Skip to main content

Advertisement

Log in

Unraveling the efficient applications of secondary metabolites of various Trichoderma spp.

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Recent shift in trends of agricultural practices from application of synthetic fertilizers and pesticides to organic farming has brought into focus the use of microorganisms that carryout analogous function. Trichoderma spp. is one of the most popular genera of fungi commercially available as a plant growth promoting fungus (PGPF) and biological control agent. Exploitation of the diverse nature of secondary metabolites produced by different species of Trichoderma augments their extensive utility in agriculture and related industries. As a result, Trichoderma has achieved significant success as a powerful biocontrol agent at global level. The endorsement of Trichoderma spp. by scientific community is based on the understanding of its mechanisms of action against a large set of fungal, bacterial and in certain cases viral infections. However, it is still an agnostic view that there could be any single major mode of operation, although it is argued that all mechanisms operate simultaneously in a synchronized fashion. The central idea behind this review article is to emphasize the potentiality of applications of target specific secondary metabolites of Trichoderma for controlling phytopathogens as a substitute of commercially available whole organism formulations. With the aim to this point, we have compiled an inclusive list of secondary metabolites produced by different species of Trichoderma and their applications in diverse areas with the major emphasis on agriculture. Outlining the importance and diverse activities of secondary metabolites of Trichoderma besides its relevance to agriculture would generate greater understanding of their other important and beneficial applications apart from target specific biopesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agarwal SK, Singh SS, Verma S, Kumar S (2000) Antifungal activity of anthraquinone derivatives from Rheum emodi. J Ethnopharmacol 72:43–46

    CAS  PubMed  Google Scholar 

  • Ali S, Watson MS, Osborne RH (2004) The stimulant cathartic, emodin, contracts the rat isolated ileum by triggering release of endogenous acetylcholine. Auton Autacoid Pharmacol 24:103–105

    CAS  PubMed  Google Scholar 

  • Almassi F, Ghisalberti EL, Narbey MJ, Sivasithamparam K (1991) New antibiotics from strains of Trichoderma harzianum. J Nat Prod 54:396–402

    CAS  Google Scholar 

  • Amagata T, Usami Y, Minoura K, Ito T, Numata A (1998) Cytotoxic substances produced by a fungal strain from a sponge: physico-chemical properties and structures. J Antibiot 51:33–40

    CAS  PubMed  Google Scholar 

  • Andrade R, Ayer WA, Mebe PP (1992) The metabolites of Trichoderma longibrachiatum: Part 1. Isolation of the metabolites and the structure of trichodimerol. Can J Chem 70:2526–2535

    CAS  Google Scholar 

  • Andrade R, Ayer WA, Trifonov LS (1996) The metabolites of Trichoderma longibrachiatum. Part II. The structures of trichodermolide and sorbiquinol. Can J Chem 74:371–379

    CAS  Google Scholar 

  • Andrade R, Ayer WA, Trifonov LS (1997) The metabolites of Trichoderma longibrachiatum: III. Two new tetronic acids 5-hydroxyvertinolide and bislongiquinolide. Aust J Chem 50:255–257

    CAS  Google Scholar 

  • Astudillo L, Schmeda-Hirschmann G, Soto R, Sandoval C, Sfonso C, Gonzalez MJ, Kijjoa A (2000) Acetophenone derivatives from Chilean isolated of Trichoderma pseudokoningii Rifai. World J Microbiol Biotechnol 16:585–587

    CAS  Google Scholar 

  • Augustiniak H, Forche E, Reichenbach H, Wray V, Graefe U, Hoefle G (1991) Isolation and structure elucidation of ergokonin A and B; two new antifungal sterol antibiotics from Trichoderma koningii. Liebigs Ann Chem 4:361–366

    Google Scholar 

  • Auvin-Guette C, Rebuffat S, Prigent Y, Bodo B (1992) Trichogin A IV, an 11-residue lipopeptaibol from Trichoderma longibrachiatum. J Am Chem Soc 114:2170–2174

    CAS  Google Scholar 

  • Auvin-Guette C, Rebuffat S, Vuidepot I, Massias M, Bodo B (1993) Structural elucidation of trichokoningins KA and KB, peptaibols from Trichoderma koningii. J Chem Soc Perkin Trans 249–255

  • Balde ES, Andolfi A, Bruyere C, Cimmino A, Theys DL, Vurro M, Damme MV, Altomare C, Mathieu V, Kiss R, Evidente A (2010) Investigations of fungal secondary metabolites with potential anticancer activity. J Nat Prod 73:969–971

    CAS  PubMed  Google Scholar 

  • Baldwin JE, Adlington RM, Chondrogianni J, Edenborough MS, Keeping JW, Ziegler CB (1985) Structure and synthesis of new cyclopentenyl isonitriles from Trichoderma hamatum (Bon.) Bain. aggr. HLX 1379. J Chem Soc Chem Commun 12:816–817

    Google Scholar 

  • Benitez T, Rincon AM, Limon MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    CAS  PubMed  Google Scholar 

  • Berg A, Wangun HVK, Nkengfack AE, Schlegel B (2004) Lignoren, a new sesquiterpenoid metabolite from Trichoderma lignorum HKI 0257. J Basic Microbiol 44:317–319

    CAS  PubMed  Google Scholar 

  • Berkaew P, Soonthornchareonnon N, Salasawadee K, Chanthaket R, Isaka M (2008) Aurocitrin and related polyketide metabolites from the wood-decay fungus Hypocrea sp. J Nat Prod 71:902–904

    CAS  PubMed  Google Scholar 

  • Blight MM, Grove JF (1986) Viridin. Part 8. Structures of the analogs virone and wortmannolone. J Chem Soc Perkin Trans 1:1317–1322

    Google Scholar 

  • Boyd RK, McAlees AJ, Taylor A, Walter JA (1991) Isolation of new isocyanide metabolites of Trichoderma hamatum as their (η5-pentamethylcyclopentadienyl) or (μ5-ethyltetramethylcyclopentadienyl) bis (lthiocyanato) rhodium complexes. J Chem Soc Perkin Trans 1:1461–1465

    Google Scholar 

  • Brewer D, Gabe EJ, Hanson AW, Taylor A, Keeping JW, Thaller V, Das BC (1979) Isonitrile acids from cultures of the fungus Trichoderma hamatum (Bon.) Bain. aggr., x-ray structure. J Chem Soc Chem Commun 23:1061–1062

    Google Scholar 

  • Brian PW (1944) Production of gliotoxin by Trichoderma viride. Nature 154:667–668

    CAS  Google Scholar 

  • Brian PW, McGowan JC (1945) Viridin a highly fungistatic substance produced by Trichoderma viride. Nature 156:144–145

    CAS  Google Scholar 

  • Brueckner H, Graf H, Bokel M (1984) Paracelsin, characterization by NMR spectroscopy and circular dichroism, and hemolytic properties of a peptaibol antibiotic from the cellulolytically active mold Trichoderma reesei. Part B Experientia 40:1189–1197

    CAS  Google Scholar 

  • Claydon N, Allan M, Hanson JR, Avent AG (1987) Antifungal alkyl pyrones of Trichoderma harzianum. Trans Br Mycol Soc 88:503–513

    CAS  Google Scholar 

  • Claydon N, Hanson JR, Truneh A, Avent AG (1991) Harzianolide, a butenolide metabolite from cultures of Trichoderma harzianum. Phytochemistry 30:3802–3803

    CAS  Google Scholar 

  • Collins RP, Halim AF (1972) Characterization of the major aroma constituent of the fungus Trichoderma viride. J Agric Food Chem 20:437–438

    CAS  Google Scholar 

  • Combet E, Henderson J, Eastwood DC, Burton KS (2006) Eight-carbon volatiles in mushrooms and fungi: properties, analysis, and biosynthesis. Mycoscience 47:317–326

    CAS  Google Scholar 

  • Cutler HG, Jacyno JM (1991) Biological activity of (−) harzianopyridone isolated from Trichoderma harzianum. Agric Biol Chem 55:2629–2631

    CAS  Google Scholar 

  • Cutler HG, Himmelsbach DS, Arrendale RF, Cole PD, Cox RH (1989) Koninginin A: a novel plant growth regulator from Trichoderma koningii. Agric Biol Chem 53:2605–2611

    CAS  Google Scholar 

  • Cutler HG, Himmelsbach DS, Yagen B, Arrendale RF, Jacyno JM, Cole PD, Cox RH (1991a) Koninginin B: a biologically active congener of koninginin A from Trichoderma koningii. J Agric Food Chem 39:977–980

    CAS  Google Scholar 

  • Cutler HG, Jacyno JM, Phillips RS, VonTersch RL, Cole PD, Montemurro N (1991b) Cyclonerodiol from a novel source, Trichoderma koningii: plant growth regulatory activity. Agric Biol Chem 55:243–244

    CAS  Google Scholar 

  • Cutler HG, Cutler SJ, Ross SA, El Sayed K, Dugan FM, Bartlett MG, Hill AA, Hill RA, Parker SR (1999) Koninginin G, a new metabolite from Trichoderma aureoviride. J Nat Prod 62:137–139

    CAS  PubMed  Google Scholar 

  • De Stefano S, Nicoletti R (1999) Pachybasin and chrysophanol, two anthraquinones produced by the fungus Trichoderma aureoviride. Il Tabacco 7:21–24

    Google Scholar 

  • Degenkolb T, Gräfenhan T, Nirenberg HI, Gams W, Brückner H (2006) Trichoderma brevicompactum Complex: rich source of novel and recurrent plant-protective polypeptide antibiotics. J Agric Food Chem 54:7047–7061

    CAS  PubMed  Google Scholar 

  • Degenkolb T, Döhren HV, Nielsen KF, Samuels GJ, Brückner H (2008) Recent advances and future prospects in peptaibiotics and mycotoxin research and their importance for chemotaxonomy of Trichoderma and Hypocrea. Chem Biodivers 5:671–680

    CAS  PubMed  Google Scholar 

  • Di Pietro A, Lorito M, Hayes CK, Broadway RM, Harman GE (1993) Endochitinase from Gliocladium virens: isolation, characterization, and synergistic antifungal activity in combination with gliotoxin. Phytopathology 83:308–313

    Google Scholar 

  • Dickinson JM, Hanson JR, Hitchcock PB, Claydon N (1989) Structure and biosynthesis of harzianopyridone, an antifungal metabolite of Trichoderma harzianum. J Chem Soc Perkin Trans 1:1885–1887

    Google Scholar 

  • Dodge JA, Sato M, Vlahos CJ (1995) Inhibition of phosphatidyl-inositol 3-kinase with viridin and analogs thereof. Eur Patent Appl 648492

  • Donnelly DMX, Sheridan MH (1986) Anthraquinones from Trichoderma polysporum. Phytochemistry 25:2303–2304

    CAS  Google Scholar 

  • Druzhinina IS, Kopchinskiy AG, Kubicek CP (2006) The first 100 Trichoderma species characterized by molecular data. Mycoscience 47:55–64

    CAS  Google Scholar 

  • Dunlop RW, Simon A, Sivasithamparam K, Ghisalberti EL (1989) An antibiotic from Trichoderma koningii active against soilborne plant pathogens. J Nat Prod 52:67–74

    CAS  Google Scholar 

  • Edenborough MS, Herbert RB (1988) Naturally occurring isocyanides. Nat Prod Rep 5:229–245

    CAS  PubMed  Google Scholar 

  • El Hajji M, Rebuffat S, Lecommandeur D, Bodo B (1987) Isolation and sequence determination of trichorzianines A antifungal peptides from Trichoderma harzianum. Int J Pept Protein Res 29:207–215

    PubMed  Google Scholar 

  • Endo A, Hasumi K, Sakai K, Kanbe T (1985) Specific inhibition of glyceraldehyde-3-phosphate dehydrogenase by koningic acid (heptelidic acid). J Antibiot 38:920–925

    CAS  PubMed  Google Scholar 

  • Evidente A, Cabras A, Maddau L, Serra DA, Andolfi A, Motta A (2003) Viride Pyronone, a new antifungal 6 substituted 2H-pyran-2-one produced by Trichoderma viride. J Agric Food Chem 51:6957–6960

    CAS  PubMed  Google Scholar 

  • Faull JL, Graeme-Cook KA, Pilkington BL (1994) Production of an isonitrile antibiotic by an UV-induced mutant of Trichoderma harzianum. Phytochemistry 36:1273–1276

    CAS  PubMed  Google Scholar 

  • Favilla M, Macchia L, Gallo A, Altomare C (2006) Toxicity assessment of metabolites of fungal biocontrol agents using two different (Artemia salina and Daphnia magna) invertebrate bioassays. Food Chem Toxicol 44:1922–1931

    CAS  PubMed  Google Scholar 

  • Fravel DR (1988) Role of antibiosis in the biocontrol of plant diseases. Ann Rev Phytopathol 26:75–91

    CAS  Google Scholar 

  • Fujita T, Takaishi Y, Okamura A, Fujita E, Fuji K, Hiratsuka N, Komatsu M, Arita I (1981) New peptide antibiotics, trichopolyns I and II, from Trichoderma polysporum. J Chem Soc Chem Commun 12:585–587

    Google Scholar 

  • Fujita T, Takaishi Y, Takeda Y, Fujiyama T, Nishi T (1984) Fungal metabolites: II. Structural elucidation of minor metabolites, valinotricin, cyclonerodiol oxide, and epicyclonerodiol oxide, from Trichoderma polysporum. Chem Pharm Bull 32:4419–4425

    CAS  Google Scholar 

  • Fujita T, Wada S, Iida A, Nishimura T, Kanai M, Toyama N (1994) Fungal metabolites. XIII. Isolation and structural elucidation of new peptaibols, trichodecenins I and II from Trichoderma viride. Chem Pharm Bull 42:489–494

    CAS  PubMed  Google Scholar 

  • Fujiwara A, Okuda T, Masuda S, Shiomi Y, Miyamato C, Sekine Y, Tazoe M, Fujiwara M (1982) Fermentation, isolation and characterization of isonitrile antibiotics. Agric Biol Chem 46:1803–1809

    CAS  Google Scholar 

  • Garo E, Starks CM, Jensen PR, Fenical W, Lobkovsky E, Clardy J (2003) Trichodermamides A and B, cytotoxic modified dipeptides from the marine-derived fungus Trichoderma virens. J Nat Prod 66:423–426

    CAS  PubMed  Google Scholar 

  • Geetha I, Paily KP, Padmanaban V, Balaraman K (2003) Oviposition response of the mosquito, Culex quinquefasciatus to the secondary metabolite(s) of the fungus, Trichoderma viride. Mem Inst Oswaldo Cruz 98:223–226

    CAS  PubMed  Google Scholar 

  • Ghisalberti EL (2002) Anti-infective agents produced by the hyphomycetes general Trichoderma and Glioclaudium. Curr Med Chem 1:343–374

    CAS  Google Scholar 

  • Ghisalberti EL, Rowland CY (1993) Antifungal metabolites from Trichoderma harzianum. J Nat Prod 56:1799–1804

    CAS  PubMed  Google Scholar 

  • Ghisalberti EL, Hockless DCR, Rowland C, White AH (1992) Harziandione, a new class of diterpene from Trichoderma harzianum. J Nat Prod 55:1690–1694

    CAS  Google Scholar 

  • Godtfredsen WO, Vangedal S (1964) Trichodermin, a new antibiotic related to trichothecin. Proc Chem Soc 188–189

  • Golder WS, Watson TR (1980) Lanosterol derivatives as precursors in the biosynthesis of viridin. J Chem Soc Perkin Trans 1:422–425

    Google Scholar 

  • Goldstein JL, Helgeson JAS, Brown MS (1979) Inhibition of cholesterol synthesis with compactin renders growth of cultured cells dependent on the low density lipoprotein receptor. J Biol Chem 254:5403–5409

    CAS  PubMed  Google Scholar 

  • Hagedorn S, Kaphammer B (1994) Microbial biocatalysis in the generation of flavor and fragrance chemicals. Annu Rev Microbiol 48:773–800

    CAS  PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    CAS  PubMed  Google Scholar 

  • Harris GH, Jones ETT, Meinz MS, Nallin-Omstead M, Helms GL, Bills GF, Zink D, Wilson KE (1993) Isolation and structure elucidation of viridiofungins A, B and C. Tetrahedron Lett 34:5235–5238

    CAS  Google Scholar 

  • Heraux FMG, Hallett SG, Ragothama KG, Weller SC (2005a) Composted chicken manure as a medium for the production and delivery of Trichoderma virens for weed control. Hort Science 40:1394–1397

    Google Scholar 

  • Heraux FMG, Hallett SG, Weller SC (2005b) Combining Trichoderma virens inoculated compost and a rye cover crop for weed control in transplanted vegetables. Biol Control 34:21–26

    Google Scholar 

  • Hermosa MR, Keck E, Chamorro I, Rubio B, Sanz L, Vizcaíno JA, Grondona I, Monte E (2004) Genetic diversity shown in Trichoderma biocontrol isolates. Mycol Res 108:897–906

    CAS  PubMed  Google Scholar 

  • Hill RA, Cutler HG, Parker SR (1995) Trichoderma and metabolites as control agents for microbial plant diseases. PCT Int Appl 9520879

  • Huang Q, Tezuka Y, Hatanaka Y, Kikuchi T, Nishi A, Tubaki K (1995a) Studies on metabolites of mycoparasitic fungi: III. New sesquiterpene alcohol from Trichoderma koningii. Chem Pharm Bull 43:1035–1038

    CAS  Google Scholar 

  • Huang Q, Tezuka Y, Kikuchi T, Nishi A, Tubaki K, Tanaka K (1995b) Studies on metabolites of mycoparasitic fungi: II. Metabolites of Trichoderma koningii. Chem Pharm Bull 43:223–239

    CAS  PubMed  Google Scholar 

  • Huang Q, Shen HM, Shui G, Wenk M, Ong CN (2006) Emodin inhibits tumor cell adhesion through disruption of the membrane lipid raft-associated integrin signaling pathway. Cancer Res 66:5807–5815

    CAS  PubMed  Google Scholar 

  • Hussain SA, Noorani R, Qureshi IH (1975) Isolation and characterization of gliotoxin, ergosterol, palmitic acid and mannitol – metabolic products of Trichoderma hamatum Bainier. Pak J Sci Ind Res 18:221–223

    CAS  Google Scholar 

  • Iida A, Uesato S, Shingu T, Nagaoka Y, Kuroda Y, Fujita T (1993) Fungal metabolites solution structure of an antibiotic peptide, trichosporin B-V, from Trichoderma polysporum. J Chem Soc Perkin Trans 1:375–379

    Google Scholar 

  • Iida A, Sanekata M, Fujita T, Tanaka H, Enoki A, Fuse G, Kanai M, Rudewicz PJ, Tachikawa E (1994) Fungal metabolites XVI Structures of new peptaibols, trichokindins I–VII, from the fungus Trichoderma harzianum. Chem Pharm Bull 42:1070–1075

    CAS  PubMed  Google Scholar 

  • Iida A, Sanekata M, Wada S, Fujita T, Tanaka H, Enoki A, Fuse G, Kanai M, Asami K (1995) Fungal metabolites XVIII new membrane-modifying peptides, trichorozins I–IV, from the fungus Trichoderma harzianum. Chem Pharm Bull 43:392–397

    CAS  PubMed  Google Scholar 

  • Itoh Y, Takahashi S, Haneishi T, Arai M (1980) Structure of heptilidic acid, a new sesquiterpene antibiotic from fungi. J Antibiot 33:525–526

    CAS  PubMed  Google Scholar 

  • Jalal MAF, Love SK, Helm VD (1987) Siderophore mediated iron (III) uptake in Gliocadium virens. Role of ferric mono and dihydroxamates as iron transport agents. J Inorg Biochem 29:259–267

    CAS  PubMed  Google Scholar 

  • Janssens L, de Pooter HL, Vandamme EJ, Schamp NM (1992) Production of flavours by microorganisms. Process Biochem 27:195–215

    CAS  Google Scholar 

  • Javaid A, Ali S (2011) Herbicidal activity of culture filtrates of Trichoderma spp. against two problematic weeds of wheat. Nat Prod Res 25:730–740

    CAS  PubMed  Google Scholar 

  • Jaworski A, Kirschbaum J, Bruckner H (1999) Structures of trichovirins II, peptaibol antibiotics from the mold Trichoderma viride NRRL 5243. J Pept Sci 5:341–351

    CAS  PubMed  Google Scholar 

  • Kamal A, Akhtar R, Qureshi AA (1971) Biochemistry of microorganisms. 2,5-Dimethoxybenzoquinone, tartronic acid, itaconic acid, succinic acid, pyrocalciferol, epifriedelinol, lanosta-7,9(11),24-triene-3,6, 21-diol, trichodermene A, methyl 2,4,6-octatriene and cordycepic acid, Trichoderma metabolites. Pak Sci Ind Res 14:71–78

    CAS  Google Scholar 

  • Kawada M, Yoshimoto Y, Kumagai H, Someno T, Momose I, Kawamura N, Isshiki K, Ikeda D (2004) PP2A inhibitors, harzianic acid and related compounds produced by fungal strain F-1531. J Antibiot 57:235–237

    CAS  PubMed  Google Scholar 

  • Kishimoto N, Sugihara S, Mochida K, Fujita T (2005) In vitro antifungal and antiviral activities of c- and d-lactone analogs utilized as food flavoring. Biocontrol Sci 10:31–36

    CAS  Google Scholar 

  • Kobayashi M, Uehara H, Matsunami K, Aoki S, Kitagawa I (1993) Trichoharzin, a new polyketide produced by the imperfect fungus Trichoderma harzianum separated from the marine sponge Mycale cecilia. Tetrahedron Lett 34:7925–7928

    CAS  Google Scholar 

  • Krause C, Kirschbaum J, Jung G, Brueckner H (2006) Sequence diversity of the peptaibol antibiotic suzukacillin-A from the mold Trichoderma viride. J Pept Sci 12:321–327

    CAS  PubMed  Google Scholar 

  • Krupke OA, Castle AJ, Rinker DL (2003) The North American mushroom competitor, Trichoderma aggressivum f. aggressivum, produces antifungal compounds in mushroom compost that inhibit mycelia growth of the commercial mushroom Agaricus bisporus. Mycol Res 107:1467–1475

    PubMed  Google Scholar 

  • Kubicek CP, Estrella AH, Seiboth VS, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Flores SC, Horwitz BA, Mukherjee PK, Mukherjee M, Kredics ALD, Aerts A, Antal Z, Atanasova L, Badillo MGC, Challacombe J, Chertkov O, McCluskey K, Coulpier F, Deshpande N, Döhren HV, Ebbole DJ, Naranjo EUE, Fekete E, Flipphi M, Glaser F, Rodríguez EY, Gruber S, Han C, Henrissat B, Hermosa R, Oñate MH, Karaffa L, Kosti I, Crom SL, Lindquist E, Lucas S, Lübeck M, Lübeck PS, Margeot A, Metz B, Misra M, Nevalainen H, Omann M, Packer N, Perrone G, Rivera EEU, Salamov A, Schmoll M, Seiboth B, Shapiro H, Sukno S, Ramos JAT, Tisch D, Wiest A, Wilkinson HH, Zhang M, Coutinho PM, Kenerley CM, Monte E, Baker SE, Grigoriev IV (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kullnig CM, Krupica T, Woo SL, Mach RL, Rey M, Benítez T, Lorito M, Kubicek CP (2001) Confusion abounds over identities of Trichoderma biocontrol isolates. Mycol Res 105:769–772

    Google Scholar 

  • Kumeda Y, Asao T, Iida A, Wada S, Futami S, Fujita T (1994) Effects of ergokonin A produced by Trichoderma viride on the growth and morphological development of fungi. J Antibacteriol Antifungal Agents Jpn 22:663–670

    CAS  Google Scholar 

  • Leclerc G, Goulard C, Prigent Y, Bodo B, Wroblewski H, Rebuffat S (2001) Sequences and antimycoplasmic properties of longibrachins LGB II and LGB III, two novel 20-residue peptaibols from Trichoderma longibrachiatum. J Nat Prod 64:164–170

    CAS  PubMed  Google Scholar 

  • Lee CH, Koshino H, Chung MC, Lee HJ, Kho YH (1995a) MR304A, a new melanin synthesis inhibitor produced by Trichoderma harzianum. J Antibiot 48:1168–1170

    CAS  PubMed  Google Scholar 

  • Lee SH, Hensens OD, Helms GL, Liesch JM, Zink DL, Giacobbe RA, Bills GF, Stevens SM, Garcia ML, Schmalhofer WA, McManus OB, Kaczorowski GJ (1995b) l-735,334, a novel sesquiterpenoid potassium channel-agonist from Trichoderma virens. J Nat Prod 58:1822–1828

    CAS  PubMed  Google Scholar 

  • Lee CH, Chung MC, Lee HJ, Bae KS, Kho YH (1997) MR566A and MR566B, new melanin synthesis inhibitors produced by Trichoderma harzianum. Taxonomy, fermentation, isolation and biological activities. J Antibiot 50:469–473

    CAS  PubMed  Google Scholar 

  • Lee HB, Kim Y, Jin HZ, Lee JJ, Kim CJ, Park JY, Jung HS (2005) A new Hypocrea strain producing harzianum A cytotoxic to tumour cell lines. Lett Appl Microbiol 40:497–503

    CAS  PubMed  Google Scholar 

  • Luo Y, Zhang D, Dong XW, Zhao PB, Chen LL, Song XY, Wang XJ, Chen XL, Shi M, Zhang YZ (2010) Antimicrobial peptaibols induce defense responses and systemic resistance in tobacco against tobacco mosaic virus. FEMS Microbiol Lett 13:120–126

    Google Scholar 

  • Macias FA, Varela RM, Simonet AM, Cutler HG, Cutler SJ, Eden MA, Hill RA (2000) Bioactive carotanes from Trichoderma virens. J Nat Prod 63:1197–1200

    CAS  PubMed  Google Scholar 

  • Mandala SM, Thornton RA, Frommer BR, Dreikorn S, Kurtz MB (1997) Viridiofungins, novel inhibitors of sphingolipid synthesis. J Antibiot 50:339–343

    CAS  PubMed  Google Scholar 

  • Marfori EC, Kajiyama S, Fukusaki E, Kobayashi A (2002) Trichosetin, a novel tetramic acid antibiotic produced in dual culture of Trichoderma harzianum and Catharanthus roseus callus. Z Naturforsch C J Biosci 57:465–470

    CAS  Google Scholar 

  • Mazzucco CE, Warr G (1996) Trichodimerol (BMS-182123) inhibits Iipopolysaccharide-induced eicosanoid secretion in THP-1 human monocytic cells. J Leukoc Biol 60:271–277

    CAS  PubMed  Google Scholar 

  • Meinz MS, Pelaez F, Omstead MN, Milligan JA, Diez MT, Onishi JC, Bergstrom JA, Jenkins RF, Harris GH, Jones ETT, Huang L, Kong YL, Lingham RB, Zink D (1993) Cholesterol-lowering agents, their manufacture with Trichoderma, and their use as fungicides or as medicines. Eur Pat Appl 526936

  • Mihara T, Iida A, Akimoto N, Fujita T, Takaishi Y, Inoue K, Kushimoto S (1994) Structures of antibiotic peptides, trichopolyns, from the fungus Trichoderma polysporum. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 36:713–720

    Google Scholar 

  • Moffatt JS, Bu'Lock JD, Yuen TH (1969) Viridiol, a steroid-like product from Trichoderma viride. J Chem Soc Chem Commun 14:839–841

    Google Scholar 

  • Mohamed-Benkada M, Montagu M, Biard J, Mondeguer F, Verite P, Dalgalarrondo M, Bissett J, Pouchus YF (2006) New short peptaibols from a marine Trichoderma strain. Rapid Commun Mass Spectrom 20:1176–1180

    CAS  PubMed  Google Scholar 

  • Mukherjee PK, Horwitz BA, Kenerley CM (2012) Secondary metabolism in Trichoderma—a genomic perspective. Microbiology 158:35–45

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay T, Roy K, Sawant SN, Deshmukh SK, Ganguli BN, Fehlhaber HW (1996) On an unstable antifungal metabolite from Trichoderma koningii isolation and structure elucidation of a new cyclopentenone derivative (3-dimethylamino-5-hydroxy-5vinyl-2-cyclopenten-1-one). J Antibiot 49:210–211

    CAS  PubMed  Google Scholar 

  • Nakano H, Hara M, Mejiro T, Ando K, Saito Y, Morimoto M (1990) DC1149B, DC1149R and their manufacture with Trichoderma. JP Patent 02218686

  • Nielsen KF, Gräfenhan T, Zafari D, Thrane U (2005) Trichothecene production by Trichoderma brevicompactum. J Agric Food Chem 53:8190–8196

    CAS  PubMed  Google Scholar 

  • Nobuhara M, Tazima H, Shudo K, Itai A, Okamoto T, Yitaka Y (1976) A fungal metabolite, novel isocyano epoxide. Chem Pharm Bull 24:832–838

    CAS  Google Scholar 

  • Oh SU, Lee SJ, Kim JH, Yoo ID (2000) Structural elucidation of new antibiotic peptides, atroviridins A, B and C from Trichoderma atroviride. Tetrahedron Lett 41:61–64

    CAS  Google Scholar 

  • Pahl HL, Krauss B, Schulze-Osthoff K, Decker T, Traenckner BM, Vogt M, Myers C, Parks T, Warring P, Miihlbacher A, Czernilofiky AP, Baeuerle PA (1996) The immunosuppressive fungal metabolite gliotoxin specifically inhibits transcription factor NF-ΚB. J Exp Med 183:1829–1840

    CAS  PubMed  Google Scholar 

  • Parker SR, Cutler HG, Schreiner PR (1995a) Koninginin C: a biologically active natural product from Trichoderma koningii. Biosci Biotechnol Biochem 59:1126–1127

    CAS  PubMed  Google Scholar 

  • Parker SR, Cutler HG, Schreiner PR (1995b) Koninginin E: isolation of a biologically active natural product from Trichoderma koningii. Biosci Biotechnol Biochem 59:1747–1749

    CAS  Google Scholar 

  • Parker RS, Cutler HG, Jacyno JM, Hill RA (1997) Biological activity of 6-pentyl-2H-pyran-2-one and its analogs. J Agric Food Chem 45:2774–2776

    CAS  Google Scholar 

  • Patton S (1950) The methyl ketones of blue cheese and their relation to its flavor. J Dairy Sci 33:680–684

    CAS  Google Scholar 

  • Poiriera L, Quinioub F, Ruiza N, Montagua M, Amiarda JC, Pouchus YF (2007) Toxicity assessment of peptaibols and contaminated sediments on Crassostrea gigas embryos. Aquat Toxicol 83:254–262

    Google Scholar 

  • Poole PR, Ward BG, Whitaker G (1998) The effects of topical treatments with 6-pentyl-2-pyrone and structural analogs on stem end post-harvest rots in kiwi fruit due to Botrytis cinerea. J Agric Food Chem 77:81–86

    CAS  Google Scholar 

  • Pyke TH, Dietz A (1966) U-21, 9263, a new antibiotic discovery and biological activity. Appl Microbiol 14:506–510

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qian-Cutrone J, Huang S, Chang LP, Pirnik DM, Klohr SE, Dalterio RA, Hugill R, Lowe S, Alam M, Kadow KF (1996) Harziphilone and fleephilone, two new HIV REV/RRE binding inhibitors produced by Trichoderma harzianum. J Antibiot 49:990–997

    CAS  PubMed  Google Scholar 

  • Rebuffat S, El Hajji M, Hennig P, Davoust D, Bodo B (1989) Isolation, sequence, and conformation of seven trichorzianines B from Trichoderma harzianum. Int J Pept Protein Res 34:200–210

    CAS  PubMed  Google Scholar 

  • Rebuffat S, Prigent Y, Auvin-Guette C, Bodo B (1991) Tricholongins BI and BII, 19-residue peptaibols from Trichoderma longibrachiatum solution structure from two-dimensional NMR spectroscopy. Eur J Biochem 201:661–674

    CAS  PubMed  Google Scholar 

  • Rebuffat S, Conraux L, Massias M, Auvin-Guette C, Bodo B (1993) Sequence and solution conformation of the 20-residue peptaibols, saturnisporins SA II and SA IV. Int J Pept Protein Res 41:74–84

    Google Scholar 

  • Rebuffat S, Goulard C, Bodo B (1995) Antibiotic peptides from Trichoderma harzianum: harzianins HC, proline-rich 14-residue peptaibols. J Chem Soc Perkin Trans 1:1849–1855

    Google Scholar 

  • Reichenbach H, Forche E, Gerth K, Irschik H, Kunze B, Sasse F, Hoefle G, Augustiniak H, Bedorf N (1990) Fungicidal steroids from Trichoderma. DE Patent 3823068

  • Rifai MA (1969) A revision of the genus Trichoderma. Mycol Pap 116:1–56

    Google Scholar 

  • Ritieni A, Fogliano V, Nanno D, Randazzo G, Altomare C, Perrone G, Bottalico A, Maddau L, Marras F (1995) Paracelsin E, a new peptaibol from Trichoderma saturnisporum. J Nat Prod 58:1745–1748

    CAS  PubMed  Google Scholar 

  • Sakuno E, Yabe K, Hamasaki T, Nakajima HA (2000) New inhibitor of 5′-hydroxyaverantin dehydrogenase, an enzyme involved in aflatoxin biosynthesis, from Trichoderma hamatum. J Nat Prod 63:1677–1678

    CAS  PubMed  Google Scholar 

  • Sarhy-Bagnon V, Lozano P, Saucedo Castañeda G, Roussos S (2000) Production of 6-pentyl-α-pyrone by Trichoderma harzianum in liquid and solid state cultures. Process Biochem 36:103–109

    CAS  Google Scholar 

  • Sawa R, Mori Y, Iinuma H, Naganawa H, Hamada M, Yoshida S, Furutani H, Kajimura Y, Fuwa T, Takeuchi T (1994) Harzianic acid, a new antimicrobial antibiotic from a fungus. J Antibiot 47:731–732

    CAS  PubMed  Google Scholar 

  • Scarselletti R, Faull JL (1994) In vitro activity of 6-pentyl-a-pyrone, a metabolite of Trichoderma harzianum, in the inhibition of Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici. Mycol Res 98:1207–1209

    CAS  Google Scholar 

  • Schirmbock M, Lorito M, Wang YL, Hayes CK, Arisan-Atac I, Scala F, Harman GE, Kubicek CP (1994) Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against Phytopathogenic fungi. Appl Environ Microbiol 60:4364–4370

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simon A, Dunlop RW, Ghisalberti EL, Sivasithamparam K (1988) Trichoderma koningii produces a pyrone compound with antibiotic properties. Soil Biol Biochem 20:263–264

    CAS  Google Scholar 

  • Singh HB, Singh DP (2009) From biological control to bioactive metabolites: prospects with Trichoderma for safe human food. Pertanika J Trop Agric Sci 32:99–110

    Google Scholar 

  • Singh S, Dureja P, Tanwar RS, Singh A (2005) Production and antifungal activity of secondary metabolites of Trichoderma virens. Pestic Res J 17:26–29

    CAS  Google Scholar 

  • Singh HB, Singh BN, Singh SP, Nautiyal CS (2010) Solid-state cultivation of Trichoderma harzianum NBRI-1055 for modulating natural antioxidants in soybean seed matrix. Bioresour Technol 101:6444–6453

    CAS  PubMed  Google Scholar 

  • Singh BN, Singh A, Singh SP, Singh HB (2011) Trichoderma harzianum–mediated reprogramming of oxidative stress response in root apoplast of sunflower enhances defence against Rhizoctonia solani. Eur J Plant Pathol 131:121–134

    CAS  Google Scholar 

  • Sivasithamparam K, Ghisalberti EL (1998) Secondary metabolism in Trichoderma and Gliocladium. In: Kubicek CP, Harman GE (eds) Trichoderma and Glioclaudium, vol 1. Taylor & Francis, London, pp 139–205

    Google Scholar 

  • Slater GP, Haskins RH, Hogge LR, Nesbitt LR (1967) Metabolic products from a Trichoderma viride. Can J Chem 45:92–96

    CAS  Google Scholar 

  • Sperry S, Samuels GJ, Crews P (1998) Vertinoid polyketides from the saltwater culture of the fungus Trichoderma longibrachiatum separated from a Haliclona marine sponge. J Org Chem 63:10011–10014

    CAS  Google Scholar 

  • Stipanovic RD, Howell CR (1982) The structure of gliovirin, a new antibiotic from Gliocladium virens. J Antibiot 35:1326–1330

    CAS  PubMed  Google Scholar 

  • Stoppacher N, Kluger B, Zeilinger S, Krska R, Schuhmacher R (2010) Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GCMS. J Microbiol Methods 81:187–193

    CAS  PubMed  Google Scholar 

  • Strunz GM, Ren WY, Stillwell MA, Valenta Z (1977) Structure and synthesis of a new cyclopentenone derivative from Trichoderma album. Can J Chem 55:2610–2612

    CAS  Google Scholar 

  • Takashima J, Wataya Y (1999) Trichothecene derivatives as antimalarial agents. JP Patent 11228408

  • Tamura A, Kotani H, Naruto S (1975) Trichoviridin and dermadin from Trichoderma sp. TK-1. J Antibiot 28:161–162

    CAS  PubMed  Google Scholar 

  • Tanaka Y, Shiomi K, Kamei K, Sugoh-Hagino M, Enomoto Y, Fang F, Yamaguchi Y, Masuma R, Zhang CG, Zhang XW, Omura S (1998) Antimalarial activity of eadicicol, heptelidic acid and other fungal metabolites. J Antibiot 51:2153–2160

    Google Scholar 

  • Tezuka Y, Tasaki M, Huang Q, Hatanaka Y, Kikuchi T (1997) Studies on metabolites of mycoparasitic fungi, 15-hydroxyacorenone, new acorane-type sesquiterpene from the culture broth of the mycoparasitic fungus Trichoderma harzianum. Liebigs Ann Recl 12:2579–2580

    Google Scholar 

  • Verma M, Brar SK, Tyagi RD, Surampalli RY, Valero JR (2007) Antagonistic fungi, Trichoderma spp. Panoply of biological control. Biochem Eng J 37:1–20

    Google Scholar 

  • Vicente MF, Cabello A, Platas G, Basilio A, Diez MT, Dreikorn S, Giacobbe RA, Onishi JC, Meinz M, Kurtz MB, Rosenbach M, Thompson J, Abruzzo G, Flattery A, Kong L, Tsipouras A, Wilson KE, Pelaez F (2001) Antimicrobial activity of ergokonin A from Trichoderma longibrachiatum. J Appl Microbiol 91:806–813

    CAS  PubMed  Google Scholar 

  • Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol 43:143–148

    CAS  PubMed  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H (2008) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant P 72:80–86

    CAS  Google Scholar 

  • Vinale F, Flematti G, Sivasithamparam K, Lorito M, Marra R, Skelton BW, Ghisalberti EL (2009a) Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J Nat Prod 72:2032–2035

    CAS  PubMed  Google Scholar 

  • Vinale F, Ghisalberti EL, Sivasithamparam K, Marra R, Ritieni A, Ferracane R, Woo S, Lorito M (2009b) Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Lett Appl Microbiol 48:705–711

    CAS  PubMed  Google Scholar 

  • Vinale F, Girona IA, Nigro M, Mazzei P, Piccolo A, Ruocco M, Woo S, Rosa RD, Herrera CL, Lorito M (2011) Cerinolactone, a hydroxy-lactone derivative from Trichoderma Cerinum. J Nat Prod 75:103–106

    PubMed  Google Scholar 

  • Watnanabe N, Yamagishi M, Mizutani T, Kondoh H, Omura H, Hanada K, Kushida K (1990) CAF-603: a new antifungal carotane sesquiterpene isolation and structure elucidation. J Nat Prod 53:1176–1181

    Google Scholar 

  • Watts R, Dahiya J, Chaudhary K, Tauro P (1988) Isolation and characterization of a new antifungal metabolite of Trichoderma reesei. Plant Soil 107:81–84

    CAS  Google Scholar 

  • Weindling R (1932) Trichoderma lignorum as a parasite of other soil fungi. Phytopathology 22:837–845

    Google Scholar 

  • Whipps JM, Lumsden RD (2001) Commercial use of fungi as plant disease biological control agents: status and prospects. In: Butt T, Jackson C, Magan N (eds) Fungal biocontrol agents: progress, problems and potential. CABI Publishing, Wallingford, pp 9–22

    Google Scholar 

  • Wipf P, Kerekes AD (2003) Structure reassignment of the fungal metabolite TAEMC161 as the phytotoxin viridiol. J Nat Prod 66:716–718

    CAS  PubMed  Google Scholar 

  • Woo SL, Lorito M (2007) Exploiting the interactions between fungal antagonists, pathogens and the plant for biocontrol. In: Vurro M, Gressel J (eds) Novel biotechnologies for biocontrol agent enhancement and management. Springer, Amsterdam, pp 107–130

    Google Scholar 

  • Wright JM (1954) The production of antibiotics in soil. Production of gliotoxin by Trichoderma viride. Ann Appl Biol 41:280–289

    CAS  Google Scholar 

  • Wu YW, Ouyang J, Xiao X, Gao WY, Liu Y (2006) Antimicrobial properties and toxicity of anthraquinones by microcalorimetric bioassay. Chin J Chem 24:45–50

    CAS  Google Scholar 

  • Xiao-Yan S, Qing-Tao S, Shu-Tao X, Xiu-Lan C, Cai-Yun S, YuZhong Z (2006) Broad-spectrum antimicrobial activity and high stability of trichokonins from Trichoderma koningii SMF2 against plant pathogens. FEMS Microbiol Lett 260:119–125

    PubMed  Google Scholar 

  • Yamano T, Hemmi S, Yamamoto I, Tsubaki K (1970) Trichoviridin, a new antibiotic. JP Patent 45015435

  • Yamashita H (2000) Commercial production of mevalonolactone by fermentation and the application to skin cosmetics with anti-aging effect. Frag J 28:62–65

    CAS  Google Scholar 

Download references

Acknowledgments

Chetan Keswani is grateful to Banaras Hindu University, Varanasi, for providing CRET-UGC fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harikesh Bahadur Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keswani, C., Mishra, S., Sarma, B.K. et al. Unraveling the efficient applications of secondary metabolites of various Trichoderma spp.. Appl Microbiol Biotechnol 98, 533–544 (2014). https://doi.org/10.1007/s00253-013-5344-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5344-5

Keywords

Navigation