Skip to main content
Log in

Oenococcus alcoholitolerans sp. nov., a lactic acid bacteria isolated from cachaça and ethanol fermentation processes

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Four strains of lactic acid bacteria isolated from cachaça and alcohol fermentation vats in Brazil were characterised in order to determine their taxonomic position. Phylogenetic analysis revealed that they belong to the genus Oenococcus and should be distinguished from their closest neighbours. The 16S rRNA gene sequence similarity against the type strains of the other two species of the genus was below 94.76 % (Oenococcus kitaharae) and 94.62 % (Oenococcus oeni). The phylogeny based on pheS gene sequences also confirmed the position of the new taxon. DNA–DNA hybridizations based on in silico genome-to-genome comparison, Average Amino Acid Identity, Average Nucleotide Identity and Karlin genomic signature confirmed the novelty of the taxon. Distinctive phenotypic characteristics are the ability to metabolise sucrose but not trehalose. The name Oenococcus alcoholitolerans sp. nov. is proposed for this taxon, with the type strain UFRJ-M7.2.18T ( = CBAS474T = LMG27599T). In addition, we have determined a draft genome sequence of the type strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Auch AF, Klenk H-P, Göker M (2010a) Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2(1):142–148. doi:10.4056/sigs.541628

    Article  PubMed  PubMed Central  Google Scholar 

  • Auch AF, Klenk H-P, Göker M (2010b) Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2(1):117–134. doi:10.4056/sigs.531120

    Article  PubMed  PubMed Central  Google Scholar 

  • Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9(1):75. doi:10.1186/1471-2164-9-75

    Article  PubMed  PubMed Central  Google Scholar 

  • Badotti F, Gomes F, Rosa C (2012) Brazilian cachaça: fermentation and production. In: Hui YH, Evranuz EÖ, Hansen AS (eds) Handbook of plant-based fermented food and beverage technology, 2nd edn. CRC Press, Boca Raton, pp 639–648

    Chapter  Google Scholar 

  • Beckner M, Ivey ML, Phister TG (2011) Microbial contamination of fuel ethanol fermentations. Lett Appl Microbiol 53(4):387–394

    Article  PubMed  CAS  Google Scholar 

  • Borneman AR, McCarthy JM, Chambers PJ, Bartowsky EJ (2012) Functional divergence in the genus Oenococcus as predicted by genome sequencing of the newly-described species, Oenococcus kitaharae. PLoS ONE 7(1):e29626

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Carvalho-Neto O, Rosa DD, Camargo LEA (2008) Identification of contaminant bacteria in cachaça yeast by 16S rDNA gene sequencing. Sci Agric 65:508–515

    Article  Google Scholar 

  • Chang IS, Kim BH, Shin PK, Lee WK (1995) Bacterial contamination and its effects on ethanol fermentation. J Microbiol Biotechnol 5(6):309–314

    CAS  Google Scholar 

  • Dicks LMT, Dellaglio F, Collins MD (1995) Proposal to reclassify Leuconostoc Oenos as Oenococcus Oeni [corrig] gen-nov, comb-nov. Int J Syst Evol Microbiol 45(2):395–397

    CAS  Google Scholar 

  • Endo A, Okada S (2006) Oenococcus kitaharae sp nov., a non-acidophilic and non-malolactic-fermenting oenococcus isolated from a composting distilled shochu residue. Int J Syst Evol Microbiol 56:2345–2348

    Article  PubMed  CAS  Google Scholar 

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane-filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39(3):224–229

    Article  Google Scholar 

  • FAOSTAT (2013) http://www.faostat.fao.org/site/339/default.aspx. Accessed 15/Jul/2014

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791

    Article  Google Scholar 

  • Garvie EI (1967) Leuconostoc oenos sp. nov. J Gen Microbiol 48(3):431–438

    Article  PubMed  CAS  Google Scholar 

  • Gomes FCO, Silva CLC, Vianna CR, Lacerda ICA, Borelli BM, Nunes AC, Franco GR, Mourao MM, Rosa CA (2010) Identification of lactic acid bacteria associated with traditional cachaca fermentations. Braz J Microbiol 41(2):486–492

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57(Pt 1):81–91

    Article  PubMed  CAS  Google Scholar 

  • Hallin PF, Binnewies TT, Ussery DW (2008) The genome BLASTatlas, Äîa GeneWiz extension for visualization of whole-genome homology. Mol BioSyst 4(5):363–371

    Article  PubMed  CAS  Google Scholar 

  • Heist P (2009) Identifying, controlling the most common microbial contaminants. Ethanol Producer Magazine. http://www.ethanolproducer.com/articles/5464/ identifying-the-most-common-microbial-contaminants Accessed 15/Jul/2013

  • Jukes T, Cantor C (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132

    Chapter  Google Scholar 

  • Karlin S, Mrázek J, Campbell AM. (1997) Compositional biases of bacterial genomes and evolutionary implications. J Bacteriol 179(12):3899–913

  • Karlin S. (1998) Global dinucleotide signatures and analysis of genomic heterogeneity. Curr Opin Microbiol 1(5):598–610

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120

    Article  PubMed  CAS  Google Scholar 

  • Konstantinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kunkee RE (1991) Some roles of malic-acid in the malolactic fermentation in wine-making. FEMS Microbiol Rev 88(1):55–72

    CAS  Google Scholar 

  • Labarre C, Guzzo J, Cavin J-F, Divies C (1996) Cloning and characterization of the genes encoding the malolactic enzyme and the malate permease of Leuconostoc oenos. Appl Environ Microbiol 62(4):1274–1282

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lane D (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Lucena BTL, dos Santos BM, Moreira JLS, Moreira APB, Nunes AC, Azevedo V, Miyoshi A, Thompson FL, de Morais Junior MA (2010) Diversity of lactic acid bacteria of the bioethanol process. BMC Microbiol 10:298

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen ZT, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu PG, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380

    PubMed  CAS  PubMed Central  Google Scholar 

  • Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP (2013) When should a DDH experiment be mandatory in microbial taxonomy? Arch Microbiol 195(6):413–418. doi:10.1007/s00203-013-0888-4

    Article  PubMed  CAS  Google Scholar 

  • Moreira JO, Mota R, Horta M, Teixeira S, Neumann E, Nicoli J, Nunes Å (2005) Identification to the species level of Lactobacillus isolated in probiotic prospecting studies of human, animal or food origin by 16S-23S rRNA restriction profiling. BMC Microbiol 5(1):15

    Article  PubMed  PubMed Central  Google Scholar 

  • Narendranath NSB (2009) Bacterial contamination and control in ethanol production. In: WM I (ed) The alcohol textbook, vol 4. 5 edn. Nottingham University Press, Nottingham, pp 481–490

  • Naser SM, Dawyndt P, Hoste B, Gevers D, Vandemeulebroecke K, Cleenwerck I, Vancanneyt M, Swings J (2007) Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol 57(Pt 12):2777–2789

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Nielsen JC, Prahl C, LonvaudFunel A (1996) Malolactic fermentation in wine by direct inoculation with freeze-dried Leuconostoc oenos cultures. Am J Enol Vitic 47(1):42–48

    CAS  Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302(1):205–217

    Article  PubMed  CAS  Google Scholar 

  • Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC, Zhou J, Zhang YZ (2014) A proposed genus boundary for the prokaryotes based on genomic insights. J bacteriol 196(12):2210–2215

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    PubMed  CAS  Google Scholar 

  • Schwan RF, Mendonca AT, da Silva JJ, Rodrigues V, Wheals AE (2001) Microbiology and physiology of Cachaca (Aguardente) fermentations. Antonie Van Leeuwenhoek 79(1):89–96

    Article  PubMed  CAS  Google Scholar 

  • Skinner KA, Leathers TD (2004) Bacterial contaminants of fuel ethanol production. J Ind Microbiol Biotechnol 31(9):401–408. doi:10.1007/s10295-004-0159-0

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt E, Goebel B (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44:846–849

    CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E, Thompson FL (2013a) a Microbial genomic taxonomy. BMC Genom 14(1):913

    Article  Google Scholar 

  • Thompson CC, Silva GG, Vieira NM, Edwards R, Vicente ACP, Thompson FL (2013b) b Genomic Taxonomy of the Genus Prochlorococcus. Microb Ecol 66(4):752–762

    Article  PubMed  Google Scholar 

  • Vandamme P, Pot B, Gillis M, De Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438

    PubMed  CAS  PubMed Central  Google Scholar 

  • Versalovic J, Schneider M, de Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5:25–40

    CAS  Google Scholar 

  • Waterhouse AM, Procter JB, Martin DM, Clamp Ml, Barton GJ (2009) Jalview version 2, a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer KH, Rosselló-Móra R (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12(9):635–645

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support came from Fundação de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG), Fundação de Amparo a Pesquisa do Estado de Pernambuco (FACEPE), Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Badotti.

Additional information

Fernanda Badotti and Ana Paula B. Moreira have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badotti, F., Moreira, A.P.B., Tonon, L.A.C. et al. Oenococcus alcoholitolerans sp. nov., a lactic acid bacteria isolated from cachaça and ethanol fermentation processes. Antonie van Leeuwenhoek 106, 1259–1267 (2014). https://doi.org/10.1007/s10482-014-0296-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-014-0296-z

Keywords

Navigation