Skip to main content
Log in

Nano-TiO2 Improve the Photosynthesis of Tomato Leaves under Mild Heat Stress

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Nano-TiO2 has been reported to promote photosynthesis in some crops; however, the mechanism behind this action remains unknown. In this research, the effects of nano-TiO2 on leaf photosynthesis under mild heat stress were investigated. Results showed that the net photosynthetic rate, conductance to H2O, and transpiration rate of tomato leaves increased after application of an appropriate concentration of nano-TiO2. Nano-TiO2 also significantly decreased the minimum chlorophyll fluorescence and relative electron transport in leaves. Under mild heat stress, Nano-TiO2 increased regulated photosystem II (PS II) energy dissipation and decreased non-regulated PS II energy dissipation. These results indicate that nano-TiO2 plays a positive role in promoting photosynthesis in tomato leaves under mild heat stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynthesis Res 98(1–3):541–550

    Article  CAS  Google Scholar 

  2. Boyer JS (1982) Plant productivity and environment. Science 218(4571):443–448

    Article  PubMed  CAS  Google Scholar 

  3. Salvucci ME, Crafts–Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant 120(2):179–186

    Article  PubMed  CAS  Google Scholar 

  4. Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf K-D (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10(3):310–316

    Article  PubMed  CAS  Google Scholar 

  5. Abdul-Baki AA (1991) Tolerance of tomato cultivars and selected germ plasm to heat stress. J Am Soc Hortic Sci 116(6):1113–1116

    Google Scholar 

  6. Jie Z, Tian-lai L, Jing X (2005) Effect of daytime sub-high temperature on photosynthesis and dry matter accumulation of tomato in greenhouse. Acta Horticult Sin 32(2):228–233

    Google Scholar 

  7. Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31(1):491–543

    Article  Google Scholar 

  8. Hong F, Yang F, Liu C, Gao Q, Wan Z, Gu F, Wu C, Ma Z, Zhou J, Yang P (2005) Influences of nano-TiO2 on the chloroplast aging of spinach under light. Biol Trace Elem Res 104(3):249–260. doi:10.1385/BTER:104:3:249

    Article  PubMed  CAS  Google Scholar 

  9. Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105(1–3):269–279. doi:10.1385/BTER:105:1-3:269

    Article  PubMed  CAS  Google Scholar 

  10. Gao F, Hong F, Liu C, Zheng L, Su M, Wu X, Yang F, Wu C, Yang P (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: inducing complex of Rubisco–Rubisco activase. Biol Trace Elem Res 111(1–3):239–253. doi:10.1385/BTER:111:1:239

    Article  PubMed  CAS  Google Scholar 

  11. Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, Hao H, Xiaoqing L, Fashui H (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121(1):69–79. doi:10.1007/s12011-007-8028-0

    Article  PubMed  Google Scholar 

  12. Gao J, Xu G, Qian H, Liu P, Zhao P, Hu Y (2013) Effects of nano-TiO2 on photosynthetic characteristics of Ulmus elongata seedlings. Environ Pollut 176:63–70

    Article  PubMed  CAS  Google Scholar 

  13. Liu YF, Qi MF, Li TL (2012) Photosynthesis, photoinhibition, and antioxidant system in tomato leaves stressed by low night temperature and their subsequent recovery. Plant Sci 196:8–17. doi:10.1016/j.plantsci.2012.07.005

    Article  PubMed  CAS  Google Scholar 

  14. Pfündel E, Klughammer C, Schreiber U (2008) Monitoring the effects of reduced PS II antenna size on quantum yields of photosystems I and II using the Dual-PAM-100 measuring system. PAM Appl Notes 1:21–24

    Google Scholar 

  15. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  16. Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104(1):83–91

    Article  PubMed  CAS  Google Scholar 

  17. Gao F, Liu C, Qu C, Zheng L, Yang F, Su M, Hong F (2008) Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase? Biometals: Int J Role Metal Ions Biol Biochem Med 21(2):211–217. doi:10.1007/s10534-007-9110-y

    Article  CAS  Google Scholar 

  18. Yang F, Liu C, Gao F, Su M, Wu X, Zheng L, Hong F, Yang P (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119(1):77–88. doi:10.1007/s12011-007-0046-4

    Article  PubMed  CAS  Google Scholar 

  19. Roháček K, Barták M (1999) Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica 37(3):339–363

    Article  Google Scholar 

  20. Crabtree RH (1998) A new type of hydrogen bond. Science 282(5396):2000–2001

    Article  CAS  Google Scholar 

  21. Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M, Shen S, Firon N (2009) Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J Exp Bot 60(13):3891–3908

    Article  PubMed  CAS  Google Scholar 

  22. Yang Y, Mao P, Wang Z-P, J-h Z (2012) Distribution of nanoparticle number concentrations at a nano-TiO2 plant. Aerosol Air Qual Res 12(5):934–940

    Google Scholar 

  23. Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank AM, Brisset F, Carriere M (2012) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208. doi:10.1016/j.scitotenv.2012.04.073

    Article  PubMed  CAS  Google Scholar 

  24. Chen LZ, Zhou LN, Liu YD, Deng SQ, Wu H, Wang GH (2012) Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii. Ecotoxicol Environ Saf 84:155–162. doi:10.1016/j.ecoenv.2012.07.019

    Article  PubMed  CAS  Google Scholar 

  25. Wang S, Kurepa J, Smalle JA (2011) Ultra–small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell Environ 34(5):811–820

    Article  PubMed  CAS  Google Scholar 

  26. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498

    Article  PubMed  CAS  Google Scholar 

  27. Parthasarathi T (2011) Phytotoxicity of nanoparticles in agricultural crops. In: Green Technology and Environmental Conservation (GTEC 2011), 2011 International Conference on, IEEE, pp 51–60

  28. Menard A, Drobne D, Jemec A (2011) Ecotoxicity of nanosized TiO2: review of in vivo data. Environ Pollut 159(3):677–684. doi:10.1016/j.envpol.2010.11.027

    Article  PubMed  CAS  Google Scholar 

  29. Kahru A, Dubourguier H-C (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269(2):105–119

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the 12th Five-Year Support Project of China (Grant no.: 2011BAD12B03) the Natural Science Foundation of Liaoning Province of China (Grant no.: 201102192), the Program for Liaoning Excellent Talents in University (Grant no.: LJQ2011069), and the Foundation of Shenyang City of China (Grant no.: F12-277-1-25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianlai Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, M., Liu, Y. & Li, T. Nano-TiO2 Improve the Photosynthesis of Tomato Leaves under Mild Heat Stress. Biol Trace Elem Res 156, 323–328 (2013). https://doi.org/10.1007/s12011-013-9833-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9833-2

Keywords

Navigation