Skip to main content

Recent Developments in Generation of Marker-Free Transgenic Plants

  • Chapter
  • First Online:
Advances in Plant Transgenics: Methods and Applications

Abstract

A plant modified through artificial insertion of a foreign DNA into its genome is referred to as “genetically modified plant” or a “transgenic” plant. The selection of the transgenic tissues during the genetic transformation process is based on the constitutively expressed marker gene(s) coding for reporters, such as those conferring resistance against antibiotics and/or herbicides. In this direction, Agrobacterium-mediated genetic co-transformation is arguably the most commonly used technique to transfer the gene(s) of interest as well as the marker gene(s). However, the latter is purposeless once a transgenic tissue has been selected. Although these marker genes are important for screening purposes, they exhibit safety concerns for the environment as well as among consumers. At times, commercial transgenic plants transfer these gene(s) to the weeds or other organisms, leading to the development of resistance among nontarget plants. Moreover, the escape of such gene could affect the wild relatives or land races via gene flow. Therefore, in order to maintain sustainability, removing the marker gene(s) from a transgenic crop is of utmost importance, prior to its commercialization. Hitherto, several methodologies have been evolved for the development of a marker-free transgenic crop. In the present summary, we discuss the merits and the shortcomings of the Agrobacterium-mediated genetic co-transformation. In addition, we review the recent developments among other approaches and their impacts and suggest directions for their maximum utilization in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed MMS, Bian S, Wang M, Zhao J, Zhang B, Liu Q, Zhang C, Tang S, Gu M, Yu H (2017) RNAi-mediated resistance to rice black-streaked dwarf virus in transgenic rice. Transgenic Res 26:197–207

    Article  CAS  PubMed  Google Scholar 

  • Bertalan I, Munder MC, Weiß C, Kopf J, Fischer D, Johanningmeier U (2015) A rapid, modular and marker-free chloroplast expression system for the green alga Chlamydomonas reinhardtii. J Biotechnol 195:60–66

    Article  CAS  PubMed  Google Scholar 

  • Bevan MW, Flavell RB, Chilton MD (1983) A chimeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187

    Article  CAS  Google Scholar 

  • Breitler JC, Meynard D, Van Boxtel J, Royer M, Bonnot F, Cambillau L, Guiderdoni E (2004) A novel 2 T-DNA binary vector allows efficient generation of marker-free transgenic plants in three elite cultivars of rice (Oryza sativa L.). Transgenic Res 13:271–287

    Article  CAS  PubMed  Google Scholar 

  • Chakraborti D, Sarkar A, Mondal HA, Schuermann D, Hohn B, Sarmah BK, Das S (2008) Cre/lox system to develop selectable marker free transgenic tobacco plants conferring resistance against sap sucking homopteran insect. Plant Cell Rep 27:1623–1633

    Article  CAS  PubMed  Google Scholar 

  • Chiang YC, Kiang YT (1988) Genetic analysis of mannose-6-phosphate isomerase in soybeans. Genome 30:808–811

    Article  CAS  Google Scholar 

  • Costa DL, Piazza S, Campa M, Flachowsky H, Hanke MV, Malnoy M (2016) Efficient heat-shock removal of the selectable marker gene in genetically modified grapevine. Plant Cell Tissue Organ Cult 124:471–481

    Article  CAS  Google Scholar 

  • Cotsaftis O, Sallaud C, Breitler JC, Meynard D, Greco R, Pereira A, Guiderdoni E (2002) Transposon-mediated generation of T-DNA- and marker-free rice plants expressing a Bt endotoxin gene. Mol Breed 10:165–180

    Article  CAS  Google Scholar 

  • Dale EC, Ow DW (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci U S A 88:10558–10562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dale PJ, Clarke B, Fontes MG (2002) Potential for the environmental impact of transgenic crops. Nat Biotechnol 20:567–574

    Article  CAS  PubMed  Google Scholar 

  • Darbani B, Eimanifar A, Stewart CN, Camargo WN (2007) Methods to produce marker-free transgenic plants. Biotechnol J 2:83–90

    Article  CAS  PubMed  Google Scholar 

  • Darwish NA, Khan RS, Ntui VO, Nakamura I, Mii M (2014) Generation of selectable marker-free transgenic eggplant resistant to Alternariasolani using the R/RS site-specific recombination system. Plant Cell Rep 33:411–421

    Article  CAS  PubMed  Google Scholar 

  • De Block M, Debrouwer D (1991) Two T-DNA’s cotransformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theor Appl Genet 82:257–263

    Article  PubMed  Google Scholar 

  • De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gosselé V, Movva NR, Thompson C, Montagu MV, Leemans J (1987) Engineering of herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6:2513–2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Oliveira ML, Stover E, Thomson JG (2015) The codA gene as a negative selection marker in citrus. Springer Plus 17:p264

    Article  CAS  Google Scholar 

  • Depicker A, Herman L, Jacobs A, Schell J, Montague MV (1985) Frequencies of simultaneous transformation with different T-DNAs and their relevance to the agrobacterium plant cell interaction. Mol Gen Genet 201:477–484

    Article  CAS  Google Scholar 

  • Dutt M, Zambon FT, Erpen L, Soriano L, Grosser J (2018) Embryo-specific expression of a visual reporter gene as a selection system for citrus transformation. PLoS One 13:e0190413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ebinuma H, Komamine A (2001) Mat (Multi-Auto-Transformation) vector system. The oncogenes of Agrobacterium as positive markers for regeneration and selection of marker-free transgenic plants. In Vitro Cell Dev Biol Plant 37:103–113

    Article  CAS  Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Yamakado M (1997) Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc Natl Acad Sci U S A 94:2117–2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erikson O, Hertzberg M, Nasholm T (2004) A conditional marker gene allowing both positive and negative selection in plants. Nat Biotechnol 22:455–458

    Article  CAS  PubMed  Google Scholar 

  • Éva C, Téglás F, Zelenyánszki H, Tamás C, Juhász A, Mészáros K, Tamás L (2018) Cold inducible promoter driven Cre-lox system proved to be highly efficient for marker gene excision in transgenic barley. J Biotechnol 265:15–24

    Article  PubMed  CAS  Google Scholar 

  • FAO, Food and Agriculture Organization/World Health Organization (2000) Safety aspects of genetically modified foods of plant origin. Report of a joint FAO/WHO consultation on foods derived from biotechnology. World Health Organization, Geneva

    Google Scholar 

  • Feng D, Wang Y, Wu J, Lu T, Zhang Z (2017) Development and drought tolerance assay of marker-free transgenic rice with OsAPX2 using biolistic particle-mediated co-transformation. Crop J 5:271–281

    Article  Google Scholar 

  • Ganguly S, Ghosh G, Purohit A, Sreevathsa R, Chaudhuri RK, Chakraborti D (2018) Effective screening of transgenic pigeonpea in presence of negative selection agents. Proc Natl Acad Sci India Sect B 88:1565

    Article  CAS  Google Scholar 

  • García-Almodóvar RC, Petri C, Padilla IMG, Burgos L (2014) Combination of site-specific recombination and a conditional selective marker gene allows for the production of marker-free tobacco plants. Plant Cell Tissue Organ Cult 116:205–215

    Article  CAS  Google Scholar 

  • Ghulam KAP, Na’imatulapidah AM (2018) Green fluorescent protein as a visual selection marker for oil palm transformation. Ind Crop Prod 115:134–145

    Article  CAS  Google Scholar 

  • Gilbertson LA, Huang S, Malver T (2018) Recombinant DNA constructs employing site – specific recombination United States Patent 9856485

    Google Scholar 

  • Gleave AP, Mitra DS, Mudge SR, Morris BA (1999) Selectable marker-free transgenic plants without sexual crossing: transient expression of Cre recombinase and use of the conditional lethal dominant gene. Plant Mol Biol 40:223–235

    Article  CAS  PubMed  Google Scholar 

  • Goldsbrough AP, Lastrella CN, Yoder JI (1993) Transposition mediated re-positioning and subsequent elimination of marker genes from transgenic tomato. Nat Biotechnol 11:1286–1292

    Article  CAS  Google Scholar 

  • Goldsworthy A, Street HE (1965) The carbohydrate nutrition of tomato roots: VIII. The mechanism of the inhibition by D-mannose of the respiration of excised roots. Ann Botany-London 29:45–58

    Article  CAS  Google Scholar 

  • Goodwin J, Pastori G, Davey M, Jones H (2004) Transgenic plants: methods and protocols. Method Mol Biol 286:191–202

    Google Scholar 

  • Gorbunova V, Levy AA (1999) How plants make ends meet: DNA double-strand break repair. Trends Plant Sci 4:263–269

    Article  CAS  PubMed  Google Scholar 

  • Hare PD, Chua NH (2002) Excision of selectable marker genes from transgenic plants. Nat Biotechnol 20:575–580

    Article  CAS  PubMed  Google Scholar 

  • He Y, Zhu M, Wang L, Wu J, Wang Q, Wang R, Zhao Y (2018) Programmed self-elimination of the CRISPR/Cas9 construct greatly accelerates the isolation of edited and transgene-free rice plants. Mol Plant 11:1210–1213

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Estrella L, De Block M, Messens E, Hernalsteens JP, Montagu MV, Schell J (1983) Chimeric genes as dominant selectable markers in plant cells. EMBO J 2:987–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoelscher M, Tiller N, Teh AYH, Wu GZ, Ma JKC, Bock R (2018) High-level expression of the HIV entry inhibitor griffithsin from the plastid genome and retention of biological activity in dried tobacco leaves. Plant Mol Biol 97:357–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holkar SK, Mandal B, Jain RK (2018) Development and validation of marker-free constructs based on nucleocapsid protein gene of watermelon bud necrosis orthotospovirus in watermelon. Curr Sci 114:1742–1747

    Article  CAS  Google Scholar 

  • Hu L, Li H, Qin R, Xu R, Li J, Li L, Wei P, Yang J (2016) Plant phosphomannose isomerase as a selectable marker for rice transformation. Sci Rep 6:25921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiwal PK, Sahoo L, Singh ND, Singh RP (2002) Strategies to deal with the concern about marker genes in transgenic plants: some environmentally friendly approaches. Curr Sci 83:128–136

    CAS  Google Scholar 

  • Jang JC, Sheen J (1997) Sugar sensing in higher plants. Trends Plant Sci 2:208–214

    Article  Google Scholar 

  • Jianru Z, Niu Q, Ikeda Y, Chua N (2002) Marker-free transformation: increasing transformation frequency by the use of regeneration-promoting genes. Curr Opin Biotechnol 13:173–180

    Article  Google Scholar 

  • Jo KR, Kim CJ, Kim SJ, Kim TY, Bergervoet M, Jongsma M, Visser RGF, Jacobsen E, Vossen JH (2014) Development of late blight resistant potatoes by cisgene stacking. BMC Biotechnol 14:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Joersbo M, Donaldson I, Kreiberg J, Petersen SG, Brunstedt J, Okkels FT (1998) Analysis of mannose selection used for transformation of sugar beet. Mol Breed 4:111–117

    Article  CAS  Google Scholar 

  • Kasai Y, Matsuzaki K, Ikeda F, Yoshimitsu Y, Harayama S (2017) Precise excision of a selectable marker gene in transgenic Coccomyxa strains by the piggyBac transposase. Algal Res 27:152–161

    Article  Google Scholar 

  • Kay E, Vogel TM, Bertolla F, Nalin R, Simonet P (2002) In situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria. Appl Environ Microbiol 68:3345–3351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khidr YA, Nasr MI (2018) Generation of transgenic marker-free cucumber plants by co-transformation strategy. Egyptian J Genet Cytol 47:29–43

    Google Scholar 

  • Kopertekh L, Krebs E, Guzmann F (2018) Improvement of conditional Cre-lox system through application of the regulatory sequences from cowpea mosaic virus. Plant Biotechnol Rep 12:127–137

    Article  Google Scholar 

  • Kuan YC, Thiruvengadam V, Lin JS, Liu JH, Chen TJ, Wu HM, Wang WC (2018) Broad-specificity amino acid racemase, a novel non-antibiotic selectable marker for transgenic plants. Plant Biotechnol Rep 12:27–38

    Article  Google Scholar 

  • Loughman BC (1966) The mechanism of absorption and utilization of phosphate by barley plants in relation to subsequent transport to the shoot. New Phytol 65:388–397

    Article  CAS  Google Scholar 

  • Lucca P, Ye X, Potrykus I (2001) Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Mol Breed 7:43–49

    Article  CAS  Google Scholar 

  • Malca I, Endo RM, Long MR (1967) Mechansim of glucose counteraction of inhibition of root elongation by galactose, mannose and glucosamine. Phytopathology 57:272–278

    CAS  Google Scholar 

  • Maruta T, Yonemitsu M, Yabuta Y, Tamoi M, Ishikawa T, Shigeoka S (2008) Arabidopsis phosphomannose isomerase 1, but not phosphomannose isomerase 2, is essential for ascorbic acid biosynthesis. J Biol Chem 283:28842–28851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKnight TD, Lillis MT, Simpson RB (1987) Segregation of genes transferred to one plant cell from two separate Agrobacterium strains. Plant Mol Biol 8:439–445

    Article  CAS  PubMed  Google Scholar 

  • Mentewab A, Stewart CNJ (2005) Overexpression of an Arabidopsis thaliana ABC transporter confers kanamycin resistance to transgenic plants. Nat Biotechnol 23:1177–1180

    Article  CAS  PubMed  Google Scholar 

  • Mészáros K, Éva C, Kiss T, Bányai J, Kiss E, Téglás F, Láng L, Karsai I, Tamás L (2015) Generating marker-free transgenic wheat using minimal gene cassette and cold-inducible Cre/lox system. Plant Mol Biol Report 33:1221–1231

    Article  CAS  Google Scholar 

  • Miflin BJ, Lea PJ (1977) Amino acid metabolism. Annu Rev Plant Physiol 28:299–329

    Article  CAS  Google Scholar 

  • Mikami T, Saeki Y, Hirai S, Shimokawa M, Umeyama Y, Kuroda Y, Kodama H (2018) Transformation efficiency and transgene expression level in marker-free RDR6-knockdown transgenic tobacco plants. Plant Biotechnol Rep 12:389–397

    Article  Google Scholar 

  • Mookkan M, Nelson-Vasilchik K, Hague J, Zhang ZJ, Kausch AP (2017) Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Rep 36:1477–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • National Research Council (US) Committee on Genetically Modified Pest-Protected Plants (2000) ‘Genetically modified pest-protected plants: science and regulation’, Washington D.C: National Academy Press, p 1–246

    Google Scholar 

  • Negrotto D, Jolly M, Beer S, Wenck AR, Hansen G (2000) The use of phosphomannose- isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep 19:798–803

    Article  CAS  PubMed  Google Scholar 

  • Nielsen KM, Bones AM, Smalla K, Elsas JDV (1998) Horizontal gene transfer from transgenic plants to terrestrial bacteria–a rare event? FEMS Microbiol Rev 22:79–103

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa-Yokoi A, Endo M, Ohtsuki N, Saika H, Toki S (2015) Precision genome editing in plants via gene targeting and piggyBac-mediated marker excision. Plant J 81:160–168

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa-Yokoi A, Endo M, Osakabe K, Saika H, Toki S (2016) Precise marker excision system using an animal-derived piggyBac transposon in plants. Plant J 77:454–463

    Article  CAS  Google Scholar 

  • Okennedey MM, Burger JT, Botha FC (2004) Pearl millet transformation system using the positive selectable marker gene phosphomannose isomerase. Plant Cell Rep 22:684–690

    Article  CAS  Google Scholar 

  • Oliva N, Chadha-Mohanty P, Poletti S, Abrigo E, Atienza G, Torrizo L, Garcia R, Dueñas CJ, Poncio MA, Balindong J, Manzanilla M, Montecillo F, Zaidem M, Barry G, Hervé P, Shou H, Slamet-Loedin IH (2014) Large-scale production and evaluation of marker-free indica rice IR64 expressing phytoferritin genes. Mol Breed 33:23–37

    Article  CAS  PubMed  Google Scholar 

  • Osakabe K, Nishizawa-Yokoi A, Ohtsuki N, Osakabe Y, Toki S (2014) A mutated cytosine deaminase gene, codA (D314A), as an efficient negative selection marker for gene targeting in rice. Plant Cell Physiol 55:658–665

    Article  CAS  PubMed  Google Scholar 

  • Palomo-Ríos E, Quesada MA, Matas AJ, Pliego-Alfaro F, Mercado JA (2018) The history and current status of genetic transformation in berry crops. In: Hytönen T, Graham J, Harrison R (eds) The genomes of rosaceous berries and their wild relatives. Compendium of Plant Genomes. Springer, East Malling, pp 139–160

    Chapter  Google Scholar 

  • Pego JV, Weisbeek PJ, Smeekens SCM (1999) Mannose inhibits Arabidopsis germination via a hexokinase-mediated step. Plant Physiol 119:1017–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Bernal M, Delgado M, Cruz A, Abreu D, Valdivia O, Armas R (2017) Marker-free transgenic rice lines with a defensin gene are potentially active against phytopathogenic fungus Sarocladiumoryzae. Acta Phytopathologica et Entomologica Hungarica 52:135–144

    Article  CAS  Google Scholar 

  • Perl A, Galili S, Shaul O, Ben-Tzvi I, Galili G (1993) Bacterial dihydrodipicolinate synthase and desensitized aspartate kinase: two novel selectable markers for plant transformation. Nat Biotechnol 11:715–718

    Article  CAS  Google Scholar 

  • Petri C, López-Noguera S, Wang H, García-Almodóvar C, Alburquerque N, Burgos L (2012) A chemical-inducible Cre-LoxP system allows for elimination of selection marker genes in transgenic apricot. Plant Cell Tissue Organ Cult 110:337–346

    Article  CAS  Google Scholar 

  • Poliner E, Takeuchi T, Du ZY, Benning C, Farré EM (2018) Nontransgenic marker-free gene disruption by an episomal CRISPR system in the oleaginous microalga, Nannochloropsis oceanica. ACS Synth Biol 7:962–968

    Article  CAS  PubMed  Google Scholar 

  • Proudfoot AEI, Payton MA, Wells TNC (1994) Purification and characterization of fungal and mammalian phosphomannose isomerases. J Protein Chem 13:619–627

    Article  CAS  PubMed  Google Scholar 

  • Puchta H (2000) Removing selectable marker genes: taking the shortcut. Trends Plant Sci 5:273–274

    Article  CAS  PubMed  Google Scholar 

  • Rajadurai G, Kalaivani A, Varanavasiyappan S, Balakrishnan N, Udayasuriyan V, Sudhakar D, Natarajan N (2018) Generation of insect resistant marker-free transgenic rice with a novel cry2AX1 gene. Electron J Plant Breeding 9:723–732

    Article  Google Scholar 

  • Ran Y, Patron N, Kay P, Wong D, Buchanan M, Cao Y, Sawbridge T, Davies JP, Mason J, Webb SR, Spangenberg G, Ainley WM, Walsh TA, Hayden MJ (2018) Zinc finger nuclease-mediated precision genome editing of an endogenous gene in hexaploid bread wheat (Triticumaestivum) using a DNA repair template. Plant Biotechnol J 16:2088–2101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao MVR, Parameswari C, Sripriya R, Veluthambi K (2011) Transgene stacking and marker elimination in transgenic rice by sequential Agrobacterium-mediated co-transformation with the same selectable marker gene. Plant Cell Rep 30:1241–1252

    Article  CAS  Google Scholar 

  • Reed J, Privalle L, Powell ML, Meghji M, Dawson J, Dunder E, Sutthe J, Wenck A, Launis K, Kramer C, Chang YF, Hansen G, Wright M (2001) Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cell Dev Biol Plant 37:127–132

    Article  CAS  Google Scholar 

  • Righetti L, Djennane S, Berthelot P, Cournol R, Wilmot N, Loridon K, Vergne E, Chevreau E (2014) Elimination of the nptIImarker gene in transgenic apple and pear with a chemically inducible R/Rs recombinase. Plant Cell Tissue Organ Cult 117:335–348

    Article  CAS  Google Scholar 

  • Royal Society (1998) Genetically modified plants for food use. The Royal Society, London

    Google Scholar 

  • Schubbert R, Hohlweg U, Renz D, Doerfler W (1998) On the fate of orally ingested foreign DNA in mice: chromosomal association and placental transmission to the fetus. Mol Gen Genet 259:569–576

    Article  CAS  PubMed  Google Scholar 

  • Shah P, Singh NK, Khare N, Rathore M, Anandhan S, Arif M, Singh RK, Das SC, Ahmed Z, Kumar N (2008) Agrobacterium mediated genetic transformation of summer squash (Cucurbita pepo L. cv. Australian green) with cbf-1using a two vector system. Plant Cell Tissue Organ Cult 95:363–371

    Article  CAS  Google Scholar 

  • Shao M, Michno JM, Hotton SK, Blechl A, Thomson J (2015) A bacterial gene codA encoding cytosine deaminase is an effective conditional negative selectable marker in Glycine max. Plant Cell Rep 34:1707–1716

    Article  CAS  PubMed  Google Scholar 

  • Shimatani Z, Yokoi AN, Endo M, Toki S, Terada R (2015) Positive–negative-selection-mediated gene targeting in rice. Front Plant Sci 5:748

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H, Teramura H, Yamamoto T, Komatsu H, Miura K, Ezura H, Nishida K, Ariizumi T, Kondo A (2017) Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35:441–443

    Article  CAS  PubMed  Google Scholar 

  • Shimatani Z, Fujikura U, Ishii H, Matsui Y, Suzuki M, Ueke Y, Taoka KI, Terada R, Nishida K, Kondo A (2018) Inheritance of co-edited genes by CRISPR-based targeted nucleotide substitutions in rice. Plant Physiol Biochem 131:78–83

    Article  CAS  PubMed  Google Scholar 

  • Sonntag K, Wang Y, Wallbraun M (2004) A transformation method for obtaining marker-free plants based on phosphomannose isomerase. Acta Universitatis Latviensis Biol 676:223–226

    Google Scholar 

  • Sripriya R, Raghupathy V, Veluthambi K (2008) Generation of selectable marker-free sheath blight resistant transgenic rice plants by efficient co-transformation of a cointegrate vector T-DNA and a binary vector T-DNA in one Agrobacterium tumefaciens strain. Plant Cell Rep 27:1635–1644

    Article  CAS  PubMed  Google Scholar 

  • Srivastava V, Underwood JL, Zhao S (2017) Dual-targeting by CRISPR/Cas9 for precise excision of transgenes from rice genome. Plant Cell Tissue Org Cult 129:153–160

    Article  CAS  Google Scholar 

  • Tabatabaei I, Bosco CD, Bednarska M, Ruf S, Meurer J, Bock R (2018) A highly efficient sulfadiazine selection system for the generation of transgenic plants and algae. Plant Biotechnol J 7(3):638–649

    Article  CAS  Google Scholar 

  • Terada R, Nagahara M, Furukawa K, Shimamoto M, Yamaguchi K, Iida S (2010) Cre-lox mediated marker elimination and gene reactivation at waxy locus created in the rice genome based on strong positive-negative selection. Plant Biotechnol J 27:29–37

    Article  CAS  Google Scholar 

  • Verruto J, Francis K, Wang Y, Low MC, Greiner J, Tacke S, Kuzminov F, Lambert W, McCarren J, Ajjawi I, Bauman N, Kalb R, Hannum G, Moellering ER (2018) Unrestrained markerless trait stacking in Nannochloropsis gaditana through combined genome editing and marker recycling technologies. Proc Natl Acad Sci U S A 115:7015–7022

    Article  CAS  Google Scholar 

  • Wakita Y, Otani M, Iba K, Shimada T (1998) Co-integration, co-expression and co-segregation of an unlinked selectable marker gene and NtFAD3 gene in transgenic rice plants produced by particle bombardment. Genes Genet Syst 73:219–226

    Article  CAS  PubMed  Google Scholar 

  • Wang XH, Zhang S, Hu D, Zhao X, Li Y, Liu T, Wang J, Hou X, Li Y (2014a) BcPMI2, isolated from non-heading Chinese cabbage encoding phosphomannoseisomerase, improves stress tolerance in transgenic tobacco. Mol Biol Rep 41:2207–2216

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang L, Li Y, Liu Y, Han L, Zhu Z, Wang F, Peng Y (2014b) Expression of Cry1Ab protein in a marker-free transgenic Bt rice line and its efficacy in controlling a target pest, Chilo suppressalis (Lepidoptera: Crambidae). Environ Entomol 43:528–536

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Liu H, Du L, Ye X (2017) Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties. Plant Biotechnol J 15:614–623

    Article  CAS  PubMed  Google Scholar 

  • Woo HJ, Qin Y, Park SY, Park SK, Cho YG, Shin KS, Lim MH, Cho HS (2015) Development of selectable marker-free transgenic rice plants with enhanced seed tocopherol content through FLP/FRT-mediated spontaneous auto-excision. PLoS One 10:e0132667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wright M, Dawson J, Dunder E, Suttie J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H, Artim-Moore L (2001) Efficient biolistic transformation of maize (Zea mays L.) using the phosphomannoseisomerase gene, pmi, as the selectable marker. Plant Cell Rep 20:429–436

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Zhao S, Zhang Y, Yin H, Peng X, Cheng Z, Yang Z, Zheng J (2017) Production of marker-free transgenic rice (Oryza sativa L.) with improved nutritive quality expressing AmA1. Iran J Biotechnol 15:102–110

    Article  PubMed  PubMed Central  Google Scholar 

  • Youssef D, Nihou A, Partier A, Tassy C, Paul W, Rogowsky PM, Beckert M, Barret P (2018) Induction of targeted deletions in transgenic bread wheat (Triticumaestivum L.) using customized meganuclease. Plant Mol Biol Report 36:71–81

    Article  CAS  Google Scholar 

  • Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qiu JL, Gao C (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Yu S, Zeng D, Liu H, Wang H, Yang Z, Xie X, Shen R, Tan J, Li H, Zhao X, Zhang Q, Chen Y, Guo J, Chen L, Liu YG (2017) Development of “purple endosperm rice” by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system. Mol Plant 10:918–929

    Article  CAS  PubMed  Google Scholar 

  • Zou X, Peng A, Xu L, Liu X, Lei T, Yao L, He Y, Chen S (2013) Efficient auto-excision of a selectable marker gene from transgenic citrus by combining the Cre/loxP system and ipt selection. Plant Cell Rep 32:1601–1613

    Article  CAS  PubMed  Google Scholar 

  • Zubko E, Scutt C, Meyer P (2000) Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nat Biotechnol 18:442–445

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support from Projeto NORTE-01-0145-FEDER000017- INTERACT/ VitalityWINE, cofinanced by FEDER/Programa NORTE 2020, and Plataforma de inovação da vinha e do vinho-innovine&wine, Norte-01-0145-FEDER000038. Postdoctoral research grant (BPD/UTAD/INNOVINE&WINE/ 424/2016) to RKS is also acknowledged. Financial support (PEst-OE/QUI/UI0616/2014) provided to the Research Unit in Vila Real by Fundaçãopara a Ciência e Tecnologia (FCT), Portugal, and COMPETE is also acknowledged. Assistances from the project UID/AGR/04033/2013 and National Funds by FCT (Portuguese Foundation for Science and Technology) and the European Investment Funds by FEDER/COMPETE/POCI Operacional Competitiveness and Internationalization Programme under the Project POCI-01-0145-FEDER-006958 are also recognized. Chemistry center of Vila Real (CQ-VR) is gratefully acknowledged.

Conflict of Interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupesh Kumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R.K., Sharma, L., Bohra, N., Anandhan, S., Ruiz-May, E., Quiroz-Figueroa, F.R. (2019). Recent Developments in Generation of Marker-Free Transgenic Plants. In: Sathishkumar, R., Kumar, S., Hema, J., Baskar, V. (eds) Advances in Plant Transgenics: Methods and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-9624-3_6

Download citation

Publish with us

Policies and ethics