Skip to main content

Nanoparticles: The Next Generation Technology for Sustainable Agriculture

  • Chapter
  • First Online:
Microbial Inoculants in Sustainable Agricultural Productivity

Abstract

Agri-nanotechnology has the potential to transform the agricultural practices. Nanoparticles of interest can be produced both by various physical and chemical methods. The biogenetic production of nanoparticles is now of high interest due to simplicity of the procedures and their versatility. Several species of bacteria and plants are able to synthesize nanoparticles or help in the process of their production. Implementation of nanoparticle-based smart delivery system and nanosensors holds the promise of controlled release of agrochemicals and site-targeted delivery of various macromolecules needed for improved plant disease resistance, efficient nutrient utilization and improved plant defence in an environment-friendly manner. Nanoparticle-mediated plant transformation has the potential for genetic modification of plant improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu FOMS, Oliveira EF, Paula HCB, de Paula RCM (2012) Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydr Polym 89(4):1277–1282

    Article  CAS  PubMed  Google Scholar 

  • Al-Amin Sadek MD, Jayasuriya HP (2007) Nanotechnology prospects in agricultural context: an overview. In: Proceedings of the international agricultural engineering conference, Bangkok, 3–6 December 2007, p 548

    Google Scholar 

  • Ali DM, Sasikala M, Gunasekaran M, Thajuddin N (2011). Biosynthesis and characterization of silver nanoparticles using marine cyanobacterium Oscillatoria willei NTDM01. Digest J Nanomat Biostruct 6(2):415–420

    Google Scholar 

  • Allen ER, Hossner LR, Ming DW, Henninger DL (1993) Solubility and cation exchange in phosphate rock and saturated clinoptilolite mixtures. Soil Sci Soc Am J 57:1368–1374

    Article  CAS  PubMed  Google Scholar 

  • Anjali CH, Khan SS, Margulis-Goshen K, Magdassi S, Mukherjee A, Chandrasekaran N (2010) Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotoxicol Environ Saf 73(8):1932–1936

    Article  CAS  PubMed  Google Scholar 

  • Ankamwar B, Chandhary M, Sastry M (2005) Gol nanotriangles biologically synthesized using tamarind extract and potential application in vapour sensing. Synth React Inorg Met-Org Nano-metal Chem 35:19–26

    Article  CAS  Google Scholar 

  • Athanassiou CG, Kavallieratos NG, Meletsis CM (2007) Insecticidal effect of three diatomaceous earth formulations, applied alone or in combination, against three stored product beetle species on wheat and maize. J Stored Prod Res 43:330–334

    Article  CAS  Google Scholar 

  • Bahamas KC, Disouza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloid Surf B Biointerface 47:160–164

    Article  Google Scholar 

  • Bali R, Razak N, Lumb A, Harris AT (2006) The synthesis of metal nanoparticles inside live plants. IEEE Xplore. doi:10.1109/ICONN.2006.340592

    Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nanosilica—from medicine to pest control. Parasitol Res 103:253–258

    Article  CAS  PubMed  Google Scholar 

  • Beveridge TJ, Murray RGE (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacterial 141:876–887

    CAS  Google Scholar 

  • Bhagat D, Samanta SK, Bhattacharya S (2013) Efficient management of fruit pests by pheromone nanogels. Sci Rep 3:1–8

    Article  Google Scholar 

  • Boehm AL, Martinon I, Zerrouk R, Rump E, Fessi H (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20:433–441

    Article  CAS  PubMed  Google Scholar 

  • Bohua F, Ziyong Z (2011) Carboxymethy chitosan grafted ricinoleic acid group for nanopesticide carriers. Adv Mater Res 236–238:1783–1788

    Google Scholar 

  • Bolik M, Koop HU (1991) Identification of embryogenic microspores of barley (Hordeum vulgare) by individual selection and culture and their potential for transformation by mcroinjection. Protoplasma 162:61–68

    Article  Google Scholar 

  • Chinnamuthu CR, Boopathi PM (2009) Nanotechnology and agroecosystem. Madras Agric J 96:17–31

    Google Scholar 

  • Cui HX, Sun CJ, Liu Q, Jiang J, Gu W (2010) Applications of nanotechnology in agrochemical formulation, perspectives, challenges and strategies. In: Abstracts of international conference on Nanoagri, Sao pedro, Brazil, 20–25 June 2010

    Google Scholar 

  • Deng XY, Wei M, An HL (2001) Transgenic peanut plants obtained by particle bombardment via somatic embryogenesis regeneration system. Cell Res 11:156–160

    Article  CAS  PubMed  Google Scholar 

  • DeRosa MR, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol J 5:91

    Article  CAS  Google Scholar 

  • Egorova EM, Revina AA (2000) Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin. Colloids Surf A Physiochem Eng Aspects 168:87–96

    Article  CAS  Google Scholar 

  • Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134:151–160

    Article  CAS  PubMed  Google Scholar 

  • Fernandez V, Eichert T (2009) Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization. Crit Rev Plant Sci 28:36–68

    Article  CAS  Google Scholar 

  • Fleischer MA, O’Neill MA, Ehwald R (1999) The pore size of non-graminaceous plant cell wall is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturon II. Plant Physiol 121:829–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardea-Torresdey JL, Rodriguez E, Parsons JG, Peralta-Videa JR, Meitzner G, Gustavo CJ (2005) Use of ICP and XAS to determine the enhancement of gold phytoextraction by Chilopsis linearis using thiocyanate as a complexing agent. Anal Bioanal Chem 382:347–352

    Article  CAS  PubMed  Google Scholar 

  • Green JM, Beestman GB (2007) Recently patented and commercialized formulation and adjuvant technology. Crop Prot 26:320–327

    Article  CAS  Google Scholar 

  • He S, Ahang Y, Guo Z, Gu N (2008) Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata. Biotechnol Prog 24(2):476–480

    Article  CAS  PubMed  Google Scholar 

  • Hellmann C, Greiner A, Wendorff JH (2011) Design of pheromone releasing nanofibers for plant protection. Polym Adv Technol 22(4):407–413

    Article  CAS  Google Scholar 

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104–105114

    Article  Google Scholar 

  • Jerobin J, Sureshkumar RS, Anjali CH, Mukherjee A, Chandrasekaran N (2012) Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of Aza-A. Carbohydr Polym 90(4):1750–1756

    Article  CAS  PubMed  Google Scholar 

  • Johnston CT (2010) Probing the nanoscale architecture of clay minerals. Clay Miner 45:245–279

    Article  CAS  Google Scholar 

  • Joseph T, Marrison M (2006). Nanotechnology in Agriculture and Food. A Nanoforum report, available for downloaded from www.nanoforum.org.

  • Klaus JT, Joerger R, Olsson E, Granqvist CG (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19:15–20

    Article  Google Scholar 

  • Klein TM, Kornstein L, Stanford JC, Fromm ME (1989) Genetic transformation of maize cells by particle bombardment. Plant Physiol 91:440–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowshik M, Ashtaputre SH, Kharazi SH (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanothecnology 14:95–100

    Article  CAS  Google Scholar 

  • Kumar RSS, Shiny PJ, Anjali CH, Jerobin J, Goshen KM, Magdassi S (2013) Distinctive effects of nano-sized permethrin in the environment. Environ Sci Pollut Res 20(4):2593–2602

    Article  Google Scholar 

  • Lai F, Wissing SA, Muller RH, Fadda AM (2006) Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. AAPS Pharm Sci Tech 7(1):E10–E18

    Article  Google Scholar 

  • Leggo PJ (2000) An investigation of plant growth in an organo–zeolitic substrate and its ecological significance. Plant Soil 219:135–146

    Article  CAS  Google Scholar 

  • Li ZZ, Chen JF, Liu F, Lu AQ, Wang Q, Sun HY, Wen LX (2007) Study of UV shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag Sci 63:241–246

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Feng Z, Zhang F, Zhang S, He X (2006) Preparation and testing of cementing and coating nano-subnanocomposites of slow/controlled-release fertilizer. Agric Sci China 5:700–706

    Article  Google Scholar 

  • Liu Y, Laks P, Heiden P (2002a) Controlled release of biocides in solid wood. Part 1. Efficacy against Gloeophyllum trabeum, a brown rot wood decay fungus. J Appl Polym Sci 86:596–607

    Article  CAS  Google Scholar 

  • Liu Y, Laks P, Heiden P (2002b) Controlled release of biocides in solid wood. Part 3. Preparation and characterization of surfactant-free nanoparticles. J Appl Polym Sci 86:615–621

    Article  CAS  Google Scholar 

  • Liu Y, Laks P, Heiden P (2003) Nanoparticles for the controlled release of fungicides in wood: soil Jar studies using Gloeophyllum trabeum and Trametes versicolor wood decay fungi. Holzforschung 57:135–139

    CAS  Google Scholar 

  • Liu Y, Yan L, Heiden P, Laks P (2001) Use of nanoparticles for controlled release of biocides in solid wood. J Appl Polym Sci 79:458–465

    Article  CAS  Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol 69:485–492

    CAS  Google Scholar 

  • McKnight TE, Melechko AV, Griffin GD, Guillorn MA, Merkulov VI, Serna F, Hensley DK, Doktycz MJ, Lowndes DH, Simpson ML (2003) Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology 14:551–556

    Article  CAS  Google Scholar 

  • Mewis I, Ulrichs CH (2001) Action of amorphous diatomaceous earth against different stages of the stored product pests Tribolium confusum, Tenebrio molitor, Sitophilus granaries and Plodia interpunctell. J Stored Prod Res 37:153–164

    Article  CAS  PubMed  Google Scholar 

  • Millán G, Agosto F, Vázquez M (2008) Use of clinoptilolite as a carrier for nitrogen fertilizers in soils of the Pampean regions of Argentina. Cien Inv Agric 35(3):293–302

    Google Scholar 

  • Miller G, Kinnear S (2007) Nanotechnology the new threat to food. Clean Food Org 4:1–7

    Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment. Environ Int 32:967–976

    Article  CAS  PubMed  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(154):163

    Google Scholar 

  • Neuhaus G, Spangerberg G (1990) Plant transformation by microinjection techniques. Physiol Plant 79:213–217

    Article  CAS  Google Scholar 

  • Nithya R, Ragunathan R (2009) Synthesis of silver nanoparticle using Pleurotus Sajor Caju and its antimicrobial study. Digest J Nanomat Biostruct 4(4):623–629

    Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica–silver for control of various plant diseases. Plant Pathol J 22:295–302

    Article  Google Scholar 

  • Popescu M, Velea A, LÅ‘rinczi A (2010) Biogenic production of nanoparticles. Digest J Nanom Biostruct 5(4):1035–1040

    Google Scholar 

  • Pradhan S, Roy I, Lodh G, Patra P, Choudhury SR, Samanta A (2013) Entomotoxicity and biosafety assessment of PEGylated acephate nanoparticles: a biologically safe alternative to neurotoxic pesticides. J Environ Sci Health B 48(7):559–569

    Article  CAS  PubMed  Google Scholar 

  • Qing S, Yongli S, Yuehong Z, Ting Z, Haoyan S (2013) Pesticide-conjugated polyacrylate nanoparticles: novel opportunities for improving the photostability of emamectin benzoate. Polym Adv Technol 24(2):137–143

    Article  Google Scholar 

  • Rad SJ, Naderi R, Alizadeh H, Yaraghi AS (2013) Silver-nanoparticle as a vector in gene delivery by incubation. IRJALS 02(21):33

    Google Scholar 

  • Radu DR, Lai C, Jeftinija K, Rowe E, Jeftinija S, Lin V (2004) A polyamidoamine dendrimer capped mesoporous silica nanospheres-based gene transfection reagent. J Am Chem Soc 126:13216–13217

    Article  CAS  PubMed  Google Scholar 

  • Rahman A, Seth D, Mukhopadhyaya SK, Brahmachary RL, Ulrichs C, Goswami A (2009) Surface functionalized amorphous nanosilica and microsilica with nanopores as promising tools in biomedicine. Naturwissenschaften 96:31–38

    Article  CAS  PubMed  Google Scholar 

  • Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomat Nanobiotech 3:315–324

    Article  CAS  Google Scholar 

  • Shahi SK, Patra M (2003) Microbially synthesized bioactive nanoparticles and their formulation active against human pathogenic fungi. Rev Adv Mater Sci 5:501–509

    Google Scholar 

  • Scott N, Chan H (2003) Nanoscale science and engineering for agriculture and food system report. National Planning Workshop, Washington, DC

    Google Scholar 

  • Segura T, Shea LD (2001) Materials for non viral gene delivery. Annu Rev Mater Res 31:25–46

    Article  CAS  Google Scholar 

  • Sharma NC, Sahi SV, Nath S, Parsons JG, Gardea-Torresdey JL, Pal T (2007) Synthesis of plant mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ Sci Technol 41:5137–5142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song JY, Jang HK, Kim BS (2009) Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem 44:1133–1138

    Article  CAS  Google Scholar 

  • Su XL, Li Y (2004) Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. Anal Chem 76:4806–4810

    Article  CAS  PubMed  Google Scholar 

  • Sultan Y, Walsh R, Monreal CM, DeRosa MC (2009) Preparation of functional aptamer films using layer-by-layer self-assembly. Biomacromol J 10:1149–1154

    Article  CAS  Google Scholar 

  • Suman PR, Jain VK, Varma A (2010) Role of nanomaterials in symbiotic fungus growth enhancement. Curr Sci 99:1189–1191

    Google Scholar 

  • Torney F, Trewyn BG, Lin SY, Wang K (2007) Mesoporous silica nanoparticles deliver NA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Li X, Zhang G, Dong J, Eastoe J (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interf Sci 314:230–235

    Article  CAS  Google Scholar 

  • Wen YZ, Yuan YL, Chen H, Xu DM, Lin KD, Liu WP (2010) Effect of chitosan on the enantio selective bioavailability of the herbicide dichlorprop to Chlorella pyrenoidosa. Environ Sci Technol 44(13):4981–4987

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Fan QJ, Yin ZQ, Li XT, Du YH, Jia RY (2010) The preparation of neem oil microemulsion (Azadirachta indica) and the comparison of acaricidal time between neem oil microemulsion and other formulations in vitro. Vet Parasitol 169(3–4):399–403

    Article  CAS  PubMed  Google Scholar 

  • Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57(21):10156–10162

    Article  CAS  PubMed  Google Scholar 

  • Yin YH, Guo QM, Han Y, Wang LJ, Wan SQ (2012) Preparation, characterization and nematicidal activity of lansiumamide B nano-capsules. J Integr Agric 11(7):1151–1158

    Article  CAS  Google Scholar 

  • Zhang F, Wang R, Xiao Q, Wang Y, Zhang J (2006) Effects of slow/controlled-release fertilizer cemented and coated by nano-materials on biology. II Effects of slow/controlled-release fertilizer cemented and coated by nano-materials on plants. Nanoscience 11:18–26

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak G. Panpatte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Panpatte, D.G., Jhala, Y.K., Shelat, H.N., Vyas, R.V. (2016). Nanoparticles: The Next Generation Technology for Sustainable Agriculture. In: Singh, D., Singh, H., Prabha, R. (eds) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2644-4_18

Download citation

Publish with us

Policies and ethics