mandarin fruits to cold temperature. Physiol Plant 108:382–389

    Article  CAS  Google Scholar 

  • Sanchez-Ballesta MT, Rodrigo MJ, Lafuente MT, Granell A, Zacarias L (2004) Dehydrin from Citrus, which confers in vitro dehydration and freezing protection activity, is constitutive and highly expressed in the flavedo of fruit but responsive to cold and water stress in leaves. J Agric Food Chem 52:1950–1957

    Article  PubMed  CAS  Google Scholar 

  • Shimada T, Kita M, Endo T, Fujii H, Ueda T, Moriguchi T, Omura M (2003) Expressed sequence tags of ovary tissue cDNA library in Citrus unshiu Marc. Plant Sci 165:167–168

    Article  CAS  Google Scholar 

  • Wang J, Liu JH, Kurosawa T, Nada K, Ben Y, Moriguchi T (2010) Cloning, biochemical identification, and expression analysis of a gene encoding S-adenosylmethionine decarboxylase in navel orange (Citrus sinensis Osbeck). J Hortic Sci Biotechnol 85:219–226

    CAS  Google Scholar 

  • Wang J, Sun PP, Chen CL, Wang Y, Fu XZ, Liu JH (2011) An arginine decarboxylase gene PtADC from Poncirus trifoliata confers abiotic stress tolerance and promotes primary root growth in Arabidopsis. J Exp Bot 62:2899–2914

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Li Z, Yan F, Khalil R, Ren Z, Yang C, Yang Y, Deng W (2012) ZmSKIP, a homologue of SKIP in maize, is involved in response to abiotic stress in tobacco. Plant Cell Tiss Organ Cult. doi: 10.1007/s11240-012-0224-8

  • Wong WA, Li GG, Ning W, Xu ZF, Hsiao WLW, Zhang LY, Li N (2001) Repression of chilling-induced ACC accumulation in transgenic citrus by over-production of antisense 1-aminocyclopropane-1-carboxylate synthase RNA. Plant Sci 161:969–977

    Article  CAS  Google Scholar 

  • Yang ZN, Ingelbrecht IL, Louzada E, Skaria M, Mirkov TE (2000) Agrobacterium-mediated transformation of the commercially important grapefruit cultivar Rio Red (Citrus paradisi Macf.). Plant Cell Rep 19:1203–1211

    Article  CAS  Google Scholar 

  • Yang ZN, Ye XR, Choi SD, Molina J, Moonan F, Wing RA, Roose ML, Mirkov TE (2001) Construction of a 1.2-Mb contig including the citrus tristeza virus resistance gene locus using a bacterial artificial chromosome library of Poncirus trifoliata (L.) Raf. Genome 44:382–393

    PubMed  CAS  Google Scholar 

  • Yang ZN, Ye XR, Molina J, Roose ML, Mirkov TE (2003) Sequence analysis of a 282- kilobase region surrounding the citrus tristeza virus resistance gene (Ctv) locus in Poncirus trifoliata L. Raf. Plant Physiol 131:482–492

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Hu CH, Li N, Zhang JY, Yan JW, Deng ZN (2011) Transformation of sweet orange [Citrus sinensis (L.) Osbeck] with pthA-nls for acquiring resistance to citrus canker disease. Plant Mol Biol 75:11–23

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Deng W, Tang N, Wang X, Yan F, Lin D, Li Z (2012) Overexpression of ZmAFB2, the maize homologue of AFB2 gene, enhances salt tolerance in transgenic tobacco. Plant Cell Tiss Organ Cult. doi: 10.1007/s11240-012-0219-5

  • Ye X, Busov V, Zhao N, Meilan R, McDonnell LM, Coleman HD, Mansfield SD, Chen F, Li Y, Cheng ZM (2011) Transgenic Populus trees for forest products, bioenergy, and functional genomics. Crit Rev Plant Sci 30:415–434

    Article  Google Scholar 

  • Yun Z, Jin S, Ding YD, Wang Z, Gao HJ, Pan ZY, Xu J, Cheng YJ, Deng XX (2012) Comparative transcriptomics and proteomics analysis of citrus fruit, to improve understanding of the effect of low temperature on maintaining fruit quality during lengthy post-harvest storage. J Exp Bot 63:2873–2893

    Article  PubMed  CAS  Google Scholar 

  • Zhang CK, Lang P, Dane F, Ebel RC, Singh NK, Locy RD, Dozier WA (2005) Cold acclimation induced genes of trifoliate orange (Poncirus trifoliata). Plant Cell Rep 23:764–769

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (31071778, 31272147), the Research Fund for the Doctoral Program of Higher Education (20110146110017), the National High Technology Research and Development Program (863 Program) of China (2011AA100205), Wuhan Municipal Project for Academic Leaders (201150530148). As there is huge number of related references in this topic, we could not cite all due to page limitation. Therefore, we apologize for missing the work in the current article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Hong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, XQ., Liu, JH. Genetic transformation and genes for resistance to abiotic and biotic stresses in Citrus and its related genera. Plant Cell Tiss Organ Cult 113, 137–147 (2013). https://doi.org/10.1007/s11240-012-0267-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0267-x

Keywords

Navigation