Skip to main content

Deciphering the Enigmatic Praxis of Nano-fertilizers in Agro-food Industrial Landscape

  • Chapter
  • First Online:
The Role of Nanoparticles in Plant Nutrition under Soil Pollution

Part of the book series: Sustainable Plant Nutrition in a Changing World ((SPNCW))

  • 375 Accesses

Abstract

Nanotechnology has radically shepherded a magnanimous era in the global food and agricultural landscape by ushering novel agrochemical platforms and innovative delivery mechanisms in order to invigorate crop productivity and promoting reduced dependence to pesticides. With the advent of green nanotechnology, modern agriculture practices not only are confined to augment food productivity but also aim to elevate the nutritional content of the crops. Therefore, it has become ardently imperative to adopt tangible solutions such as precision farming with minimal resources and application of biodegradable smart nanomaterials for encapsulation of agrochemicals, thereby replacing the conventional way of farming that is primarily driven on the overdependence on harmful pesticides and fertilizers. Further, nanocarrier enabled nano- fertilizers render the risk of environmental contaminations to the human food chains and ecosystems by controlling their release at specific concentration at targeted sites. The present chapter comprehensively aims to construe with a viewpoint on the safety applications, ethical considerations and long-term implications of nano-enabled fertilizers or nano-delivery systems in agricultural sector with a final perspective on future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A. Abbasifar, F. Shahrabadi, B. ValizadehKaji, Effects of green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant. J. Plant Nutr. 43(8), 1104–1118 (2020)

    Article  CAS  Google Scholar 

  • M.M. Abd El-Azeim, M.A. Sherif, M.S. Hussien, I.A.A. Tantawy, S.O. Bashandy, Impacts of nano- and non-nanofertilizers on potato quality and productivity. Acta Ecol. Sin. 40, 388–397 (2020)

    Article  Google Scholar 

  • T. Adhikari, S. Kundu, A.K. Biswas, J.K. Tarafdar, A.S. Rao, Effect of copper oxide nano particle on seed germination of selected crops. J. Agric. Sci. Technol. 2, 815 (2012)

    CAS  Google Scholar 

  • T. Adhikari, D. Sarkar, H. Mashayekhi, B. Xing, Growth and enzymatic activity of maize Zea mays L. plan: solution culture test for copper dioxide nano particles. J. Plant Nutr 39, 99–115 (2016)

    Google Scholar 

  • R. Afify, S.S. El-Nwehy, A.B. Bakry, ME, A.E.A, Response of peanut (Arachis hypogaea L.) crop grown on newly reclaimed sandy soil to foliar application of potassium nano-fertilizer. Sciences 9, 78–85 (2019)

    Google Scholar 

  • S.M. Afrayeem, A.K. Chaurasia, Effect of zinc oxide nanoparticles on seed germination and seed vigour in chilli (Capsicum annuum L.). J. Pharmacogon. Phytochem. 6(5), 1564–1566 (2017)

    CAS  Google Scholar 

  • M. Ahamed, H.A. Alhadlaq, M.A. Khan, P. Karuppiah, N.A. Al-Dhabi, Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J. Nanomater. 2014, 17–21 (2014)

    Article  CAS  Google Scholar 

  • M. Ahemad, M. Kibret, Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud University- Sci 26, 1–20 (2014)

    Article  Google Scholar 

  • W. Ahmad, A. Niaz, S. Kanwal, M. Khalid, Role of boron in plant growth: A review. J. Agric. Res. 47, 329–338 (2009)

    Google Scholar 

  • D. Alidoust, A. Isoda, Phytotoxicity assessment of γ-Fe2O3 nanoparticles on root elongation and growth of rice plant. Environ. Earth Sci. 71, 5173–5182 (2014)

    Article  CAS  Google Scholar 

  • Z.T. Alipour, The effect of phosphorus and sulfur nanofertilizers on the growth and nutrition of Ocimum basilicum in response to salt stress. J. Chem. Health Risks 6, 125 (2016)

    CAS  Google Scholar 

  • F. Ameen, K. Alsamhary, J.A. Alabdullatif, S. Nadhari, A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicol. Environ. Saf. 213, 112027 (2021)

    Article  CAS  PubMed  Google Scholar 

  • M. Amiri, Z. Etemadifar, A. Daneshkazemi, M. Nateghi, Antimicrobial effect of copper oxide nanoparticles on some oral bacteria and Candida species. J. Dental Biomater 4(1), 347–352 (2017)

    CAS  Google Scholar 

  • R. Amirnia, M. Bayat, M. Tajbakhsh, Effects of nano fertilizer application and maternal corm weight on flowering of some saffron (Crocus sativus L.) ecotypes. Turkish J. Field Crop 19, 158–168 (2014)

    Article  Google Scholar 

  • S.B. Anjunatha, D.P. Biradar, Y.R. Aladakatti, Nanotechnology and its applications in agriculture: A review. J. Farm Sci 29, 1–13 (2016)

    Google Scholar 

  • M. Armin, S. Akbari, S. Mashhadi, Effect of time and concentration of nano-Fe foliar application on yield and yield components of wheat. Int. J. Biosci 4, 69–75 (2014)

    Google Scholar 

  • M. Askary, M.R. Amirjani, T. Saberi, Comparison of the effects of nano-iron fertilizer with iron-chelate on growth parameters and some biochemical properties of Catharanthus roseus. J. Plant Nutr. 40, 974–982 (2017)

    Article  CAS  Google Scholar 

  • A.N.E. Attia, M.H. El-Hendi, S.A.F. Hamoda, O.S. El-Sayed, Effect of nano-fertilizer (Lithovit) and potassium on leaves chemical composition of Egyptian cotton under different planting dates. J. Plant Prod 7, 935–942 (2016)

    Google Scholar 

  • M. Aufan, J. Rose, J.Y. Bottero, G.V. Lowry, J.-P. Jolivet, M.R. Wiesner, Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 4, 634–641 (2009)

    Article  CAS  Google Scholar 

  • H.M.A. Aziz, M.N. Hasaneen, A.M. Omer, Nano chitosan NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Span. J. Agric. Res. 14(1), e0902 (2016)

    Article  Google Scholar 

  • E.R. Bandala, M. Berli, Engineered nanomaterials (ENMs) and their role at the nexus of food, energy, and water. Mater. Sci. Technol 2, 29–40 (2019)

    Google Scholar 

  • O.G. Barbieru, L. Dimitriu, M.R. Calin, I. Răut, D. Constantinescu-Aruxandei, F. Oancea, Plant biostimulants based on selenium nanoparticles biosynthesized by Trichoderma strains. PRO 29(1), 95 (2019)

    Google Scholar 

  • N. Basavegowda, K.H. Baek, Current and future perspectives on the use of nanofertilizers for sustainable agriculture: The case of phosphorus nanofertilizer. 3. Biotechnology 11, 357 (2021)

    Google Scholar 

  • M.L. Battaglia, G. Groover, W.E. Thomason, Harvesting and Nutrient Replacement Costs Associated with Corn Stover Removal in Virginia (Virginia Cooperative Extension Publication, Ettrick, CSES-229NP, 2018)

    Google Scholar 

  • M. Bernela, P. Kaur, M. Ahuja, R. Thakur, Nano-based delivery system for nutraceuticals: The potential future, in Advances in Animal Biotechnology and its Applications, (Springer, Singapore, 2018), pp. 103–117

    Chapter  Google Scholar 

  • P.S. Bindraban, C.O. Dimkpa, R. Pandey, Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biol. Fertil. Soils 56, 1–19 (2020)

    Article  CAS  Google Scholar 

  • I.J. Biosci, S. Mir, A. Sirousmehr, E. Shirmohammadi, Effect of nano and biological fertilizers on carbohydrate and chlorophyll content of forage sorghum (Speedfeed hybrid). Int. J. Biosci 6(4), 57–164 (2015)

    CAS  Google Scholar 

  • A. Bratovcic, W.M. Hikal, H.M.H. Said-Al Ahl, K.G. Tkachenko, R.S. Baeshen, A.S. Sabra, H. Sany, Nanopesticides and nanofertilizers and agricultural development: Scopes, advances and applications. Open J. Ecol 2021(11), 301–316 (2021)

    Article  Google Scholar 

  • A. Bratovcic, S. Suljagic, Micro- and nano-encapsulation in food industry. Croatian J. Food Sci. Technol 11, 113–121 (2019)

    Article  Google Scholar 

  • M. Bundschuh, J. Filser, S. Lüderwald, M.S. McKee, G. Metreveli, G.E. Schaumann, R. Schulz, S. Wagner, Nanoparticles in the environment: Where do we come from, where do we go to? Environ. Sci. Eur 30(1), 1–17 (2018)

    Article  CAS  Google Scholar 

  • C. Cabot, S. Martos, M. Llugany, B. Gallego, R. Tolrà, C. Poschenrieder, A role for zinc in plant defense against pathogens and herbivores. Front. Plant Sci 10, 1171 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • L. Cai, J. Chen, Z. Liu, H. Wang, H. Yang, W. Ding, Magnesium oxide nanoparticles: Effective agricultural antibacterial agent against Ralstonia solanacearum. Front. Microbiol 9, 790 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • I. Cakmak, A.M. Yazici, Magnesium: A forgotten element in crop production. Better Crops 94, 23–25 (2010)

    Google Scholar 

  • K.M. Carvalho, M.T. Gallardo-Williams, R.F. Benson, D.F. Martin, Effects of selenium supplementation on four agricultural crops. J. Agric. Food Chem. 51, 704–709 (2003)

    Article  CAS  PubMed  Google Scholar 

  • L. Changmei, Z. Chaoying, W. Junqiang, W. Guorong, T. Mingxuan, Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21(3), 168–171 (2002)

    Google Scholar 

  • S.K. Chaudhuri, L. Malodia, Biosynthesis of zinc oxide nanoparticles using leaf extract of Calotropis gigantea: Characterization and its evaluation on tree seedling growth in nursery stage. Appl. Nanosci. 7, 501–512 (2017)

    Article  CAS  Google Scholar 

  • J. Chen, H. Meng, Y. Tian, R. Yang, D. Du, Z. Li, L. Qu, Y. Lin, Recent advances in functionalized MnO2 nanosheets for biosensing and biomedicine applications. Nanoscale Horizons 4, 321–338 (2019)

    Article  CAS  PubMed  Google Scholar 

  • J. Chen, X. Wei, Controlled-released fertilizers as a means to reduce nitrogen leaching and runoff in container-grown plant production, in Nitrogen in Agriculture: Updates, ed. by A. Khan, S. Fahad, (IntechOpen, 2018), pp. 33–52

    Google Scholar 

  • H. Chhipa, Nanofertilizers and nanopesticides for agriculture. Environ. Chem. Lett. 15, 15–22 (2017)

    Google Scholar 

  • M. Chopra, P. Kaur, M. Bernela, R. Thakur, Surfactant assisted nisin loaded chitosan-carrageenan nanocapsule synthesis for controlling food pathogens. Food Control 37, 158–164 (2014)

    Article  CAS  Google Scholar 

  • S.I. Concha-Guerrero, E.M.S. Brito, H.A. Piñón-Castillo, S.H. Tarango-Rivero, C.A. Caretta, A. Luna-Velasco, R. Duran, E. Orrantia-Borunda, Effect of CuO nanoparticles over isolated bacterial strains from agricultural soil. J. Nanomater. 2014, ID-148743 (2014)

    Article  CAS  Google Scholar 

  • W.S. Conway, C.E. Sams, K.D. Hickey, Pre- and postharvest calcium treatment of apple fruit and its effect on quality. International Symposium on Foliar Nutrition of Perennial Fruit Plants. Acta Hotic 594, 413–419 (2001)

    Google Scholar 

  • C. Crawshaw, Intelligent nano-fertilizers herald the future,“ Alberta Barley, February 15, 2012. http://www.albertabarley.com/intelligent-nano-fertilizers-herald-the-future/ (2010)

  • K. Czymmek, Q. Ketterings, M. Ros, M. Battaglia, S. Cela, S. Crittenden, D. Gates, T. Walter, S. Latessa, L. Klaiber, G. Albrecht, The New York Phosphorus Index 2.0. Agronomy Fact Sheet Series. Fact Sheet #110 (Cornell University Cooperative Extension, New York, 2020)

    Google Scholar 

  • M.V.J. Da Costa, P.K. Sharma, Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54(1), 110–119 (2016)

    Article  CAS  Google Scholar 

  • M.A. Danner, S. Scariotto, I. Citadin, G.A. Penso, L.C. Cassol, Calcium sources applied to soil can replace leaf application in ‘Fuji’ apple tree. Pesquisa Agropecuária Tropical 45, 266–273 (2015)

    Article  Google Scholar 

  • S. Davarpanah, A. Tehranifar, J. Abadía, J. Val, G. Davarynejad, M. Aran, R. Khorassani, Foliar calcium fertilization reduces fruit cracking in pomegranate (Punica granatum cv. Ardestani). Sci. Hortic. 230, 86–91 (2018)

    Article  CAS  Google Scholar 

  • S. Davarpanah, A. Tehranifar, G. Davarynejad, J. Abadía, R. Khorasani, Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Sci. Hortic. 210, 57–64 (2016)

    Article  CAS  Google Scholar 

  • G.M. de França Bettencourt, J. Degenhardt, L.A.Z. Torres, de Andrade, V.O. Tanobe, C.R. Soccol, Green biosynthesis of single and bimetallic nanoparticles of iron and manganese using bacterial auxin complex to act as plant bio-fertilizer. Biocatal. Agric. Biotechnol 30, ID- 101822 (2020)

    Article  Google Scholar 

  • J.L. de Oliveira, E.V.R. Campos, C.M.G. da Silva, T. Pasquoto, R. Lima, L.F. Fraceto, Solid lipid nanoparticles co-loaded with simazine and atrazine: Preparation, characterization, and evaluation of herbicidal activity. J. Agric. Food Chem. 63, 422–432 (2015)

    Article  PubMed  CAS  Google Scholar 

  • M. Delfani, M.B. Firouzabadi, N. Farrokhi, H. Makarian, Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun. Soil Sci. Plant Anal. 45, 530–540 (2014)

    Article  CAS  Google Scholar 

  • B. Dhir, Biofertilizers and biopesticides: Ecofriendly biological agents, in Advances in Environmental Biotechnology, ed. by R. Kumar, A. Sharma, S. Ahluwalia, (Springer, Singapore, 2017), pp. 167–188

    Chapter  Google Scholar 

  • B. Dhlamini, H.K. Paumo, L. Katata-Seru, F.R. Kutu, Sulphate-supplemented NPK nanofertilizer and its effect on maize growth. Mater. Res. Exp 7(9), ID-095011 (2020)

    Google Scholar 

  • S.K. Dhoke, P. Mahajan, R. Kamble, R. Kamble, A. Khanna, Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol. Dev. 3(1), e1 (2013)

    Article  CAS  Google Scholar 

  • J. Diatta, K. Borowiak, W. Szczepaniak, Evaluation of fertilizers solubility and phosphate release in slightly acidic arable soil. Arch. Agron. Soil Sci. 64, 1131–1141 (2018)

    Article  CAS  Google Scholar 

  • C.O. Dimkpa, P.S. Bindraban, Fortification of micronutrients for efficient agronomic production: A review. Agron. Sustain. Dev. 36, 1–26 (2016)

    Article  CAS  Google Scholar 

  • C.O. Dimkpa, P.S. Bindraban, Nanofertilizers : New products for the industry? J. Agric. Food Chem. 66(26), 6462–6473 (2018)

    Article  CAS  PubMed  Google Scholar 

  • A.T. Dinkova-Kostova, Chemoprotection against cancer by isothio-cyanates: A focus on the animal models and the protective mechanisms. Top. Curr. Chem. 329, 179–201 (2013)

    Article  CAS  PubMed  Google Scholar 

  • A. Ditta, M. Arshad, Applications and perspectives of using nanomaterials for sustainable plant nutrition. Nanotechnol. Rev. 5(2), 209–229 (2016)

    Article  CAS  Google Scholar 

  • S.V. Dorozhkin, M. Epple, Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed. 4, 3130–3146 (2002)

    Article  Google Scholar 

  • W. Du, J. Yang, Q. Peng, Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification. Chemosphere 227, 109–116 (2019)

    Article  CAS  PubMed  Google Scholar 

  • J.S. Duhan, R. Kumar, N. Kumar, P. Kaur, K. Nehra, S. Duhan, Nanotechnology: The new perspective in precision agriculture. Biotechnol. Rep 15, 11–23 (2017)

    Article  Google Scholar 

  • S. Dwivedi, Q. Saquib, A.A. Al-Khedhairy, J. Musarrat, Understanding the role of nanomaterials in agriculture, in Microbial Inoculants in Sustainable Agricultural Productivity, (Springer, New Delhi, 2016), pp. 271–288

    Chapter  Google Scholar 

  • A. El-Ghamry, A.A. Mosa, T. Alshaal, H. El-Ramady, Nanofertilizers vs. biofertilizers: New insights. Environ. Biodivers. Soil Secur 2, 51–72 (2018)

    Google Scholar 

  • W. Elmer, J.C. White, The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ. Sci. Nano J 3, 1072–1079 (2016)

    Article  CAS  Google Scholar 

  • H. El-Ramady, N. Abdalla, T. Alshaal, A. El-Henawy, M. Elmahrouk, Y. Bayoumi, T. Shalaby, M. Amer, S. Shehata, M. Fári, E. DomokosSzabolcsy, Plant nano-nutrition: Perspectives and challenges, in Nanotechnology, Food Security and Water Treatment, (Springer, Cham, 2018), pp. 129–161

    Chapter  Google Scholar 

  • M. Epple, Review of potential health risks associated with nanoscopic calcium phosphate. Acta Biomater. 77, 1–14 (2018)

    Article  CAS  PubMed  Google Scholar 

  • V.D. Fageria, Nutrient interactions in crop plants. J. Plant Nutr. 24, 1269–1290 (2001)

    Article  CAS  Google Scholar 

  • M. Faizan, A. Faraz, M. Yusuf, Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica 56(2), 678–686 (2018)

    Article  CAS  Google Scholar 

  • Y. Fan, F. Lin, L. Yang, X. Zhong, M. Wang, J. Zhou, Y. Chen, Y. Yang, Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem. Biol. Fertil. Soils 54, 149–161 (2018)

    Article  CAS  Google Scholar 

  • A. Farnia, M.M. Omidi, Effect of nano-zinc chelate and nano-biofertilizer on yield and yield components of maize (zea mays L.), under water stress condition. Indian J. Nat. Sci 5(29), 976–997 (2015)

    Google Scholar 

  • J. Feng, Q. Zhang, Q. Liu, Z. Zhu, D.J. McClements, S.M. Jafari, Chapter 12: Application of Nanoemulsions in formulation of pesticides, in Nanoemulsions: Formulation, Applications, and Characterization, ed. by S. Mahdi Jafari, D. J. McClements, (Academic Press, Waltham, 2018), pp. 379–413

    Chapter  Google Scholar 

  • S. Fertahi, I. Bertrand, M. Ilsouk, A. Oukarroum, Y. Zeroual, A. Barakat, New generation of controlled release phosphorus fertilizers based on biological macromolecules: Effect of formulation properties on phosphorus release. Int. J. Biol. Macromol. 143, 153–162 (2020)

    Article  CAS  PubMed  Google Scholar 

  • V. Ganesan, Biogenic synthesis and characterization of selenium nanoparticles using the flower of Bougainvillea spectabilis wild. Int. J. Sci. Res 4, 690–695 (2015)

    Google Scholar 

  • C. García-Gómez, M. Babin, A. Obrador, J.M. Álvarez, M.D. Fernández, Integrating ecotoxicity and chemical approaches to compare the effects of ZnO nanoparticles, ZnO bulk, and ZnCl2 on plants and microorganisms in a natural soil. Environ. Sci. Pollut. Res. 22(21), 16803–16813 (2015)

    Article  CAS  Google Scholar 

  • E.A.E. Genaidy, N. Abd-Alhamid, H.S.A. Hassan, A.M. Hassan, L.F. Hagagg, Effect of foliar application of boron trioxide and zinc oxide nanoparticles on leaves chemical composition, yield and fruit quality of Olea europaea L Picual. Bullet. Natl. Res. Centre 44, 106 (2020)

    Article  Google Scholar 

  • F. Gerdini, Effect of nano potassium fertilizer on some parchment pumpkin (Cucurbita pepo) morphological and physiological characteristics under drought conditions. Int. J. Farm. Allied Sci 5, 367–371 (2016)

    Google Scholar 

  • J.J. Germida, H.H. Janzen, Factors affecting the oxidation of elemental sulfur in soils. Fertil. Res 35, 101–114 (1993)

    Article  CAS  Google Scholar 

  • A. Ghahremani, K. Akbari, M. Yousefpour, H. Ardalani, Effects of nano-potassium and nano calcium chelated fertilizers on qualitative and quantitative characteristics of Ocimum basilicum. Int. J. Pharm. Res. Sch. 3, 00167 (2014)

    Google Scholar 

  • F. Ghooshchi, Influence of titanium and bio-fertilizers on some agronomic and physiological attributes of triticale exposed to cadmium stress. Global NEST J. 19(3), 458–463 (2017)

    Article  CAS  Google Scholar 

  • A. Gogos, K. Knauer, T.D. Bucheli, Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. J. Agric. Food Chem. 60, 9781–9792 (2012)

    Article  CAS  PubMed  Google Scholar 

  • M. Golbashy, H. Sabahi, I. Allahdadi, H. Nazokdast, M. Hossein, Synthesis of highly intercalated urea-clay nanocomposite via domestic monmorillonite as eco-friendly slow-release fertilizer. Arch. Agron. Soil Sci 63, 1 (2017)

    Article  CAS  Google Scholar 

  • A. Gransee, H. Führs, Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil 368, 5–21 (2013)

    Article  CAS  Google Scholar 

  • R. Grillo, P.C. Abhilash, L.F. Fraceto, Nanotechnology applied to bio-encapsulation of pesticides. J. Nanosci. Nanotechnol. 16, 1231–1234 (2016)

    Article  CAS  PubMed  Google Scholar 

  • M. Guilger-Casagrande, R. Lima, Synthesis of silver nanoparticles mediated by fungi: A review. Front. Bioeng. Biotechnol. 22(7), 287 (2019)

    Article  Google Scholar 

  • N.M.C. Ha, T.H. Nguyen, S.L. Wang, A.D. Nguyen, Preparation of NPK nanofertilizer based on chitosan nanoparticles and its effect on biophysical characteristics and growth of coffee in green house. Res. Chem. Intermed. 45(1), 51–63 (2019)

    Article  CAS  Google Scholar 

  • M.U. Hassan, M. Aamer, M.U. Chattha, T. Haiying, B. Shahzad, L. Barbanti, M. Nawaz, A. Rasheed, A. Afzal, Y. Liu, H. Guoqin, The critical role of zinc in plants facing the drought stress. Agriculture 10(9), 0396 (2020)

    Article  CAS  Google Scholar 

  • H.H. Hernandez, A. Benavides-Mendoza, H. Ortega-Ortiz, A.D. HernándezFuentes, A. Juárez-Maldonado, Cu nanoparticles in chitosan-PVA hydrogels as promoters of growth, productivity and fruit quality in tomato. Emirates J. Food Agric 29, 573–580 (2017)

    Google Scholar 

  • J. Hong, C.M. Rico, L. Zhao, Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ. Sci. Proc. Impacts 17, 177–185 (2015)

    Article  CAS  Google Scholar 

  • P.S. Horeyalla, S. Sreedharamurthy, D.R. Nanjappagowda, Biosynthesis of nickel nanoparticles from bacteria and evaluation of their biological activity. J. Pharm. Res. 11(5), 459–463 (2017)

    Google Scholar 

  • B. Hosnedlova, M. Kepinska, S. Skalickova, C. Fernandez, B. Ruttkay-Nedecky, Q. Peng, M. Baron, M. Melcova, R. Opatrilova, J. Zidkova, Nano-selenium and its nanomedicine applications: A critical review. Int. J. Nanomedicine 13, 2107–2128 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • J. Hu, H. Guo, J. Li, Y. Wang, L. Xiao, B. Xing, Interaction of γ-Fe2O3 nanoparticles with Citrus maxima leaves and the corresponding physiological effects via foliar application. J. Nanobiotechnol. 15(1), 51 (2017)

    Article  CAS  Google Scholar 

  • J. Hu, C. Wu, H. Ren, Y. Wang, J. Li, J. Huang, Comparative analysis of physiological impact of γ-Fe2O3 nanoparticles on dicotyledon and monocotyledon. J. Nanosci. Nanotechnol. 18, 743–752 (2018)

    Article  CAS  PubMed  Google Scholar 

  • S. Husted, Innovative approach taken to phosphorus nanofertilizer research. AG Chemi Group. https://www.agchemigroup.eu/ (2018)

  • N.K. Ibrahim, H.A.K. Al Farttoosi, Response of mung bean to boron nanoparticles and spraying stages (Vigna Radiata L.). Plant Arch 19, 712–715 (2019)

    Google Scholar 

  • K. Imada, S. Sakai, H. Kajihara, S. Tanaka, S. Ito, Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol. 65, 551–560 (2016)

    Article  CAS  Google Scholar 

  • M.A. Iqbal, Nano-fertilizers for sustainable crop production under changing climate: A global perspective, in Sustainable Crop 317 Production, ed. by M. Hasanuzzaman, M. Fujita, M. C. M. T. Filho, T. A. R. Nogueira, (IntechOpen, 2019)

    Google Scholar 

  • J.U. Itelima, W.J. Bang, I.A. Onyimba, E. Oj, A review: Biofertilizer-a key player in enhancing soil fertility and crop productivity. Microbiol. Biotechnol. Rep 2(1), 22–28 (2018)

    Google Scholar 

  • M. Kah, R.S. Kookana, A. Gogos, T.D. Bucheli, A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 13, 677–684 (2018)

    Article  CAS  PubMed  Google Scholar 

  • S. Kaushik, S.R. Djiwanti, Nanotechnology for enhancing crop productivity, in Nanotechnology: An Agricultural Paradigm, ed. by R. Prasad, M. Kumar, V. Kumar, (Springer, Singapore, 2017), pp. 249–262

    Chapter  Google Scholar 

  • C. Keswani, K. Bisen, S.P. Singh, B.K. Sarma, H.B. Singh, A proteomic approach to understand the tripartite interactions between plant Trichoderma-pathogen: Investigating the potential for efficient biological control, in Plant, Soil and Microbes: Mechanisms and Molecular Interactions, ed. by K. R. Hakeem, M. S. Akhtar, vol. 2, (Springer, New York, 2016), pp. 79–93

    Chapter  Google Scholar 

  • C. Keswani, S. Mishra, B.K. Sarma, S.P. Singh, H.B. Singh, Unravelling the efficient applications of secondary metabolites of various Trichoderma spp. Appl. Microbiol. Biotechnol. 98, 533–544 (2014)

    Article  CAS  PubMed  Google Scholar 

  • N.S. Khalifa, M.N. Hasaneen, The effect of chitosan–PMAA– NPK nanofertilizer on Pisum sativum plants. 3. Biotech 8, 193 (2018)

    Google Scholar 

  • H. Khanm, B.A. Vaishnavi, A.G. Shankar, Rise of nano-fertilizer era: Effect of nano scale zinc oxide particles on the germination, growth and yield of tomato (Solanum lycopersicum). Int. J. Curr. Microbiol. App. Sci. 7, 1861–1871 (2018)

    Article  CAS  Google Scholar 

  • J. Khodaveisi, H. Banejad, A. Afkhami, E. Olyaie, S. Lashgari, R. Dashti, Synthesis of calcium peroxide nanoparticles as an innovative reagent for in situ chemical oxidation. J. Hazard. Mater. 192(3), 1437–1440 (2011)

    Article  CAS  PubMed  Google Scholar 

  • J.H. Kim, D. Kim, S.M. Seo, D. Kim, Physiological effects of zero-valent iron nanoparticles in rhizosphere on edible crop, Medicago sativa (Alfalfa), grown in soil. Ecotoxicology 28, 869–877 (2019)

    Article  CAS  PubMed  Google Scholar 

  • N. Kottegoda, I. Munaweera, N. Madusanka, V. Karunaratne, A green slow-release fertilizer composition based on urea modified hydroxyapatite nanoparticles encapsulated wood. Curr. Sci. 101, 73–78 (2011)

    CAS  Google Scholar 

  • D. Kubavat, K. Trivedi, P. Vaghela, K. Prasad, G.K. Vijay Anand, H. Trivedi, R. Patidar, J. Chaudhari, B. Andhariya, A. Ghosh, Characterization of a chitosan-based sustained release nanofertilizer formulation used as a soil conditioner while simultaneously improving biomass production of Zea mays L. Land Degrad. Dev. 31, 2734–2746 (2020)

    Article  Google Scholar 

  • S. Kumar, P. Kaur, M. Bernela, R. Rani, R. Thakur, Ketoconazole encapsulated in chitosan-gellan gum nanocomplexes exhibits prolonged antifungal activity. Int. J. Biol. Macromol 93, 988–994 (2016)

    Article  CAS  PubMed  Google Scholar 

  • P. Landa, T. Cyrusova, J. Jerabkova, O. Drabek, T. Vanek, R. Podlipná, Effect of metal oxides on plant germination: Phytotoxicity of nanoparticles, bulk materials, and metal ions. Water Air Soil Pollut 227, 448 (2016)

    Article  CAS  Google Scholar 

  • C. Larue, J. Laurette, N. Herlin-Boime, H. Khodja, B. Fayard, A.M. Flank, F. Brisset, M. Carriere, Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): Influence of diameter and crystal phase. Sci. Total Environ 431, 197–208 (2012a)

    Article  CAS  PubMed  Google Scholar 

  • C. Larue, G. Veronesi, A.M. Flank, S. Surble, N. Herlin-Boime, M. Carrière, Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. J. Toxicol. Environ. Health 75(13–15), 722–734 (2012b)

    Article  CAS  Google Scholar 

  • S. León-Silva, R. Arrieta-Cortes, F. Fernández-Luqueño, F. LópezValdez, Design and production of nanofertilizers, in Agricultural nanobiotechnology, ed. by F. López-Valdez, L. F. Fernández, (Springer, Cham, 2018), pp. 17–31

    Google Scholar 

  • J. Li, P.R. Chang, J. Huang, Y. Wang, H. Yuan, H. Ren, Physiological effects of magnetic iron oxide nanoparticles towards watermelon. J. Nanosci. Nanotechnol. 13(8), 5561–5567 (2013)

    Article  CAS  PubMed  Google Scholar 

  • S. Liao, S. Zhang, X. Pan, F. Zhu, C. Jiang, Q. Liu, Z. Cheng, G. Dai, G. Wu, L. Wang, L. Chen, Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int. J. Nanomedicine 14, 1469–1487 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • B.A. Linquist, L. Liu, C. van Kessel, K.J. van Groenigen, Enhanced efficiency nitrogen fertilizers for rice systems: Meta-analysis of yield and nitrogen uptake. Field Crop Res. 154, 246–254 (2013)

    Article  Google Scholar 

  • R. Liu, R. Lal, Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci. Rep. 4, 5686 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R. Liu, H. Zhang, R. Lal, Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on Lettuce (Lactuca sativa) seed germination: Nanotoxicants or nanonutrients? Water Air Soil Pollut 227, 1–14 (2016)

    Article  CAS  Google Scholar 

  • R. Liu, R. Lal, Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 514, 131–139 (2015)

    Article  CAS  PubMed  Google Scholar 

  • E.R. López-Vargas, H. Ortega-Ortíz, G. Cadenas-Pliego, K. de Alba Romenus, M. Cabrera de la Fuente, A. Benavides-Mendoza, A. Juárez-Maldonado, Foliar application of copper nanoparticles increases the fruit quality and the content of bioactive compounds in tomatoes. Appl. Sci. 8, 1020 (2018)

    Article  CAS  Google Scholar 

  • G.V. Lowry, A. Avellan, L.M. Gilbertson, Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 14, 517–522 (2019)

    Article  CAS  PubMed  Google Scholar 

  • C. Ma, J.C. White, J. Zhao, Q. Zhao, B. Xing, Uptake of engineered nanoparticles by food crops: Characterization, mechanisms, and implications. Ann. Rev. Food Sci. Technol 9, 129–153 (2018)

    Article  CAS  Google Scholar 

  • D.M. Mahapatra, K.C. Satapathy, B. Panda, Biofertilizers and nanofertilizers for sustainable agriculture: Phycoprospects and challenges. Sci. Total Environ 803, ID-149990 (2022)

    Article  CAS  Google Scholar 

  • S. Mahmoodi, A. Elmi, S. Hallaj-Nezhadi, Copper nanoparticles as antibacterial agents. J. Mol. Pharm. Organ. Process Res 6(1), 140 (2018)

    Article  Google Scholar 

  • R. Mala, A.V. Celsia, S.V. Bharathi, S.R. Blessina, U. Maheswari, Evaluation of nano structured slow release fertilizer on the soil fertility, yield and nutritional profile of Vigna radiata. Recent Pat. Nanotechnol. 11, 50–62 (2017)

    Article  CAS  PubMed  Google Scholar 

  • A.A. Malandrakis, N. Kavroulakis, C.V. Chrysikopoulos, Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. Sci. Total Environ 670, 292–299 (2019)

    Article  CAS  PubMed  Google Scholar 

  • A. Manikandan, K.S. Subramanian, Evaluation of zeolite based nitrogen nano-fertilizers on maize growth, yield and quality on inceptisols and alfisols. Int. J. Plant Soil Sci 9, 1–9 (2016)

    Article  CAS  Google Scholar 

  • M. Mardalipour, H. Zahedi, Y. Sharghi, Evaluation of nano biofertilizer efficiency on agronomic traits of spring wheat at different sowing date. Biol. Forum-An Int. J 6(2), 349–356 (2014)

    Google Scholar 

  • G. Meetu, G. Shikha, An overview of selenium uptake, metabolism, and toxicity in plants. Front. Plant Sci 7, 2074 (2017)

    Google Scholar 

  • J.H. Mejias, F. Salazar, L. Pérez Amaro, Nanofertilizers: A cutting-edge approach to increase nitrogen use efficiency in grasslands. Front. Environ. Sci 9, ID- 635114 (2021)

    Article  Google Scholar 

  • R.R. Mendel, R. Hänsch, Molybdoenzymes and molybdenum cofactor in plants. J. Exp. Bot. 53, 1689–1698 (2002)

    Article  CAS  PubMed  Google Scholar 

  • K. Mengel, Alternative or complementary role of foliar supply in mineral nutrition. International Symposium on Foliar Nutrition of Perennial Fruit Plants. Acta Hort 594, 33–47 (2001)

    Google Scholar 

  • N. Milani, M.J. McLaughlin, S.P. Stacey, J.K. Kirby, G.M. Hettiarachchi, D.G. Beak, G. Cornelis, Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. J. Agric. Food Chem. 60, 3991–3998 (2012)

    Article  CAS  PubMed  Google Scholar 

  • E. Miranda-Villagómez, L.I. Trejo-Téllez, F.C. Gómez-Merino, M. Sandoval-Villa, P. Sánchez-García, M.A. Aguilar-Méndez, Nanophosphorus fertilizer stimulates growth and photosynthetic activity and improves P status in rice. J. Nanomater. 2019, ID- 5368027 (2019)

    Article  CAS  Google Scholar 

  • C. Mishra, C. Keswani, P.C. Abhilash, L.F. Fraceto, H.B. Singh, Integrated approach of agri-nanotechnology: Challenges and future trends. Front. Plant Sci 8, 471 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  • P. Moaveni, H. Kiapour, B. Sani, F. Rajabzadeh, H. Mozafari, Changes in some physiological traits and mucilage yield of sour tea (Hibiscus Sabdariffa L.) under foliar application of magnesium and iron oxide nanoparticles. Iranian. J. Plant Physiol. 10(4), 3333–3341 (2020)

    Google Scholar 

  • S. Moghaddasi, A. Fotovat, A.H. Khoshgoftarmanesh, F. Karimzadeh, H.R. Khazaei, R. Khorassani, Bioavailability of coated and uncoated ZnO nanoparticles to cucumber in soil with or without organic matter. Ecotoxicol. Environ. Saf. 144, 543–551 (2017)

    Article  CAS  PubMed  Google Scholar 

  • S. Moghaddasi, A.H. Khoshgoftarmanesh, F. Karimzadeh, R.L. Chaney, Preparation of nano-particles from waste tire rubber and evaluation of their effectiveness as zinc source for cucumber in nutrient solution culture. Sci. Hortic. 160, 398–403 (2013)

    Article  CAS  Google Scholar 

  • N.C. Mueller, B. Nowack, Nanoparticles for remediation: Solving big problems with little particles. Elements 6(6), 395–400 (2010)

    Article  CAS  Google Scholar 

  • A. Mukherjee, Y. Sun, E. Morelius, C. Tamez, S. Bandyopadhyay, G. Niu, J.C. White, J.R. Peralta-Videa, J.L. Gardea-Torresdey, Differential toxicity of bare and hybrid ZnO nanoparticles in Green pea (Pisum sativum L.): A life cycle study. Front. Plant Sci. 6, 1–13 (2016)

    Article  Google Scholar 

  • T. Munir, M. Rizwan, M. Kashif, A. Shahzad, S. Ali, R. Zahid, M.F.E. Alam, M. Imran, Effect of zinc oxide nanoparticles on the growth and Zn uptake in wheat (Triticum aestivum L.) by seed priming method. Dig. J. Nanomater. Biostruct. 13, 315–323 (2018)

    Google Scholar 

  • M.I. Nabila, K. Kannabiran, Biosynthesis, characterization and antibacterial activity of copper oxide nanoparticles (CuO NPs) from actinomycetes. Biocatal. Agric. Biotechnol. 15, 56–62 (2018)

    Article  Google Scholar 

  • D. Nagaonkar, S. Shende, M. Rai, Biosynthesis of copper nanoparticles and its effect on actively dividing cells of mitosis in Allium cepa. Biotechnol. Prog. 31, 557–565 (2015)

    Article  CAS  PubMed  Google Scholar 

  • P.M.G. Nair, I.M. Chung, Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes. Environ. Sci. Pollut. Res. 21, 12709–12722 (2014)

    Article  CAS  Google Scholar 

  • S. Narendhran, P. Rajiv, R. Sivaraj, Influence of zinc oxide nanoparticles on growth of Sesamum indicum L. in zinc deficient soil. Int J Pharm Pharm Sci 8, 365–371 (2016)

    CAS  Google Scholar 

  • Q.B. Ngo, T.H. Dao, H.C. Nguyen, X.T. Tran, T. Van Nguyen, T.D. Khuu, T.H. Huynh, Effects of nanocrystalline powders (Fe, Co and Cu) on the germination, growth, crop yield and product quality of soybean (Vietnamese species DT-51). Adv. Nat. Sci. Nanosci. Nanotechnol. 5, ID- 015016 (2014)

    Article  CAS  Google Scholar 

  • M. Nuruzzaman, M.M. Rahman, Y. Liu, R. Naidu, Nanoencapsulation, nano-guard for pesticides: A new window for safe application. J. Agric. Food Chem. 64, 1447–1483 (2016)

    Article  CAS  PubMed  Google Scholar 

  • N.G.M. Palmqvist, G.A. Seisenbaeva, P. Svedlindh, V.G. Kessler, Maghemite nanoparticles acts as nanozymes, improving growth and abiotic stress tolerance in Brassica napus. Nanoscale Res. Lett. 12(1), 631 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • J. Panda, A. Nandi, S.P. Mishra, A.K. Pal, A. Pattnaik, N.K. Jena, Effects of nano fertilizer on yield, yield attributes and economics in tomato (Solanum lycopersicum L.). Int. J. Curr. Microbiol. App. Sci. 9, 2583–2591 (2020)

    Article  CAS  Google Scholar 

  • D.G. Panpatte, Y.K. Jhala, H.N. Shelat, R.V. Vyas, Nanoparticles: The next generation technology for sustainable agriculture, in Microbial Inoculants in Sustainable Agricultural Productivity, (Springer, New Delhi, 2016), pp. 289–300

    Chapter  Google Scholar 

  • N. Pariona, A.I. Martinez, H.M. Hdz-García, L.A. Cruz, A. Hernandez-Valdes, Effects of hematite and ferrihydrite nanoparticles on germination and growth of maize seedlings. Saudi J. Biol. Sci 24(7), 1547–1554 (2017)

    Article  CAS  PubMed  Google Scholar 

  • P. Patra, S.R. Choudhury, S. Mandal, A. Basu, A. Goswami, R. Gogoi, C. Srivastava, R. Kumar, M. Gopal, Effect sulfur and ZnO nanoparticles on stress physiology and plant (Vigna radiata) nutrition, in Advanced Nanomaterials and Nanotechnology, (Springer, Guwahati, 2013), pp. 301–309

    Chapter  Google Scholar 

  • Y.S. Pestovsky, A. Martinez-Antonio, The use of nanoparticles and nanoformulations in agriculture. J. Nanosci. Nanotechnol. 12, 8699–8730 (2017)

    Article  Google Scholar 

  • S.D. Polishchuk, A.A. Nazarova, M.V. Kutskir, Bulletin of Ryazan Agrotechnological University, edited by P. A. Kostychev’s. (In Russian), 2, p. 104 (2013)

    Google Scholar 

  • S. Pradhan, P. Patra, S. Das, S. Chandra, S. Mitra, K.K. Dey, S. Akbar, P. Palit, A. Goswami, Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: A detailed molecular, biochemical, and biophysical study. Environ. Sci. Technol 47, 13122–13131 (2013)

    Article  CAS  PubMed  Google Scholar 

  • P.S. Preetha, N. Balakrishnan, A review of nano fertilizers and their use and functions in soil. Int. J. Curr. Microbiol. App. Sci. 6, 3117–3133 (2017)

    Article  CAS  Google Scholar 

  • N. Priyanka, N. Geetha, M. Ghorbanpour, P. Venkatachalam, Role of engineered zinc and copper oxide nanoparticles in promoting plant growth and yield: Present status and future prospects, in Advances in Phytonanotechnology, (Academic Press, 2019), pp. 183–201

    Chapter  Google Scholar 

  • N. Priyanka, P. Venkatachalam, Biofabricated zinc oxide nanoparticles coated with phycomolecules as novel micronutrient catalysts for stimulating plant growth of cotton. Adv. Nat. Sci. Nanosci. Nanotechnol. 7(4), 1–11 (2016)

    Article  CAS  Google Scholar 

  • F. Pulizzi, Nano in the future of crops. Nat. Nanotechnol. 14, 507 (2019)

    Article  CAS  PubMed  Google Scholar 

  • H. Qamar, S. Rehman, D.K. Chauhan, A.K. Tiwari, V. Upmanyu, Green synthesis, characterization and antimicrobial activity of copper oxide nanomaterial derived from Momordica charantia. Int. J. Nanomedicine 15, 2541–2553 (2020). https://doi.org/10.2147/IJN.S240232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • M. Qi, Y. Liu, T. Li, Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol. Trace Elem. Res. 156(1–3), 323–328 (2013)

    Article  CAS  PubMed  Google Scholar 

  • A. Qureshi, D.K. Singh, S. Dwivedi, Nano-fertilizers: A novel way for enhancing nutrient use efficiency and crop productivity. Int. J. Curr. Microbiol. App. Sci. 7, 3325–3335 (2018)

    Article  CAS  Google Scholar 

  • G.A. Ragab, K.M. Saad-Allah, Green synthesis of sulfur nanoparticles using Ocimum basilicum leaves and its prospective effect on manganese-stressed Helianthus annuus (L.) seedlings. Ecotoxicol. Environ. Saf. 191, ID-110242 (2020)

    Article  CAS  Google Scholar 

  • M. Rai, A.P. Ingle, R. Pandit, P. Paralikar, S. Shende, I. Gupta, J.K. Biswas, S.S. Da Silva, Copper and copper nanoparticles: Role in management of insect-pests and pathogenic microbes. Nanotechnol. Rev. 7, 303–315 (2018)

    Article  CAS  Google Scholar 

  • A.A. Rajonee, F. Nigar, S. Ahmed, S.I. Huq, Synthesis of nitrogen nano fertilizer and its efficacy. Canadian J. Pure Appl Sci 10, 3913–3919 (2016)

    CAS  Google Scholar 

  • V. Rajput, T. Minkina, S. Sushkova, A. Behal, A. Maksimov, E. Blicharska, K. Ghazaryan, H. Movsesyan, N. Barsova, ZnO and CuO nanoparticles: A threat to soil organisms, plants, and human health. Environ. Geochem. Health 42(1), 147–158 (2020)

    Article  CAS  PubMed  Google Scholar 

  • V.D. Rajput, T. Minkina, S. Suskova, S. Mandzhieva, V. Tsitsuashvili, V. Chapligin, A. Fedorenko, Effects of copper nanoparticles (CuO NPs) on crop plants: A mini review. BioNanoScience 8, 36–42 (2018)

    Article  Google Scholar 

  • R. Raliya, V. Saharan, C. Dimkpa, P. Biswas, Nanofertilizer for precision and sustainable agriculture: Current state and future perspectives. J. Agric. Food Chem. 66, 6487–6503 (2017)

    Article  PubMed  CAS  Google Scholar 

  • M. Ramesh, K. Palanisamy, K.N. Sharma, Effects of bulk & nano-titanium dioxide and zinc oxide on physio-morphological changes in triticum aestivum linn. J. Global Biosci 3(2), 415–422 (2014)

    Google Scholar 

  • G.B. Ramírez-Rodríguez, G. Dal Sasso, F.J. Carmona, C. Miguel-Rojas, A. Pérez-de-Luque, N. Masciocchi, A. Guagliardi, J.M. Delgado-López, Engineering biomimetic calcium phosphate nanoparticles: A green synthesis of slow-release multinutrient (NPK) nanofertilizers. ACS Appl. Bio Mater 3(3), 1344–1353 (2020a)

    Article  PubMed  CAS  Google Scholar 

  • G.B. Ramírez-Rodríguez, G. Dal Sasso, F.J. Carmona, C. Miguel-Rojas, A. Pérez-de-Luque, N. Masciocchi, A. Guagliardi, J.M. Delgado-López, Reducing nitrogen dosage in Triticum durum plants with urea-doped nanofertilizers. Nano 10(6), 1043 (2020b)

    Google Scholar 

  • J. Ramyadevi, K. Jeyasubramanian, A. Marikani, G. Rajakumar, A.A. Rahuman, Synthesis and antimicrobial activity of copper nanoparticles. Mater. Lett. 71, 114–116 (2012)

    Article  CAS  Google Scholar 

  • S. Ranjbar, A. Ramezanian, M. Rahemi, Nano-calcium and its potential to improve ‘Red Delicious’ apple fruit characteristics. Hortic. Environ. Biotechnol 61, 1–8 (2019)

    Google Scholar 

  • L. Rossi, L.N. Fedenia, H. Sharifan, X. Ma, L. Lombardini, Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiol. Biochem. 135, 160–166 (2019)

    Article  CAS  PubMed  Google Scholar 

  • E. Rostamizadeh, A. Iranbakhsh, A. Majd, S. Arbabian, I. Mehregan, Green synthesis of Fe2O3 nanoparticles using fruit extract of Cornus mas L. and its growth-promoting roles in barley. J. Nanostruct. Chem 10, 125–130 (2020)

    Article  CAS  Google Scholar 

  • A. Roy, O. Bulut, S. Some, A.K. Mandal, M.D. Yilmaz, Green synthesis of silver nanoparticles: Biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 9(5), 2673–2702 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • A.S. Ruby Celsia, R. Mala, Fabrication of nano structured slow-release fertilizer system and its influence on germination and biochemical characteristics of Vigna raidata. Int. J. ChemTech Res. 6(10), 4497–4503 (2014)

    Google Scholar 

  • A. Sabir, K. Yazar, F. Sabir, Z. Kara, M.A. Yazici, N. Goksu, Vine growth, yield, berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nanosize fertilizer pulverizations. Sci. Hortic. 175, 1–8 (2014)

    Article  CAS  Google Scholar 

  • C. Sabliov, H. Chen, R. Yada, Nanotechnology and Functional Foods: Effective Delivery of Bioactive Ingredients, 1st edn. (Wiley, USA, 2015)

    Book  Google Scholar 

  • N.M. Salem, L.S. Albanna, A.M. Awwad, Q. Ibrahim, A. Abdeen, Green synthesis of nano-sized sulfur and its effect on plant growth. J. Agric. Sci. 8, 188 (2016)

    Google Scholar 

  • E. Sánchez-López, D. Gomes, G. Esteruelas, L. Bonilla, A.L. Lopez-Machado, R. Galindo, A. Cano, M. Espina, M. Ettcheto, A. Camins, A.M. Silva, A. Durazzo, A. Santini, M.L. Garcia, B.S. Eliana, Metal-based nanoparticles as antimicrobial agents: An overview. Nano 10(2), 292 (2020)

    Google Scholar 

  • A. Sarkar, S. Sengupta, S. Sen, Nanoparticles for soil remediation, in Nanoscience and Biotechnology for Environmental Applications, ed. by K. M. Gothandam, S. Ranjan, N. Dasgupta, E. Lichtfouse, (Springer, Cham, 2019), pp. 249–262

    Chapter  Google Scholar 

  • M. Sathiyabama, A. Manikandan, Application of copper chitosan nanoparticles stimulate growth and induce resistance in finger millet (Eleusine coracana Gaertn) plants against blast disease. J. Agric. Food Chem. 66, 1784–1790 (2018)

    Article  CAS  PubMed  Google Scholar 

  • M. Schiavon, S. Dall’acqua, A. Mietto, E.A. Pilon-Smits, P.M.A. Sambo, Selenium fertilization alters the chemical composition and antioxidant constituents of tomato (Solanum lycopersicon L.). Aquatic. Ecotoxicology 61(44), 10542–10554 (2013)

    CAS  Google Scholar 

  • M.F. Seleiman, K.F. Almutairi, M. Alotaibi, A. Shami, A.A. Alhammad, M.L. Battaglia, Nano-fertilization as an emerging fertilization technique: Why can modern agriculture benefit from its use? Plan. Theory 10, 2 (2021)

    CAS  Google Scholar 

  • W.T. Self, A.M. Grunden, A. Hasona, K.T. Shanmugam, Molybdate transport. Res. Microbiol. 152, 311–321 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Z. Seydmohammadi, Z. Roein, S. Rezvanipour, Accelerating the growth and flowering of Eustoma grandiflorum by foliar application of nano-ZnO and nano-CaCO3. Plant Physiol. Rep 25, 140–148 (2020)

    Article  Google Scholar 

  • Y. Shang, K. Hasan, G.J. Ahammed, M. Li, H. Yin, Application of nanotechnology in plant growth and crop protection: A review. Molecules 24, ID- 2558 (2019)

    Article  CAS  Google Scholar 

  • R. Sharifi, K. Mohammadi, A. Rokhzadi, Effect of seed priming and foliar application with micronutrients on quality of forage corn (Zea mays). Environ. Exp. Biol 14, 151–156 (2016)

    Article  Google Scholar 

  • G. Sharma, A.R. Sharma, R. Bhavesh, J. Park, B. Ganbold, J.S. Nam, S.S. Lee, Biomolecule-mediated synthesis of selenium nanoparticles using dried Vitis vinifera (raisin) extract. Molecules 19, 2761–2770 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • P. Sharma, A. Sharma, M. Sharma, N. Bhalla, P. Estrela, A. Jain, P. Thakur, A. Thakur, Nanomaterial fungicides: In vitro and in vivo antimycotic activity of cobalt and nickel nanoferrites on phytopathogenic fungi. Glob. Change 1, ID- 1700041 (2017)

    Google Scholar 

  • A. Shebl, A.A. Hassan, D.M. Salama, M.E. Abd El-Aziz, M.S.A. Abd Elwahed, Green synthesis of nanofertilizers and their application as a foliar for Cucurbita pepo L. J. Nanomater. 2019, ID-3476347 (2019)

    Article  CAS  Google Scholar 

  • S. Shende, D. Rathod, A. Gade, M. Rai, Biogenic copper nanoparticles promote the growth of pigeon pea (Cajanus cajan L.). IET Nanobiotechnol. 11, 773–781 (2017)

    Article  PubMed Central  Google Scholar 

  • R. Sheykhbaglou, M. Sedghi, B. Fathi-Achachlouie, The effect of ferrous nano-oxide particles on physiological traits and nutritional compounds of soybean (Glycine max L.) seed. An. Acad. Bras. Cienc. 90, 485–494 (2018)

    Article  CAS  PubMed  Google Scholar 

  • R. Sheykhbaglou, M. Sedghi, M.T. Shishevan, R.S. Sharifi, Effects of nano-iron oxide particles on agronomic traits of soybean. Notulae Scientia Biologicae 2(2), 112–113 (2010)

    Article  Google Scholar 

  • N.C. Shil, S. Noor, M.A. Hossain, Effects of boron and molybdenum on the yield of chickpea. J. Agric. Rural Dev 5, 17–24 (2007)

    Google Scholar 

  • S. Shinde, P. Paralikar, A.P. Ingle, M. Rai, Promotion of seed germination and seedling growth of Zea mays by magnesium hydroxide nanoparticles synthesized by the filtrate from Aspergillus niger. Arab. J. Chem 13, 3172–3182 (2018)

    Article  CAS  Google Scholar 

  • F. Shireen, M.A. Nawaz, C. Chen, Q. Zhang, Z. Zheng, H. Sohail, J. Sun, H. Cao, Y. Huang, Z. Bie, Boron: Functions and approaches to enhance its availability in plants for sustainable agriculture. Int. J. Mol. Sci. 19, 1856 (2018)

    Article  PubMed Central  CAS  Google Scholar 

  • H. Singh, A. Sharma, S.K. Bhardwaj, S.K. Arya, N. Bhardwaj, M. Khatri, Recent advances in the applications of nano-agrochemicals for sustainable agricultural development. Environ. Sci.: Processes Impacts 23, 213–239 (2021)

    Google Scholar 

  • S. Skalickova, V. Milosavljevic, K. Cihalova, Selenium nanoparticles as a nutritional supplement. Nutrition 33, 83–90 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Y.N. Slavin, J. Asnis, U.O. Häfeli, H. Bach, Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 15(1), 65 (2017)

    Article  CAS  Google Scholar 

  • E.E.D. Sohair, A.A. Abdall, A.M. Amany, M.F. Hossain, R.A. Houda, Effect of nitrogen, phosphorus and potassium nano fertilizers with different application times, methods and rates on some growth parameters of Egyptian cotton (Gossypium barbadense L.). Biosci. Res. 15, 549–564 (2018)

    Google Scholar 

  • J. Sohrt, F. Lang, M. Weiler, Quantifying components of the phosphorus cycle in temperate forests. Wiley Interdiscip. Rev. Water 4, e1243 (2017)

    Article  Google Scholar 

  • P. Solanki, A. Bhargava, H. Chhipa, N. Jain, J. Panwar, Nano-fertilizers and their smart delivery system, in Nanotechnologies in Food and Agriculture, (Springer, 2015), pp. 81–101

    Google Scholar 

  • A.S. Soliman, M. Hassan, F. Abou-Elella, A.H. Ahmed, S.A. El-Feky, Effect of nano and molecular phosphorus fertilizers on growth and chemical composition of baobab (Adansonia digitata L.). J. Plant Sci 11, 52–60 (2016)

    Article  CAS  Google Scholar 

  • M. Sotelo-Boyas, Z. Correa-Pacheco, S. Bautista-Batnos, Y.G.Y. Gomez, Release study and inhibitory activity of thyme essential oil-loaded chitosan nanoparticles and nanocapsules against foodborne bacteria. Int. J. Biol. Macromol. 103, 409–414 (2017)

    Article  CAS  PubMed  Google Scholar 

  • L.V. Subbaiah, T.N.V.K.V. Prasad, T.G. Krishna, P. Sudhakar, B.R. Reddy, T. Pradeep, Novel effects of nanoparticulate delivery of zinc on growth, productivity, and zinc biofortification in maize (Zea mays L.). J. Agric. Food Chem 64(19), 3778–3788 (2016)

    Article  CAS  PubMed  Google Scholar 

  • R. Subbaiya, M. Priyanka, M. Masilamani Selvam, Formulation of green nano-fertilizer to enhance the plant growth through slow and sustained release of nitrogen. J. Pharm. Res. 5, 5178–5183 (2012)

    CAS  Google Scholar 

  • J. Supapron, L. Pitayakon, Wattanaprapat, Effect of zeolite and chemical fertilizer on the change of physical and chemical properties on LatYa soil series for sugarcane.17th WCSS, Thailand (2007)

    Google Scholar 

  • S. Suresh, S. Karthikeyan, K. Jayamoorthy, Effect of bulk and nano-Fe2O3 particles on peanut plant leaves studied by Fourier transform infrared spectral studies. J. Adv. Res. 7(5), 739–747 (2016)

    Article  CAS  Google Scholar 

  • R. Taha, M.F. Seleiman, M. Alotaibi, B.A. Alhammad, M.M. Rady, A.H.A. Mahdi, Exogenous potassium treatments elevate salt tolerance and performances of Glycine max L. by boosting antioxidant defense system under actual saline field conditions. Agronomy 10, 1741 (2020)

    Article  CAS  Google Scholar 

  • M. Taherian, A. Bostani, H. Omidi, Boron and pigment content in alfalfa affected by nano fertilization under calcareous conditions. J. Trace Elements Med. Biol 53, 136–143 (2019)

    Article  CAS  Google Scholar 

  • A.S. Talaei, Physiology of Temperate Zone Fruit Trees (Tehran University Press, Tehran, 1998), p. 423

    Google Scholar 

  • J.C. Tarafdar, R. Raliya, Rapid, low-cost, and ecofriendly approach for iron nanoparticle synthesis using Aspergillus oryzae TFR9. J. Nanoparticles 2013, ID-141274 (2013)

    Article  CAS  Google Scholar 

  • J.C. Tarafdar, R. Raliya, H. Mahawar, I. Rathore, Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric. Res 3(3), 257–262 (2014)

    Article  CAS  Google Scholar 

  • C. Tarafder, M. Daizy, M.M. Alam, M.R. Ali, M.J. Islam, R. Islam, M.S. Ahommed, M.A.S. Aly, M.Z.H. Khan, Formulation of a hybrid nanofertilizer for slow and sustainable release of micronutrients. ACS Omega 5, 23960–23966 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • M. Taran, M. Rad, M. Alavi, Antibacterial activity of copper oxide (CuO) nanoparticles biosynthesized by Bacillus sp. FU4: Optimization of experiment design. Pharma. Sci 23(3), 198–206 (2017)

    Article  Google Scholar 

  • N.Y. Taran, O.M. Gonchar, K.G. Lopatko, The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum. Nanoscale Res. Lett. 9, 289 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • T. Thirugnanasambandan, Advances and trends in nanobiofertilizers. SSRN, 59 (2019)

    Google Scholar 

  • E. Thomas, I. Rathore, J.C. Tarafdar, Bio-inspired synthesis of nitrogen nanoparticles and its application on pearl millet (Pennisetum americanum L.) cv. HHB 67. J. Bionanosci 10, 300–306 (2016)

    Article  CAS  Google Scholar 

  • E. Thomas, I. Rathore, J.C. Tarafdar, Bioinspired production of molybdenum nanoparticles and its effect on chickpea (Cicer arietinum L). J. Bionanosci 11, 153–159 (2017)

    Article  CAS  Google Scholar 

  • K. Tiede, S.F. Hanssen, P. Westerhoff, G.J. Fern, S.M. Hankin, R.J. Aitken, Q. Chaudhry, A.B.A. Boxall, How important is drinking water exposure for the risks of engineered nanoparticles to consumers? Nanotoxicology 10(1), 102–110 (2016)

    CAS  PubMed  Google Scholar 

  • S. Torabian, M. Zahedi, A.H. Khoshgoftar, Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. J. Plant Nutr. 39(2), 172–180 (2016)

    Article  CAS  Google Scholar 

  • S. Uttam, F.L.S. Abioye, Selenium in the soil-plant environment: A review. Int. J. Appl. Agric. Sci 3, 1–18 (2017)

    Google Scholar 

  • S.F. Valle, A.S. Giroto, R. Klaic, G.G. Guimarães, C. Ribeiro, Sulfur fertilizer based on inverse vulcanization process with soybean oil. Polym. Degrad. Stab. 162, 102–105 (2019)

    Article  CAS  Google Scholar 

  • P. Wang, E. Lombi, F.J. Zhao, P.M. Kopittke, Nanotechnology: A new opportunity in plant sciences. Trends Plant Sci 21, 699–712 (2016)

    Article  CAS  PubMed  Google Scholar 

  • S. Wang, H. Liu, Y. Zhang, H. Xin, The effect of CuO NPS on reactive oxygen species and cell cycle gene expression in roots of rice. Environ. Toxicol. Chem. 34(3), 554–561 (2015)

    Article  CAS  PubMed  Google Scholar 

  • W.N. Wang, J.C. Tarafdar, P. Biswas, Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J. Nanopart. Res. 15, 1–13 (2013)

    CAS  Google Scholar 

  • Y. Wang, Y. Lin, Y. Xu, Y. Yin, H. Guo, W. Du, Divergence in response of lettuce (var. ramosa Hort.) to copper oxide nanoparticles/microparticles as potential agricultural fertilizer. Environ. Pollut. Bioavail 31(1), 80–84 (2019)

    Article  CAS  Google Scholar 

  • Z. Wang, X. Xie, J. Zhao, X. Liu, W. Feng, W. Feng, J.C. White, B. Xing, Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ. Sci. Technol. 46(8), 4434–4441 (2012)

    Article  CAS  PubMed  Google Scholar 

  • WHO, Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks (WHO, Geneva, Switzerland, 2009)

    Google Scholar 

  • M.A. Wimmer, I. Abreu, R.W. Bell, M.D. Bienert, P.H. Brown, B. Dell, T. Fujiwara, H.E. Goldbach, T. Lehto, H.P. Mock, N. von Wirén, E. Bassil, G.P. Bienert, Boron: An essential element for vascular plants. New Phytol. 226(5), 1232–1237 (2019)

    Article  PubMed  Google Scholar 

  • P. Wojcik, Effect of calcium chloride sprays at different water volumes on “Szampion” apple calcium concentration. J. Plant Nutr. 24, 639–650 (2001)

    Article  CAS  Google Scholar 

  • S.M. Wu, P.R. Tsai, C.J. Yan, Maternal cadmium exposure induces mt2 and smtB mRNA expression in zebrafish (Danio rerio) females and their offspring. Comp. Biochem. Physiol. C Toxicol. Pharmacol 156(1), 1–6 (2012)

    Article  CAS  PubMed  Google Scholar 

  • F. Yasmeen, N.I. Raja, A. Razzaq, S. Komatsu, Proteomic and physiological analyses of wheat seeds exposed to copper and iron nanoparticles. Biochim. Biophys. Acta-Proteins Proteom 1865, 28–42 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Y. Ye, K. Cota-Ruiz, J.A. Hernandez-Viezcas, C. Valdes, I.A. Medina-Velo, R.S. Turley, J.R. Peralta-Videa, J.L. Gardea-Torresdey, Manganese nanoparticles control salinity-modulated molecular responses in Capsicum annuum L. through priming: A sustainable approach for agriculture. ACS Sustain. Chem. Eng. 8, 1427–1436 (2020)

    Article  Google Scholar 

  • P. Yugandhar, N. Savithramma, Green synthesis of calcium carbonate nanoparticles and their effects on seed germination and seedling growth of Vigna mungo (L.) Hepper. Int. J. Adv. Res. 1, 89–103 (2013)

    CAS  Google Scholar 

  • M. Yusuf, Q. Fariduddin, S. Hayat, A. Ahmad, Nickel: An overview of uptake, essentiality and toxicity in plants. Bull. Environ. Contam. Toxicol. 86, 1–17 (2011)

    Article  CAS  PubMed  Google Scholar 

  • D. Zhang, T. Hua, F. Xiao, C. Chen, R.M. Gersberg, Y. Liu, D. Stuckey, W.J. Ng, S.K. Tan, Phytotoxicity and bioaccumulation of ZnO nanoparticles in Schoenoplectus tabernaemontani. Chemosphere 120, 211–219 (2015)

    Article  CAS  PubMed  Google Scholar 

  • L. Zhao, J.R. Peralta-Videa, C.M. Rico, J.A. Hernandez-Viezcas, Y. Sun, G. Niu, A. Servin, J.E. Nunez, M. Duarte-Gardea, J.L. Gardea-Torresdey, CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J. Agric. Food Chem 62(13), 2752–2759 (2014)

    Article  CAS  PubMed  Google Scholar 

  • A.P. Zotikova, T.P. Astafurova, A.A. Burenina, S.A. Suchkova, Y.N. Morgalev, Morphophysiological features of wheat (Triticum aestivum L.) seedlings upon exposure to nickel nanoparticles. Sel'skokhozyaistvennaya Biologiya 53, 578–586 (2018)

    Article  Google Scholar 

  • F. Zulfiqar, M. Navarro, M. Ashraf, N.A. Akram, S. MunnéBosch, Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Sci. 289, ID-110270 (2019)

    Article  CAS  Google Scholar 

  • N. Zuverza-Mena, I.A. Medina-Velo, A.C. Barrios, W. Tan, J.R. Peralta-Videa, J.L. Gardea-Torresdey, Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Environ. Sci.: Processes Impacts 17(10), 1783–1793 (2015)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singla, R., Goel, H. (2022). Deciphering the Enigmatic Praxis of Nano-fertilizers in Agro-food Industrial Landscape. In: Rajput, V.D., Verma, K.K., Sharma, N., Minkina, T. (eds) The Role of Nanoparticles in Plant Nutrition under Soil Pollution. Sustainable Plant Nutrition in a Changing World. Springer, Cham. https://doi.org/10.1007/978-3-030-97389-6_7

Download citation

Publish with us

Policies and ethics