Skip to main content
Log in

Identification of a novel enzymatic activity from lactic acid bacteria able to degrade biogenic amines in wine

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The main objectives of this study were the search for enzymatic activities responsible for biogenic amine (BA) degradation in lactic acid bacteria (LAB) strains isolated from wine, their identification, and the evaluation of their applicability for reducing BAs in wine. Fifty-three percent of the 76 LAB cell extracts showed activity against a mixture of histamine, tyramine, and putrescine when analyzed in-gel. The quantification of the degrading ability for each individual amine was tested in a synthetic medium and wine. Most of the bacteria analyzed were able to degrade the three amines in both conditions. The highest percentages of degradation in wine were those of putrescine: up to 41 % diminution in 1 week. Enzymes responsible for amine degradation were isolated and purified from Lactobacillus plantarum J16 and Pediococcus acidilactici CECT 5930 strains and were identified as multicopper oxidases. This is the first report of an efficient BA reduction in wine by LAB. Furthermore, the identity of the enzymes involved has been revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Capozzi V, Russo P, Ladero V, Fernandez M, Fiocco D, Alvarez MA, Grieco F, Spano G (2012) Biogenic amines degradation by malolactic bacteria: towards a potential application in wine. Front Microbiol 3:122. doi:10.3389/fmicb.2012.00122

    PubMed Central  PubMed  Google Scholar 

  • Cohen SA, De Antonis KM (1994) Applications of amino acid derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate: analysis of feed grains, intravenous solutions and glycoproteins. J Chromatogr A 661(1–2):25–34. doi:10.1016/0021-9673(93)E0821-B

  • Cooper RA (1997) On the amine oxidases of Klebsiella aerogenes strain W70. FEMS Microbiol Lett 146(1):85–89. doi:10.1111/j.1574-6968.1997.tb10175.x

    Article  CAS  PubMed  Google Scholar 

  • Cueva C, García-Ruiz A, González-Rompinelli E, Bartolome B, Martín-Álvarez PJ, Salazar O, Vicente MF, Bills GF, Moreno-Arribas MV (2012) Degradation of biogenic amines by vineyard ecosystem fungi. Potential use in winemaking. J Appl Microbiol 112:672–682. doi:10.1111/j.1365-2672.2012.05243.x

    Article  CAS  PubMed  Google Scholar 

  • Charles HJ, Georgina ADA (1985) Amine removal. European Patent EP0132674

  • Dapkevicius MLNE, Nout MJR, Rombouts FM, Houben JH, Wymenga W (2000) Biogenic amine formation and degradation by potential fish silage starter microorganisms. Int J Food Microbiol 57(1–2):107–114. doi:10.1016/S0168-1605(00)00238-5

    Google Scholar 

  • DeSa RJ (1972) Putrescine oxidase from Micrococcus rubens. J Biol Chem 247(17):5527–5534

    CAS  PubMed  Google Scholar 

  • Desjardins P, Hansen JB, Allen M (2001) Microvolume spectrophotometric and fluorometric determination of protein concentration. Curr Protoc Protein Sci, John Wiley & Sons, Inc

    Google Scholar 

  • Fadda S, Vignolo G, Oliver G (2001) Tyramine degradation and tyramine/histamine production by lactic acid bacteria and Kocuria strains. Biotechnol Lett 23(24):2015–2019. doi:10.1023/A:1013783030276

    Article  CAS  Google Scholar 

  • García-Ruiz A, González-Rompinelli EM, Bartolomé B, Moreno-Arribas MV (2011) Potential of wine-associated lactic acid bacteria to degrade biogenic amines. Int J Food Microbiol 148(2):115–120. doi:10.1016/j.ijfoodmicro.2011.05.009

    Google Scholar 

  • Gardini F, Martuscelli M, Crudele MA, Paparella A, Suzzi G (2002) Use of Staphylococcus xylosus as a starter culture in dried sausages: effect on the biogenic amine content. Meat Sci 61(3):275–283. doi:10.1016/S0309-1740(01)00193-0

    Google Scholar 

  • Haywood GW, Large PJ (1981) Microbial oxidation of amines. Distribution, purification and properties of two primary-amine oxidases from the yeast Candida boidinii grown on amines as sole nitrogen source. Biochem J 199(1):187–201

    CAS  PubMed  Google Scholar 

  • Hernández-Orte P, Peña-Gallego A, Ibarz MJ, Cacho J, Ferreira V (2006) Determination of the biogenic amines in musts and wines before and after malolactic fermentation using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate as the derivatizing agent. J Chromatogr A 1129(2):160–164. doi:10.1016/j.chroma.2006.06.111

    Google Scholar 

  • Hiemenz W, Setz P (1942) Process of making histaminase preparations. US Patent 2289194

  • Ishizuka H, Horinouchi S, Beppu T (1993) Putrescine oxidase of Micrococcus rubens: primary structure and Escherichia coli. J Gen Microbiol 139(3):425–432. doi:10.1099/00221287-139-3-425

    Article  CAS  PubMed  Google Scholar 

  • Kassemeyer H-H, Berkelmann-Löhnertz B (2009) Fungi of Grapes. In: König H, Unden G, Fröhlich J (eds) Biology of microorganisms on grapes, in must and in wine. Springer, Berlin, pp 61–87

  • Kudanga T, Nugroho Prasetyo E, Sipilä J, Eberl A, Nyanhongo GS, Guebitz GM (2009) Coupling of aromatic amines onto syringylglycerol β-guaiacylether using Bacillus SF spore laccase: a model for functionalization of lignin-based materials. J Molec Catal B: Enzymatic 61(3–4):143–149. doi:10.1016/j.molcatb.2009.06.003

    Google Scholar 

  • Kudanga T, Prasetyo EN, Sipilä J, Nousiainen P, Widsten P, Kandelbauer A, Nyanhongo GS, Guebitz G (2008) Laccase-mediated wood surface functionalization. Eng Life Sci 8(3):297–302. doi:10.1002/elsc.200800011

    Article  CAS  Google Scholar 

  • Lehtonen P (1996) Determination of amines and amino acids in wine: a review. Am J Enol Viticult 47(2):127–133

    CAS  Google Scholar 

  • Leuschner RG, Hammes WP (1998a) Degradation of histamine and tyramine by Brevibacterium linens during surface ripening of Munster cheese. J Food Protect 61(7):874–878

    CAS  Google Scholar 

  • Leuschner RG, Heidel M, Hammes WP (1998) Histamine and tyramine degradation by food fermenting microorganisms. Int J Food Microbiol 39(1–2):1–10. doi:10.1016/S0168-1605(97)00109-8

    Google Scholar 

  • Leuschner RGK, Hammes WP (1998b) Tyramine degradation by micrococci during ripening of fermented sausage. Meat Sci 49(3):289–296. doi:10.1016/S0309-1740(97)00124-1

    Google Scholar 

  • Mah J-H, Hwang H-J (2009) Inhibition of biogenic amine formation in a salted and fermented anchovy by Staphylococcus xylosus as a protective culture. Food Control 20(9):796–801. doi:10.1016/j.foodcont.2008.10.005

    Article  CAS  Google Scholar 

  • Martuscelli M, Crudele MA, Gardini F, Suzzi G (2000) Biogenic amine formation and oxidation by Staphylococcus xylosus strains from artisanal fermented sausages. Lett Appl Microbiol 31(3):228–232. doi:10.1046/j.1365-2672.2000.00796.x

    Article  CAS  PubMed  Google Scholar 

  • Messerschmidt A, Huber R (1990) The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Modelling and structural relationships. Eur J Biochem 187(2):341–352. doi:10.1111/j.1432-1033.1990.tb15311.x

    Article  CAS  PubMed  Google Scholar 

  • Morozova O, Shumakovich G, Shleev S, Yaropolov Y (2007) Laccase-mediator systems and their applications: a review. Appl Biochem Micro+ 43(5):523–535. doi:10.1134/s0003683807050055

    Article  CAS  Google Scholar 

  • Murooka Y, Doi N, Harada T (1979) Distribution of membrane-bound monoamine oxidase in bacteria. Appl Environ Microb 38(4):565–569

    CAS  Google Scholar 

  • Okamura H, Murooka Y, Harada T (1976) Regulation of tyramine oxidase synthesis in Klebsiella aerogenes. J Bacteriol 127(1):24–31

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ota H, Tamezane H, Sasano Y, Hokazono E, Yasuda Y, S-i S, Imamura S, Tamura T, Osawa S (2008) Enzymatic characterization of an amine oxidase from Arthrobacter sp. used to measure phosphatidylethanolamine. Biosci Biotech Bioch 72(10):2732–2738. doi:10.1271/bbb.80365

    Article  CAS  Google Scholar 

  • Palacios A, Suárez C, Krieger S, Theodore D, Otaño L, Laucirica A, Peña F (2005) Influencia organoléptica de las aminas biógenas producidas durante la fermentación maloláctica del vino. ACE Rev Enologia 70:14–20

    Google Scholar 

  • Pardo I, Zúñiga M, Ferrer S, Uruburu F (1992) Malolactic fermentation: genetics and control. Profiles on Biotechnology 53:627–638

    Google Scholar 

  • Peña-Gallego A, Hernández-Orte P, Cacho J, Ferreira V (2009) Biogenic amine determination in wines using solid-phase extraction: A comparative study. J Chromatogr A 1216(15):3398–3401 doi:10.1016/j.chroma.2009.01.106

    Google Scholar 

  • Quintanar L, Stoj C, Taylor AB, Hart PJ, Kosman DJ, Solomon EI (2007) Shall we dance? How a multicopper oxidase chooses its electron transfer partner. Accounts Chem Res 40(6):445–452. doi:10.1021/ar600051a

    Article  CAS  Google Scholar 

  • Reiss R, Ihssen J, Thony-Meyer L (2011) Bacillus pumilus laccase: a heat stable enzyme with a wide substrate spectrum. BMC Biotechnol 11(1):9. doi:10.1186/1472-6750-11-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rundberget T, Skaar I, Flåøyen A (2004) The presence of Penicillium and Penicillium mycotoxins in food wastes. Int J Food Microbiol 90(2):181–188. doi:10.1016/S0168-1605(03)00291-5

  • Sekiguchi Y, Makita H, Yamamura A, Matsumoto K (2004) A thermostable histamine oxidase from Arthrobacter crystallopoietes KAIT-B-007. J Biosci Bioeng 97(2):104–110. doi:10.1016/S1389-1723(04)70176-0

    CAS  PubMed  Google Scholar 

  • Sharma P, Goel R, Capalash N (2007) Bacterial laccases. World J Microbiol Biotechnol 23(6):823–832. doi:10.1007/s11274-006-9305-3

    Article  CAS  Google Scholar 

  • Silla Santos MH (1996) Biogenic amines: their importance in foods. Int J Food Microbiol 29(2–3):213–231. doi:10.1016/0168-1605(95)00032-1

  • Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96(7):2563–2606. doi:10.1021/cr950046o

    Article  CAS  PubMed  Google Scholar 

  • Tapingkae W, Tanasupawat S, Parkin KL, Benjakul S, Visessanguan W (2010) Degradation of histamine by extremely halophilic archaea isolated from high salt-fermented fishery products. Enzym Microb Technol 46(2):92–99. doi:10.1016/j.enzmictec.2009.10.011

    Article  CAS  Google Scholar 

  • Ten Brink B, Damink C, Joosten HM, Huis in't Veld JH (1990) Occurrence and formation of biologically active amines in foods. Int J Food Microbiol 11(1):73–84. doi:10.1016/0168-1605(90)90040-C

  • Underberg E, Lembke A (1988) Process for the preparation of amine-oxidase containing material, so produced amine-oxidase containing material. US Patent 4725540

  • Van Hellemond E, van Dijk M, Heuts D, Janssen D, Fraaije M (2008) Discovery and characterization of a putrescine oxidase from Rhodococcus erythropolis NCIMB 11540. Appl Microbiol Biotechnol 78(3):455–463. doi:10.1007/s00253-007-1310-4

    Article  PubMed Central  PubMed  Google Scholar 

  • Vázquez-Lasa MB, Íñiguez-Crespo M, González-Larraina M, González-Guerrero A (1998) Biogenic amines in Rioja wines. Am J Enol Viticult 49(3):229–230

    Google Scholar 

  • Voigt MN, Eitenmiller RR (1978) Role of histidine and tyrosine decarboxylases and mono-diamine oxidases in amine build-up in cheese. J Food Protect 41(3):182–186

    CAS  Google Scholar 

  • Williams WP (1943) Improvements in or relating to the production of stable histaminase preparation and process of making it. GB Patent 551154

  • Yagodina OV, Nikol'skaya EB, Khovanskikh AE, Kormilitsyn BN (2002) Amine oxidases of microorganisms. J Evol Biochem Phys 38(3):251–258. doi:10.1023/A:1020714607203

    Article  CAS  Google Scholar 

  • Yamada H, Adachi O, Ogata K (1965a) Putrescine oxidase, a diamine oxidase requiring flavin adenine dinucleotide. Agr Biol Chem Tokyo 29:1148–1149

    Article  CAS  Google Scholar 

  • Yamada H, Adachi O, Ogata K (1965b) Amine oxidases of microorganisms. II. Purification and crystallization of amine oxidase of Aspergillus niger. Agr Biol Chem Tokyo 29(7):649–654

    Google Scholar 

  • Yamada H, Tanaka A, Ogata K (1965c) Putrescine oxidase of Micrococcus rubens. Agr Biol Chem Tokyo 29:260–261

    Article  CAS  Google Scholar 

  • Yamada H, Uwajima T, Kumagai H, Watanabe M, Ogata K (1967) Crystalline tyramine oxidase from Sarcina lutea. Biochem Biophys Res Commun 27(3):350–355. doi:10.1016/s0006-291x(67)80105-0

    Article  CAS  PubMed  Google Scholar 

  • Yongsawatdigul J, Rodtong S, Raksakulthai N (2007) Acceleration of Thai fish sauce fermentation using proteinases and bacterial starter cultures. J Food Sci 72(9):382–390. doi:10.1111/j.1750-3841.2007.00532.x

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from this work from the Ministerio de Educación y Ciencia, Spain (projects AGL2006-08495 and AGL2009-12167), ERDF funds, and the City Hall of Valencia. We also thank Dr. Graciela Vignolo for providing us with Lactobacillus farciminis CRL 678 (provided as L. casei), and Artur Roig-Sagués for providing us with Lactobacillus curvatus C9-19C and C13-48. This research has been performed within the Programme VLC/Campus, Microcluster IViSoCa (Innovation for a Sustainable and Quality Viticulture). ENOLAB participates in the ERI BioTechMed from the Universitat de València. English text was revised by Beverly Johnson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Pardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Callejón, S., Sendra, R., Ferrer, S. et al. Identification of a novel enzymatic activity from lactic acid bacteria able to degrade biogenic amines in wine. Appl Microbiol Biotechnol 98, 185–198 (2014). https://doi.org/10.1007/s00253-013-4829-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4829-6

Keywords

Navigation