Skip to main content

Abstract

A typical lactic acid bacterium grown under standard conditions is aerotolerant, acid tolerant, organotrophic, and a strictly fermentative rod or coccus, producing lactic acid as a major end product. It lacks cytochromes and is unable to synthesize porphyrins. Its features can vary under certain conditions. Catalase and cytochromes may be formed in the presence of hemes and lactic acid can be further metabolized, resulting in lower lactic acid concentrations. Cell division occurs in one plane, except pediococci. The cells are usually nonmotile. They have a requirement for complex growth factors such as vitamins and amino acids. An unequivocal definition of LAB is not possible (Axelsson, Lactic acid bacteria microbiological and functional aspects. Marcel Dekker, 2004). Lactic acid bacteria are characterized by the production of lactic acid as a major catabolic end product from glucose. Some bacilli, such as Actinomyces israeli and bifidobacteria, can form lactic acid as a major end product, but these bacteria have rarely or never been isolated from must and wine. The DNA of LAB has a G+C content below 55 mol%. LAB are grouped into the Clostridium branch of gram-positive bacteria possessing a relationship to the bacilli, while Bifidobacterium belongs to the Actinomycetes. They are grouped in one order and six families. From the 33 described genera, only 26 species belonging to six genera have been isolated from must and wine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrunhosa L, Inês A, Rodrigues AI, Guimarães A, Pereira VL, Parpot P, Mendes-Faia A, Venâncio A (2014) Biodegradation of ochratoxin A by Pediococcus parvulus isolated from Douro wines. Int J Food Microbiol 188:45–52

    Article  CAS  PubMed  Google Scholar 

  • Alberto MR, de Nadra MC, Arena ME (2012) Influence of phenolic compounds on the growth and arginine deiminase system in a wine lactic acid bacterium. Braz J Microbiol 43:167–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apud GR, Stivala MG, Fernández PA, Rodríguez Vaquero MJ (2013a) Proteolytic activity of Oenococcus oeni enables the increase in antioxidant and antihypertensive activities from wine. Curr Pharm Biotechnol 14:809–813

    Article  CAS  PubMed  Google Scholar 

  • Apud GR, Vaquero MJ, Rollan G, Stivala MG, Fernández PA (2013b) Increase in antioxidant and antihypertensive peptides from Argentinean wines by Oenococcus oeni. Int J Food Microbiol 163:166–170

    Article  CAS  PubMed  Google Scholar 

  • Araque I, Gil J, Carreté R, Constantí M, Bordons A, Reguant C (2016) Arginine deiminase pathway genes and arginine degradation variability in Oenococcus oeni strains. Folia Microbiol (Praha) 61:109–118

    Article  CAS  Google Scholar 

  • Archibald F (1986) Manganese: its acquisition by and function in lactic acid bacteria. Crit Rev Microbiol 13:63–109

    Article  CAS  PubMed  Google Scholar 

  • Archibald AR, Coapes HE (1971) The wall teichoic acids of Lactobacillus plantarum N.I.R.D.C106. Location of the phosphodiester groups and separation of the chains. Biochem J 124:449–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aredes Fernández PA, Stivala MG, Rodríguez Vaquero MJ, Farías ME (2011) Increase in antioxidant and antihypertensive activity by Oenococcus oeni in a yeast autolysis wine model. Biotechnol Lett 33:359–364

    Article  PubMed  CAS  Google Scholar 

  • Arena ME, Lisi MS, Manca de Nadra MC, Alberto MR (2013) Wine composition plays an important role in the control of carcinogenic precursor formation by Lactobacillus hilgardii X1B. J Sci Food Agric 93:142–148

    Article  CAS  PubMed  Google Scholar 

  • Axelsson L (2004) Lactic acid bacteria: classification and physiology. In: Salminen S, von Wright A, Ouwehand AC (eds) Lactic acid bacteria microbiological and functional aspects, 3rd edn. Marcel Dekker, New York, pp 1–66

    Google Scholar 

  • Badotti F, Moreira AP, Tonon LA, de Lucena BT, de Gomes C, Kruger R, Thompson CC, de Morais MA Jr, Rosa CA, Thompson FL (2015) Oenococcus alcoholitolerans sp. nov., a lactic acid bacteria isolated from cachaça and ethanol fermentation processes. Antonie Van Leeuwenhoek 106:1259–1267

    Article  CAS  Google Scholar 

  • Bae S, Fleet GH, Heard GM (2006) Lactic acid bacteria associated with wine grapes from several Australian vineyards. J Appl Microbiol 100:712–727

    Article  CAS  PubMed  Google Scholar 

  • Barroso E, Van de Wiele T, Jiménez-Girón A, Muñoz-González I, Martín-Alvarez PJ, Moreno-Arribas MV, Bartolomé B, Peláez C, Martínez-Cuesta MC, Requena T (2014) Lactobacillus plantarum IFPL935 impacts colonic metabolism in a simulator of the human gut microbiota during feeding with red wine polyphenols. Appl Microbiol Biotechnol 98:6805–6815

    Article  CAS  PubMed  Google Scholar 

  • Bartowsky EJ, Borneman AR (2011) Genomic variations of Oenococcus oeni strains and the potential to impact on malolactic fermentation and aroma compounds in wine. Appl Microbiol Biotechnol 92:441–447

    Article  CAS  PubMed  Google Scholar 

  • Bastard A, Coelho C, Briandet R, Canette A, Gougeon R, Alexandre H, Guzzo J, Weidmann S (2016) Effect of biofilm formation by Oenococcus oeni on malolactic fermentation and the release of aromatic compounds in wine. Front Microbiol 7:613

    Article  PubMed  PubMed Central  Google Scholar 

  • Bauer R, du Toit M, Kossmann J (2010) Influence of environmental parameters on production of the acrolein precursor 3-hydroxypropionaldehyde by Lactobacillus reuteri DSMZ 20016 and its accumulation by wine lactobacilli. Int J Food Microbiol 137:28–31

    Article  CAS  PubMed  Google Scholar 

  • Bäumlisberger M, Moellecken U, König H, Harald Claus H (2015) The potential of the yeast Debaryomyces hansenii H525 to degrade biogenic amines in food. Microorganisms 3:839–850

    Article  PubMed  PubMed Central  Google Scholar 

  • Björkroth J, Holzapfel W (2006) Genera Leuconostoc, Oenococcus and Weissella. In: Dworkin M (ed) The prokaryotes. Springer, Heidelberg, pp 267–319. http://link.springer.de/link/service/books

  • Blättel V, Larisika M, Nowak C, Eich A, Eckelt J, König H (2011) β-1,3-Glucanase from Delftia tsuruhatensis strain MV01 and its potential application in vinification. J Appl Environ Microbiol 77:983–990

    Article  CAS  Google Scholar 

  • Blom H, Mörtvedt C (1991) Anti-microbial substances produced by food associated microorganisms. Biochem Soc Trans 19:694–698

    Article  CAS  PubMed  Google Scholar 

  • Bordas M, Araque I, Alegret JO, El Khoury M, Lucas P, Rozès N, Reguant C, Bordons A (2013) Isolation, selection, and characterization of highly ethanol-tolerant strains of Oenococcus oeni from south Catalonia. Int Microbiol 16:113–123

    CAS  PubMed  Google Scholar 

  • Borneman AR, JM MC, Chambers PJ, Bartowsky EJ (2012) Functional divergence in the genus Oenococcus as predicted by genome sequencing of the newly-described species, Oenococcus kitaharae. PLoS One 7:e29626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bravo-Ferrada BM, Hollmann A, Delfederico L, Valdés La Hens D, Caballero A, Semorile L (2013) Patagonian red wines: selection of Lactobacillus plantarum isolates as potential starter cultures for malolactic fermentation. World J Microbiol Biotechnol 29:1537–1549

    Article  CAS  PubMed  Google Scholar 

  • Cafaro C, Bonomo MG, Rossano R, Larocca M, Salzano G (2014a) Efficient recovery of whole cell proteins in Oenococcus oeni – a comparison of different extraction protocols for high-throughput malolactic starter applications. Folia Microbiol (Praha) 59:399–408

    Article  CAS  Google Scholar 

  • Cafaro C, Bonomo MG, Salzano G (2014b) Adaptive changes in geranylgeranyl pyrophosphate synthase gene expression level under ethanol stress conditions in Oenococcus oeni. J Appl Microbiol 116:71–80

    Article  CAS  PubMed  Google Scholar 

  • Callejón S, Sendra R, Ferrer S, Pardo I (2014) Identification of a novel enzymatic activity from lactic acid bacteria able to degrade biogenic amines in wine. Appl Microbiol Biotechnol 98:185–198

    Article  PubMed  CAS  Google Scholar 

  • Capozzi V, Russo P, Lamontanara A, Orrù L, Cattivelli L, Spano G (2014) Genome sequences of five Oenococcus oeni strains isolated from Nero Di Troia wine from the same terroir in Apulia, Southern Italy. Genome Announc 23:2

    Google Scholar 

  • Capozzi V, Russo P, Ladero V, Fernández M, Fiocco D, Alvarez MA, Grieco F, Spano G (2012) Biogenic Amines degradation by Lactobacillus plantarum: toward a potential application in wine. Front Microbiol 3:122

    PubMed  PubMed Central  Google Scholar 

  • Carr JG, Cutting CV, Whiting GC (1975) Lactic acid bacteria in beverages and food. Academic, London

    Google Scholar 

  • Caspritz G, Radler F (1983) Malolactic enzyme of Lactobacillus plantarum. Purification, properties, and distribution among bacteria. J Biol Chem 258:4907–4910

    CAS  PubMed  Google Scholar 

  • Cavin J-F, Schmitt P, Arias A, Lin J, Diviès C (1988) Plasmid profiles in Leuconostoc species. Microbiol Aliment Nutr 6:55–62

    Google Scholar 

  • Chen K-H, McFeeters RF (1986) Utilization of electron-acceptors for anaerobic metabolism by Lactobacillus plantarum. Enzymes and intermediates in the utilization of citrate. Food Microbiol 3:83–92

    Article  CAS  Google Scholar 

  • Chevallier B, Hubert JC, Kammerer B (1994) Determination of chromosome size and number of rrn loci in Lactobacillus plantarum by pulsed-field gel-electrophoresis. FEMS Microbiol Lett 120:51–56

    Article  CAS  PubMed  Google Scholar 

  • Cho GS, Krauss S, Huch M, Du Toit M, Franz CM (2011) Development of a quantitative PCR for detection of Lactobacillus plantarum starters during wine malolactic fermentation. J Microbiol Biotechnol 21:1280–1286

    Article  CAS  PubMed  Google Scholar 

  • Christ E, König H, Pfeiffer P (2012) Bacterial formation of biogenic amines in grape juice: the influence of cultivation conditions. Deutsche Lebensmittel-Rundschau 108:73–78

    CAS  Google Scholar 

  • Claisse O, Lonvaud-Funel A (2012) Development of a multilocus variable number of tandem repeat typing method for Oenococcus oeni. Food Microbiol 30:340–347

    Article  CAS  PubMed  Google Scholar 

  • Claisse O, Lonvaud-Funel A (2014) Multiplex variable number of tandem repeats for Oenococcus oeni and applications. Food Microbiol 38:80–86

    Article  CAS  PubMed  Google Scholar 

  • Claus H (2007) Extracelluläre enzyme und peptide von Milchsäurebakterien: Relevanz für die Weinbereitung. Deutsche Lebensmittel-Rundschau 103:505–511

    CAS  Google Scholar 

  • Collins MD, Williams AM, Wallbanks S (1990) The phylogeny of Aerococcus and Pediococcus as determined by 16S rRNA sequence analysis: description of Tetragenococcus gen. nov. FEMS Microbiol Lett 70:255–262

    CAS  Google Scholar 

  • Collins MD, Rodrigues UM, Ash C, Aguirre M, Farrow JAE, Martinez-Murica A, Phillips BA, Williams AM, Wallbanks S (1991) Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16 S rRNA. FEMS Microbiol Lett 77:5–12

    Article  CAS  Google Scholar 

  • Collins MD, Samelis J, Metaxopoulos J, Wallbanks S (1993) Taxonomic studies on some Leuconostoc-like organisms from fermented sausages – description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J Appl Bacteriol 75:595–603

    Article  CAS  PubMed  Google Scholar 

  • Condon S (1987) Responses of lactic acid bacteria to oxygen. FEMS Microbiol Rev 46:269–280

    Article  CAS  Google Scholar 

  • Costantini A, Rantsiou K, Majumder A, Jacobsen S, Pessione E, Svensson B, Garcia-Moruno E, Cocolin L (2015) Complementing DIGE proteomics and DNA subarray analyses to shed light on Oenococcus oeni adaptation to ethanol in wine-simulated conditions. J Proteome 123:114–127

    Article  CAS  Google Scholar 

  • Costello PJ, Henschke PA (2002) Mousy off-flavor of wine: precursors and biosynthesis of the causative n-heterocycles 2-ethyltetrahydropyridine, 2-acetyltetrahydropyridine, and 2-acetyl-1-pyrroline by Lactobacillus hilgardii DSM 20176. J Agric Food Chem 50:7079–7087

    Article  CAS  PubMed  Google Scholar 

  • Costello PJ, Siebert TE, Solomon MR, Bartowsky EJ (2013) Synthesis of fruity ethyl esters by acyl coenzyme A: alcohol acyltransferase and reverse esterase activities in Oenococcus oeni and Lactobacillus plantarum. J Appl Microbiol 114:797–806

    Article  CAS  PubMed  Google Scholar 

  • Coton E, Rollan G, Bertrand A, Lonvaud-Funel A (1998) Histamine-producing lactic acid bacteria in wines: early detection, frequency, and distribution. Am J Enol Vitic 49:199–204

    CAS  Google Scholar 

  • Coucheney F, Gal L, Beney L, Lherminier Gervais JP, Guzzo J (2005) A small HSP, Lo18, interacts with the cell membrane and modulates lipid physical state under heat shock conditions in a lactic acid bacterium. Biochim Biophys Acta Biomembr 1720:92–98

    Article  CAS  Google Scholar 

  • Coulon J, Houlès A, Dimopoulou M, Maupeu J, Dols-Lafargue M (2012) Lysozyme resistance of the ropy strain Pediococcus parvulus IOEB 8801 is correlated with beta-glucan accumulation around the cell. Int J Food Microbiol 159:25–29

    Article  CAS  PubMed  Google Scholar 

  • Crowel EA, Guymon MF (1975) Wine constituents arising from sorbic acid addition, and identification of 2-ethoxyhexa-3,5-diene as source of geranium-like off-odor. Am J Enol Vitic 26:97–102

    Google Scholar 

  • Darsonval M, Msadek T, Alexandre H, Grandvalet C (2015) The antisense RNA approach: a new application for in vivo investigation of the stress response of Oenococcus oeni, a wine-associated lactic acid bacterium. Appl Environ Microbiol 82:18–26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Vuyst L, Vandamme EJ (1994) Bacteriocins of lactic acid bacteria: microbiology, genetics and applications. Blackie, London

    Book  Google Scholar 

  • Dellaglio F, Felis G (2005) Taxonomy of lactobacilli and bifidobacteria. In: Tannock GW (ed) Probiotics and prebiotics: scientific aspects. Caister Academic, Wymondham

    Google Scholar 

  • Dellaglio F, Dicks LMT, Torriani S (1995) The genus Leuconostoc. In: Wood BJB, Holzapfel WH (eds) The genera of lactic acid bacteria. Blackie, London, pp 235–278

    Chapter  Google Scholar 

  • Dicks LMT, Dellaglio F, Collins MD (1995) Proposal to reclassify Leuconostoc oenos as Oenococcus oeni [corrig.] gen. nov., comb. nov. Int J Syst Bacteriol 45:395–397

    Article  CAS  PubMed  Google Scholar 

  • Dimopoulou M, Hazo L, Dols-Lafargue M (2012) Exploration of phenomena contributing to the diversity of Oenococcus oeni exopolysaccharides. Int J Food Microbiol 153:114–122

    Article  CAS  PubMed  Google Scholar 

  • Dimopoulou M, Vuillemin M, Campbell-Sills H, Lucas PM, Ballestra P, Miot-Sertier C, Favier M, Coulon J, Moine V, Doco T, Roques M, Williams P, Petrel M, Gontier E, Moulis C, Remaud-Simeon M, Dols-Lafargue M (2014) Exopolysaccharide (EPS) synthesis by Oenococcus oeni: from genes to phenotypes. PLoS One 9. doi:10.1371/journal.pone.0098898

  • Dimopoulou M, Bardeau T, Ramonet PY, Miot-Certier C, Claisse O, Doco T, Petrel M, Lucas P, Dols-Lafargue M (2016) Exopolysaccharides produced by Oenococcus oeni: from genomic and phenotypic analysis to technological valorization. Food Microbiol 53:10–17

    Article  PubMed  Google Scholar 

  • Dittrich HH, Großmann M (2005) Mikrobiologie des Weines, 3rd ed. Ulmer, Stuttgart

    Google Scholar 

  • Dittrich HH, Großmann M (2011) Mikrobiologie des Weines, 4th edn. Ulmer, Stuttgart

    Google Scholar 

  • Dohm N, Petri A, Schlander M, Schlott B, König H, Claus H (2011) Molecular and biochemical properties of the S-layer protein from the wine bacterium Lactobacillus hilgardii B706. Arch Microbiol 193:251–261

    Article  CAS  PubMed  Google Scholar 

  • Doria F, Napoli C, Costantini A, Berta G, Saiz JC, Garcia-Moruno E (2013) Development of a new method for detection and identification of Oenococcus oeni bacteriophages based on endolysin gene sequence and randomly amplified polymorphic DNA. Appl Environ Microbiol 79:4799–4805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DSMZ (2016a) Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Germany, Prokaryotic Nomenclature Up-to-Date (July 2016). http://www.dsmz.de/bacterial-diversity/prokaryotic-nomenclature-up-to-date

  • DSMZ (2016b) The bacterial metadata base. http://bacdive.dsmz.de

  • DSMZ (2016c) Nomenclature of peptidoglycan structures. https://www.dsmz.de/catalogues/catalogue-microorganisms/groups-of-organisms-and-their-applications/peptidoglycans.html

  • DSMZ (2016d) The genome-to-genome distance calculator. https://www.dsmz.de/bacterial-diversity.html

  • Du Toit M, Engelbrecht L, Lerm E, Krieger-Weber S (2011) Lactobacillus: the next generation of malolactic fermentation starter cultures – an overview. Food Bioprocess Technol 4:876–906

    Article  Google Scholar 

  • Dueñas M, Munduate A, Perea A, Irastorza A (2003) Exopolysaccharide production by Pediococcus damnosus 2.6 in a semidefined medium under different growth conditions. Int J Food Microbiol 87:113–120

    Article  PubMed  CAS  Google Scholar 

  • Dündar H, Salih B, Bozoğlu F (2016) Purification and characterization of a bacteriocin from an oenological strain of Leuconostoc mesenteroides subsp. cremoris. Prep Biochem Biotechnol 46:354–359

    Article  PubMed  CAS  Google Scholar 

  • El Gharniti F, Dols-Lafargue M, Bon E, Claisse O, Miot-Sertier C, Lonvaud A, Le Marrec C (2012) IS30 elements are mediators of genetic diversity in Oenococcus oeni. Int J Food Microbiol 158:14–22

    Article  PubMed  CAS  Google Scholar 

  • Eltz RW, Vandemark PJ (1960) Fructose dissimilation by Lactobacillus brevis. J Bacteriol 79:763–776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Endo A, Okada S (2006) Oenococcus kitaharae sp. nov., a non-acidophilic and non-malolactic -fermenting oenococcus isolated from a composting distilled shochu residue. Int J Syst Evol Microbiol 56:2345–2348

    Article  CAS  PubMed  Google Scholar 

  • Endo A, Okada S (2008) Reclassification of the genus Leuconostoc and proposal of Fructobacillus fructosus gen. nov., comb. nov., Fructobacillus durionis comb. nov., Fructobacillus ficulneus com. nov., and Fructobacillus pseudoficulneus comb. Nov. Int J Syst Evol Microbiol 58:2195–2205

    Article  CAS  PubMed  Google Scholar 

  • Endo A, Futagawa-Endo Y, Sakamoto M, Kitahara M, Dicks LM (2010) Lactobacillus florum sp. nov., a fructophilic species isolated from flowers. Int J Syst Evol Microbiol 60:2478–2482

    Article  CAS  PubMed  Google Scholar 

  • Endo A, Irisawa T, Futagawa-Endo Y, Takano K, du Toit M, Okada S, Dicks LM (2012) Characterization and emended description of Lactobacillus kunkeei as a fructophilic lactic acid bacterium. Int J Syst Evol Microbiol 62:500–504

    Article  PubMed  Google Scholar 

  • Engesser DM, Hammes WP (1994) Non-heme catalase activity of lactic acid bacteria. Syst Appl Microbiol 17:11–19

    Article  CAS  Google Scholar 

  • Esteban-Torres M, Barcenilla JM, Mancheño JM, de las Rivas B, Muñoz R (2014) Characterization of a versatile arylesterase from Lactobacillus plantarum active on wine esters. J Agric Food Chem 62:5118–51125

    Article  CAS  PubMed  Google Scholar 

  • Favier M, Bilhère E, Lonvaud-Funel A, Moine V, Lucas PM (2012) Identification of pOENI-1 and related plasmids in Oenococcus oeni strains performing the malolactic fermentation in wine. PLoS One 7:e49082. doi:10.1371/journal.pone.0049082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felis GE, Dellaglio F (2007) Taxonomy of lactobacilli and bifidobacteria. Curr Issues Intest Microbiol 8:44-61

    Google Scholar 

  • Ferrero M, Cesena C, Morelli L, Scolari G, Vescovo M (1996) Molecular characterization of Lactobacillus casei strains. FEMS Microbiol Lett 140:215–219

    Article  CAS  Google Scholar 

  • Fleet GH (ed) (1993) Wine microbiology and biotechnology. Harwood Academic, Chur

    Google Scholar 

  • Foligné B, Dewulf J, Breton J, Claisse O, Lonvaud-Funel A, Pot B (2010) Probiotic properties of non-conventional lactic acid bacteria: immunomodulation by Oenococcus oeni. Int J Food Microbiol 140:136–145

    Article  PubMed  CAS  Google Scholar 

  • Fras P, Campos FM, Hogg T, Couto JA (2014) Production of volatile phenols by Lactobacillus plantarum in wine conditions. Biotechnol Lett 36:281–285

    Article  CAS  PubMed  Google Scholar 

  • Fröhlich J (2002) Fluorescence in situ hybridization (FISH) and single cell micro-manipulation as novel applications for identification and isolation of new Oenococcus strains. Yeast-Bacteria Interactions Lallemand. Langenlois 10:33–37

    Google Scholar 

  • Fröhlich J, König H (2004) Gensonden zum Nachweis von Species der Gattung Oenococcus. Patent DE 102 04 858 C2

    Google Scholar 

  • Fugelsang KC, Edwards CG (2007) Wine microbiology. Practical applications and procedures. Springer, Heidelberg

    Google Scholar 

  • García-Ruiz A, González-Rompinelli EM, Bartolomé B, Moreno-Arribas MV (2011a) Potential of wine-associated lactic acid bacteria to degrade biogenic amines. Int J Food Microbiol 148:115–120

    Article  PubMed  CAS  Google Scholar 

  • García-Ruiz A, Moreno-Arribas MV, Martín-Álvarez PJ, Bartolomé B (2011b) Comparative study of the inhibitory effects of wine polyphenols on the growth of enological lactic acid bacteria. Int J Food Microbiol 145:426–431

    Article  PubMed  CAS  Google Scholar 

  • García-Ruiz A, González de Llano D, Esteban-Fernández A, Requena T, Bartolomé B, Moreno-Arribas MV (2014) Assessment of probiotic properties in lactic acid bacteria isolated from wine. Food Microbiol 44:220–225

    Article  PubMed  CAS  Google Scholar 

  • Garrity GM (ed) (2005) Bergey’s manual of systematic bacteriology, 2nd edn. The proteo-bacteria. Part A. Introductory essays. Appendix 2: Taxonomic outline of Archaea and Bacteria. Springer, Heidelberg, pp 207–220, vol 2

    Google Scholar 

  • Garvie EI (1960) The genus Leuconostoc and its nomenclature. J Dairy Res 27:283–292

    Article  Google Scholar 

  • Garvie EI (1986a) Leuconostoc. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, London, pp 1071–1075

    Google Scholar 

  • Garvie EI (1986b) Pediococcus. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, London, pp 1075–1079

    Google Scholar 

  • González-Arenzana L, Santamaría P, López R, López-Alfaro I (2014) Oenococcus oeni strain typification by combination of multilocus sequence typing and pulsed field gel electrophoresis analysis. Food Microbiol 38:295–302

    Article  PubMed  CAS  Google Scholar 

  • Guzzo F, Cappello MS, Azzolini M, Tosi E, Zapparoli G (2011) The inhibitory effects of wine phenolics on lysozyme activity against lactic acid bacteria. Int J Food Microbiol 148:184–190

    CAS  PubMed  Google Scholar 

  • Hammes W, Hertel C (2003) The genera Lactobacillus and Carnobacterium. In: Dworkin M (ed) The prokaryotes. Springer, Heidelberg, pp 320–403. http://link.springer.de/link/service/books

  • Hammes WP, Vogel RF (1995) The genus Lactobacillus. In: Wood BJB, Holzapfel WH (eds) The genera of lactic acid bacteria. Blackie Academic and Professional, London, pp 19–54

    Chapter  Google Scholar 

  • Hammes WP, Weis N, Holzapfel WP (1991) The genera Lactobacillus and Carnobacterium. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, New York, pp 1535–1594

    Google Scholar 

  • Heresztyn T (1986) Formation of substituted tetrahydropyridines by species of Brettanomyces and Lactobacillus isolated from mousy wines. Am J Enol Vitic 37:127–132

    CAS  Google Scholar 

  • Hirschhäuser S, Fröhlich J, Gneipel A, Schönig I, König H (2005) Fast protocols for the 5S rDNA and ITS-2 based identification of Oenococcus oeni. FEMS Lett 244:165–171

    Article  CAS  Google Scholar 

  • Holzapfel WH, Wood BJB (eds) (1998) The genera of lactic acid bacteria, 1st edn. London, Blackie Academic and Professional

    Google Scholar 

  • Holzapfel W, Franz C, Ludwig W, Back W, Dicks L (2003) The genera Pediococcus and Tetragenococcus. In: Dworkin M (ed) The prokaryotes. Springer, Heidelberg, pp 229–266. http://link.springer.de/link/service/books

  • Hussain MA, Hosseini Nezhad M, Sheng Y, Amoafo O (2013) Proteomics and the stressful life of lactobacilli. FEMS Microbiol Lett 349:1–8

    CAS  PubMed  Google Scholar 

  • Ilabaca C, Jara C, Romero J (2014) The rapid identification of lactic acid bacteria present in Chilean winemaking processes using culture-independent analysis. Ann Microbiol 64:1857–1859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson RS (2008) Origin and growth of lactic acid bacteria. In: Jackson RS (ed) Wine science: principles and applications. Academic, San Diego, pp 394–402

    Google Scholar 

  • Jamal Z, Miot-Sertier C, Thibau F, Dutilh L, Lonvaud-Funel A, Ballestra P, Le Marrec C, Dols-Lafargue M (2013) Distribution and functions of phosphotransferase system genes in the genome of the lactic acid bacterium Oenococcus oeni. Appl Environ Microbiol 79:3371–3379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaomanjaka F, Ballestra P, Dols-lafargue M, Le Marrec C (2013) Expanding the diversity of oenococcal bacteriophages: insights into a novel group based on the integrase sequence. Int J Food Microbiol 166:331–340

    Article  CAS  PubMed  Google Scholar 

  • Jara C, Romero J (2015) Genome sequences of three Oenococcus oeni strains isolated from Maipo Valley, Chile. Genome Announc 3(4). pii:e00866-15

    Google Scholar 

  • Josephsen J, Neve H (2004) Bacteriophage and antiphage mechanisms of lactic acid bacteria. In: Salminen S, von Wright A, Ouwehand AC (eds) Lactic acid bacteria Microbiological and functional aspects, 3rd edn. Marcel Dekker, New York, pp 295–350

    Google Scholar 

  • Juega M, Costantini A, Bonello F, Cravero MC, Martinez-Rodriguez AJ, Carrascosa AV, Garcia-Moruno E (2014) Effect of malolactic fermentation by Pediococcus damnosus on the composition and sensory profile of Albariño and Caiño white wines. J Appl Microbiol 116:586–595

    Article  CAS  PubMed  Google Scholar 

  • Kandler O (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 49:209–224

    Article  CAS  PubMed  Google Scholar 

  • Kandler O, Weiss N (1986) Lactobacillus. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams & Wilkins, London, pp 1209–1034

    Google Scholar 

  • Kántor A, Kluz M, Puchalski C, Terentjeva M, Kačániová M (2016) Identification of lactic acid bacteria isolated from wine using real-time PCR. J Environ Sci Health B 51:52–56

    Article  PubMed  CAS  Google Scholar 

  • Kaschak E, Göhring N, König H, Pfeiffer P (2009) Biogene Amine in deutschen Weinen: Analyse und Bewertung nach Anwendung verschiedener HPLC-Verfahren. Deutsche Lebensmittel-Rundschau 105:375–384

    CAS  Google Scholar 

  • Kelly WJ, Huang CM, Asmundson RV (1993) Comparison of Leuconostoc oenos strains by pulsed-field gel electrophoresis. Appl Environ Microbiol 59:3969–3972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhnigk T, Borst E, Ritter A, Kämpfer P, Graf A, Hertel H, König H (1994) Degradation of lignin monomers by the hindgut flora of termites. Syst Appl Microbiol 17:76–85

    Article  CAS  Google Scholar 

  • Lafon-Lafourcade S, Carre E, Ribéreau-Gayon P (1983) Occurrence of lactic-acid bacteria during the different stages of vinification and conservation of wines. Appl Environ Microbiol 46:874–880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lahtinen S, Ouwehand A-C, Salminen S, von Wright A (eds) (2012) Lactic acid bacteria. Microbial and functional aspects, 4th edn. CRC Press, Boca Raton

    Google Scholar 

  • Lamontanara A, Orrù L, Cattivelli L, Russo P, Spano G, Capozzi V (2014) Genome sequence of Oenococcus oeni OM27, the first fully assembled genome of a strain isolated from an Italian wine. Genome Announc 2(4). pii:e00658-14

    Google Scholar 

  • Landete JM, Ferrer S, Pardo I (2005) Which lactic acid bacteria are responsible for histamine production in wine? J Appl Microbiol 99:580–586

    Article  CAS  PubMed  Google Scholar 

  • Larisika M, Claus H, König H (2008) Pulsed-field gel electrophoresis for the discrimination of Oenococcus oeni isolates from different wine-growing regions in Germany. Int J Food Microbiol 123:171–176

    Article  CAS  PubMed  Google Scholar 

  • Lehtonen P (1996) Determination of amines and amino acids in wine – a review. Am J Enol Vitic 47:127–133

    CAS  Google Scholar 

  • Llaubères RM, Richard B, Lonvaud-Funel A, Dubourdieu D (1990) Structure of an exocellular beta-D-glucan from Pediococcus sp., a wine lactic bacteria. Carbohydr Res 203:103–107

    Article  PubMed  Google Scholar 

  • Lonvaud-Funel A, Joyeux A, Desens C (1988) Inhibition of malolactic fermentation of wines by products of yeast metabolism. J Sci Food Agric 44:183–191

    Article  CAS  Google Scholar 

  • Lonvaud-Funel A, Joyeux A, Ledoux O (1991) Specific enumeration of lactic-acid bacteria in fermenting grape must and wine by colony hybridization with nonisotopic DNA probes. J Appl Bacteriol 71:501–508

    Article  Google Scholar 

  • López-Rituerto E, Avenoza A, Busto JH, Peregrina JM (2013) NMR study of histidine metabolism during alcoholic and malolactic fermentations of wine and their influence on histamine production. J Agric Food Chem 61:9464–9469

    Article  PubMed  CAS  Google Scholar 

  • Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Díaz-Muñiz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O’Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 103:15611–15616

    Article  PubMed  PubMed Central  Google Scholar 

  • Mañes-Lázaro R, Ferrer S, Rosselló-Mora R, Pardo I (2009) Lactobacillus oeni sp. nov., from wine. Int J Syst Evol Microbiol 59:2010–2014

    Article  PubMed  CAS  Google Scholar 

  • Mangani S, Guerrini S, Granchi L, Vincenzini M (2005) Putrescine accumulation in wine: role of Oenococcus oeni. Curr Microbiol 51:6–10

    Article  CAS  PubMed  Google Scholar 

  • Marcobal AM, Sela DA, Wolf YI, Makarova KS, Mills DA (2008) Role of hypermutability in the evolution of the genus Oenococcus. J Bacteriol 190:564–570

    Article  CAS  PubMed  Google Scholar 

  • Margalef-Català M, Araque I, Bordons A, Reguant C, Bautista-Gallego J (2016) Transcriptomic and proteomic analysis of Oenococcus oeni adaptation to wine stress conditions. Front Microbiol 7:1554. doi:10.3389/fmicb.2016.01554

    Article  PubMed  PubMed Central  Google Scholar 

  • Marques AP, Zé-Zé L, San-Romão MV, Tenreiro R (2010) A novel molecular method for identification of Oenococcus oeni and its specific detection in wine. Int J Food Microbiol 142:251–255

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Murcia AJ, Collins MD (1990) A phylogenetic analysis of the genus Leuconostoc based on reverse transcriptase sequencing or 16S rRNA. FEMS Microbiol Lett 70:73–84

    Article  CAS  Google Scholar 

  • Mäyrä-Mäkinen A, Bigret M (2004) Industrial use and production of lactic acid bacteria. In: Salminen S, von Wright A, Ouwehand AC (eds) Lactic acid bacteria: microbiological and functional aspects, 3rd edn. Marcel Dekker, New York, pp 175–198

    Google Scholar 

  • Mesas JM, Rodríguez MC, Alegre MT (2012) Basic characterization and partial purification of β-glucosidase from cell-free extracts of Oenococcus oeni ST81. Lett Appl Microbiol 55:247–255

    Article  CAS  PubMed  Google Scholar 

  • Mohedano ML, Russo P, de Los RV, Capozzi V, Fernández de Palencia P, Spano G, López P (2014) A partial proteome reference map of the wine lactic acid bacterium Oenococcus oeni ATCC BAA-1163. Open Biol 4:130154

    Article  PubMed Central  CAS  Google Scholar 

  • Morelli L, Calleagri ML, Vogensen FK, von Wright A (2012) Genetics of lactic acid bacteria. In: Lahtinen S, Ouwehand A-C, Salminen S, von Wright A (eds) Lactic acid bacteria. Microbial and functional aspects, 4rd edn. CRC Press, Boca Raton, pp 17–37

    Google Scholar 

  • Morelli L, Vogensen FK, von Wright A (2004) Genetics of lactic acid bacteria. In: Salminen S, von Wright A, Ouwehand AC (eds) Lactic acid bacteria: microbiological and functional aspects, 3rd edn. Marcel Dekker, New York, pp 249–293

    Google Scholar 

  • Morse R, Collins MD, O’Hanlon K, Wallbanks S, Richardson PT (1996) Analysis of the beta’ subunit of DNA-dependent RNA polymerase does not support the hypothesis inferred from 16S rRNA analysis that Oenococcus oeni (formerly Leuconostoc oenos) is a tachytelic (fast-evolving) bacterium. Int J Syst Bacteriol 46:1004–1009

    Article  CAS  PubMed  Google Scholar 

  • Mtshali PS, Divol B, du Toit M (2012) Identification and characterization of Lactobacillus florum strains isolated from South African grape and wine samples. Int J Food Microbiol 153:106–113

    Article  PubMed  Google Scholar 

  • Murphy MG, O’Connor L, Walsh D, Condon S (1985) Oxygen dependent lactate utilization by Lactobacillus plantarum. Arch Microbiol 141:75–79

    Article  CAS  PubMed  Google Scholar 

  • Nakayama J, Sonomoto K (2002) Cell-to-cell communication in lactic acid bacteria. J Japan Soc Biosci Biotechnol Agrochem 76:837–839

    CAS  Google Scholar 

  • Napoli A, Aiello D, Aiello G, Cappello MS, Di Donna L, Mazzotti F, Materazzi S, Fiorillo M, Sindona G (2014) Mass spectrometry-based proteomic approach in Oenococcus oeni enological starter. J Proteome Res 13:2856–2866

    Article  CAS  PubMed  Google Scholar 

  • Nisiotou A, Dourou D, Filippousi ME, Banilas G, Tassou C (2014) Weissella uvarum sp. nov., isolated from wine grapes. Int J Syst Evol Microbiol 64:3885–3890

    Article  PubMed  CAS  Google Scholar 

  • Nisiotou AA, Dourou D, Filippousi ME, Diamantea E, Fragkoulis P, Tassou C, Banilas G (2015) Genetic and technological characterisation of vineyard- and winery-associated lactic acid bacteria. Biomed Res Int 2015:508254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olguín N, Champomier-Vergès M, Anglade P, Baraige F, Cordero-Otero R, Bordons A, Zagorec M, Reguant C (2015) Transcriptomic and proteomic analysis of Oenococcus oeni PSU-1 response to ethanol shock. Food Microbiol 51:87–95

    Article  PubMed  CAS  Google Scholar 

  • Orla-Jensen S (1919) The lactic acid bacteria. Fred Host and Son, Copenhagen

    Google Scholar 

  • Palacios A, Suárez C, Krieger S, Didier T, Otaño L, Peña F (2004) Perception by wine drinkers of sensory defects caused by uncontrolled malolactic fermentation. In: Proceedings of XVI es Entretiens Scientifiques Lallemand, Porto, pp 45–52

    Google Scholar 

  • Pérez-Martín F, Seseña S, Izquierdo PM, Martín R, Palop ML (2012) Screening for glycosidase activities of lactic acid bacteria as a biotechnological tool in oenology. World J Microbiol Biotechnol 28:1423–1432

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Martín F, Seseña S, Izquierdo PM, Palop ML (2013) Esterase activity of lactic acid bacteria isolated from malolactic fermentation of red wines. Int J Food Microbiol 163:153–158

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Martín F, Seseña S, Izquierdo PM, Palop ML (2014) Are Enterococcus populations present during malolactic fermentation of red wine safe? Food Microbiol 42:95–101

    Article  PubMed  CAS  Google Scholar 

  • Petri A, Pfannebecker J, Fröhlich J, König H (2013) Fast identification of wine related lactic acid bacteria by multiplex PCR. Food Microbiol 33:48–54

    Article  CAS  PubMed  Google Scholar 

  • Petri A, Rabenstein A, Kuever KH (2015) Application of MALDI-TOF-MS and nested SAPD-PCR for discrimination of Oenococcus oeni isolates at the strain-level. J Wine Res 26:69–80

    Article  Google Scholar 

  • Pfannebecker J, Fröhlich J (2008) Use of a species-specific multiplex PCR for the identification of pediococci. Int J Food Microbiol 128:288–296

    Article  CAS  PubMed  Google Scholar 

  • Poblet-Icart M, Bordons A, Lonvaud-Funel A (1998) Lysogeny of Oenococcus oeni (syn. Leuconostoc oenos) and study of their induced bacteriophages. Curr Microbiol 36:365–369

    Article  CAS  PubMed  Google Scholar 

  • Poolman B, Molenaar D, Smid EJ, Ubbink T, Abee T, Renault PP, Konings WN (1991) Malolactic fermentation – electrogenic malate uptake and malate lactate antiport generate metabolic energy. J Bacteriol 173:6030–6037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pot B, Ludwig W, Kersters K, Schleifer KH (1994) Taxonomy of lactic acid bacteria. In: De Vuyst L, Vandamme EJ (eds) Bacteriocins of lactic acid bacteria: genetic and applications. Chapman and Hall, Glasgow

    Google Scholar 

  • Radler F (1975) The metabolism of organic acids by lactic acid bacteria. In: Carr JG, Cutting CV, Whiting GC (eds) Lactic acid bacteria in beverages and food. Academic, London, pp 17–27

    Google Scholar 

  • Radler F, Yannissis C (1972) Decomposition of tartrate by lactobacilli. Arch Microbiol 82:219–239

    CAS  Google Scholar 

  • Raibaud P, Galpin HV, Ducluzeau R, Mocquot G, Oliver G (1973) La genre Lactobacillus dans le tube digestif du rat. I Charactère des souches homofermentaires isolèes de rats holo- et gnotoxeniques. Ann Inst Pasteur 124A:83–109

    Google Scholar 

  • Rammelberg M, Radler F (1990) Antibacterial polypeptides of Lactobacillus species. J Appl Bacteriol 69:177–184

    Article  Google Scholar 

  • Ribéreau-Gayon P, Dubourdieu D, Donèche B, Lonvaud A (2006a) Handbook of enology, 2nd edn. The microbiology of wine and vinifications. Wiley, Chichester, vol 1

    Google Scholar 

  • Ribéreau-Gayon P, Glories Y, Maujean A, Dubourdieu D (2006b) Handbook of enology, 2nd edn. The chemistry of wine stabilization and treatment. Wiley, Chichester, vol 2

    Google Scholar 

  • Richter H, Vlad D, Unden G (2001) Significance of pantothenate for glucose fermentation by Oenococcus oeni and for suppression of the erythritol and acetate production. Arch Microbiol 175:26–31

    Article  CAS  PubMed  Google Scholar 

  • Rodas AM, Ferrer S, Pardo I (2003) 16S-ARDRA, a tool for identification of lactic acid bacteria isolated from grape must and wine. Syst Appl Microbiol 26:412–422

    Article  CAS  PubMed  Google Scholar 

  • Rodas AM, Chenoll E, Macián MC, Ferrer S, Pardo I, Aznar R (2006) Lactobacillus vini sp. nov., a wine lactic acid bacterium homofermentative for pentoses. I. J System Evol Microbiol 56:513–517

    Article  CAS  Google Scholar 

  • Salminen S, von Wright A, Ouwehand AC (eds) (2004) Lactic acid bacteria: microbiological and functional aspects, 3rd edn. New York, Marcel Dekker

    Google Scholar 

  • Satokari R, Mattila-Sandholm T, Suihko ML (2000) Identification of pediococci by ribotyping. J Appl Microbiol 88:260–265

    Article  CAS  PubMed  Google Scholar 

  • Schlegel HG (1999) Geschichte der Mikrobiologie. Acta Historica Leopoldina, Halle

    Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schleifer KH, Ludwig W (1995a) Phylogenetic relationship of lactic acid bacteria. In: Wood BJB, Holzapfel WH (eds) The genera of lactic acid bacteria. Blackie Academic and Professional, London, pp 7–18

    Chapter  Google Scholar 

  • Schleifer KH, Ludwig W (1995b) Phylogeny of the genus Lactobacillus and related genera. Syst Appl Microbiol 18:461–467

    Article  Google Scholar 

  • Schut S, Zauner S, Hampel G, König H, Claus H (2011) Biosorption of copper by wine-relevant lactobacilli. Int J Food Microbiol 145:126–131

    Article  CAS  PubMed  Google Scholar 

  • Schütz H, Radler F (1984a) Propanediol-1,2-dehydratase and metabolism of glycerol of Lactobacillus brevis. Arch Microbiol 139:366–370

    Article  Google Scholar 

  • Schütz H, Radler F (1984b) Anaerobic reduction of glycerol to propanediol-1.3 by L. brevis and L. buchneri. Syst Appl Microbiol 5:169–178

    Article  Google Scholar 

  • Sebastian P, Herr P, Fischer U, König H (2011) Molecular identification of lactic acid bacteria occuring in must and wine. S Afr J Enol Vitic 32:300–309

    CAS  Google Scholar 

  • Sedewitz B, Schleifer KH, Götz F (1984) Physiological role of pyruvate oxidase in the aerobic metabolism of Lactobacillus plantarum. J Bacteriol 160:462–465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva I, Campos FM, Hogg T, Couto JA (2011) Wine phenolic compounds influence the production of volatile phenols by wine-related lactic acid bacteria. J Appl Microbiol 111:360–370

    Article  CAS  PubMed  Google Scholar 

  • Simpson WJ, Tachuchi H (1995) The genus Pediococcus, with notes on the genera Tetratogenococcus and Aerococcus. In: Wood BJB, Holzapfel WH (eds) The genera of lactic acid bacteria. Blackie Academic and Professional, London, pp 125–172

    Chapter  Google Scholar 

  • Smiley MB, Fryder V (1978) Plasmids, lactic acid production, and N-acetyl-D-glucosamine fermentation in Lactobacillus helveticus subsp. jugurti. Appl Environ Microbiol 35:777–781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solieri L, Giudici P (2010) Development of a sequence-characterized amplified region marker-targeted quantitative PCR assay for strain-specific detection of Oenococcus oeni during wine malolactic fermentation. Appl Environ Microbiol 76:7765–7774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sozzi T, Poulain JM, Maret R (1978) Etude d’un bactériophage de Leuconostoc mesenteroides isolé de protuits laitiers, Schweiz. Milchwirtsch Forsch 7:33–40

    Google Scholar 

  • Sozzi T, Watanabe K, Stetter K, Smiley M (1981) Bacteriophages of the genus Lactobacillus. Intervirology 16:129–135

    Article  CAS  PubMed  Google Scholar 

  • Sternes PR, Borneman AR (2016) Consensus pan-genome assembly of the specialised wine bacterium Oenococcus oeni. BMC Genomics 17:308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stiles ME, Holzapfel WH (1997) Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36:1–29

    Article  CAS  PubMed  Google Scholar 

  • Su J, Wang T, Li YY, Li J, Zhang Y, Wang Y, Wang H, Li H (2015) Antioxidant properties of wine lactic acid bacteria: Oenococcus oeni. Appl Microbiol Biotechnol 99:5189–5202

    Article  CAS  PubMed  Google Scholar 

  • Sumby KM, Grbin PR, Jiranek V (2013) Characterization of EstCOo8 and EstC34, intracellular esterases, from the wine-associated lactic acid bacteria Oenococcus oeni and Lactobacillus hilgardii. J Appl Microbiol 114:413–422

    Article  CAS  PubMed  Google Scholar 

  • Sumby KM, Grbin PR, Jiranek V (2014) Implications of new research and technologies for malolactic fermentation in wine. Appl Microbiol Biotechnol 98:8111–8132

    Article  CAS  PubMed  Google Scholar 

  • Tagg JR, Dajana AS, Wannamaker LW (1976) Bacteriocins of Gram-positive bacteria. Bacteriol Rev 40:722–756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tannock G (ed) (2005) Probiotics and prebiotics: scientific aspects, 1st edn. Wymondham, Caister Academic

    Google Scholar 

  • Testa B, Lombardi SJ, Tremonte P, Succi M, Tipaldi L, Pannella G, Sorrentino E, Iorizzo M, Coppola R (2014) Biodiversity of Lactobacillus plantarum from traditional Italian wines. World J Microbiol Biotechnol 30:2299–2305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theobald S, Pfeiffer P, König H (2005) Manganese-dependent growth of oenococci. J Wine Res 16:171–178

    Article  Google Scholar 

  • Theobald S, Pfeiffer P, Zuber U, König H (2007a) Influence of epigallocatechin gallate and phenolic compounds from green tea on the growth of Oenococcus oeni. J Appl Microbiol 104:566–572

    Article  PubMed  CAS  Google Scholar 

  • Theobald S, Pfeiffer P, Paululat T, Gerlitz M, König H (2007b) Neue Hinweise für synergistische Wachstumsfaktoren zur erfolgreichen Kultivierung des weinrelevanten Bakterium Oenococcus oeni. Lebensmittel-Rundschau 103:411–416

    CAS  Google Scholar 

  • Uthurry CA, Suárez Lepe JA, Lombardero J, Garcia del Hierro JRJ (2006) Ethyl carbamate production by selected yeasts and lactic acid bacteria in red wine. Food Chem 94:262–270

    Article  CAS  Google Scholar 

  • Vendrame M, Iacumin L, Manzano M, Comi G (2013) Use of propidium monoazide for the enumeration of viable Oenococcus oeni in must and wine by quantitative PCR. Food Microbiol 35:49–57

    Article  CAS  PubMed  Google Scholar 

  • Vigentini I, Praz A, Domeneghetti D, Zenato S, Picozzi C, Barmaz A, Foschino R (2016) Characterization of malolactic bacteria isolated from Aosta Valley wines and evidence of psychrotrophy in some strains. J Appl Microbiol 120:934–945

    Article  CAS  PubMed  Google Scholar 

  • Viti C, Giovannetti L, Granchi L, Ventura S (1996) Species attribution and strain typing of Oenococcus oeni (formerly Leuconostoc oenos) with restriction endonuclease fingerprints. Res Microbiol 147:651–660

    Article  CAS  PubMed  Google Scholar 

  • Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman W (eds) (2009) Bergey’s manual of systematic bacteriology. The firmicutes, vol 3. Springer, Heidelberg

    Google Scholar 

  • Whitman WB (ed) (2016) Bergey’s manual of systematics of archaea and bacteria. Wiley Online Library. http://onlinelibrary.wiley.com/book/10.1002/9781118960608/toc

  • Wibowo D, Eschenbruch R, Davis CR, Fleet GH, Lee TH (1985) Occurence and growth of lactic acid bacteria in wine. A review. Am J Enol Vitic 36:302–313

    CAS  Google Scholar 

  • Wood BJB (ed) (1999) Lactic acid bacteria in health and disease. Kluwer Academic, New York

    Google Scholar 

  • Wood BJB, Holzapfel WH (eds) (1995) The genera of lactic acid bacteria. Blackie Academic and Professional, London

    Google Scholar 

  • Wood BJB, Warner PJ (2003) Genetics of lactic acid bacteria. Kluwer Academic, New York

    Book  Google Scholar 

  • Yang D, Woese CR (1989) Phylogenetic structure of the “Leuconostocs”: an interesting case of rapidly evolving organisms. Syst Appl Microbiol 12:145–149

    Article  CAS  Google Scholar 

  • Yokokura T, Kodaira S, Ishiwa H, Sakurai T (1974) Lysogeny in lactobacilli. J Gen Microbiol 84:277–284

    Article  CAS  PubMed  Google Scholar 

  • Yurdugul S, Bozoglu F (2002) Studies on an inhibitor produced by lactic acid bacteria of wines on the control of malolactic fermentation. Eur Food Res Technol 215:38–41

    Article  CAS  Google Scholar 

  • Zavaleta AI, Martínez-Murcia AJ, Rodríguez-Valera F (1997) Intraspecific genetic diversity of Oenococcus oeni as derived from DNA fingerprinting and sequence analyses. Appl Environ Microbiol 63:1261–1267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ze-Ze L, Tenreiro O, Paveia H (2000) The Oenococcus oeni genome: physical and genetic mapping of strain GM and comparison with the genome of a ‘divergent’ strain, PSU-1. Microbiology 146:3195–3204

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Stiftung Rheinland-Pfalz für Innovation, the Forschungsring des Deutschen Weinbaus (FDW, Germany) of the Deutschen Landwirtschafts-Gesellschaft (DLG, Germany), the German Science Foundation (DFG) and the Fonds der Johannes Gutenberg-University in Mainz for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut König .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

König, H., Fröhlich, J. (2017). Lactic Acid Bacteria. In: König, H., Unden, G., Fröhlich, J. (eds) Biology of Microorganisms on Grapes, in Must and in Wine. Springer, Cham. https://doi.org/10.1007/978-3-319-60021-5_1

Download citation

Publish with us

Policies and ethics