Skip to main content
Log in

BcPMI2, isolated from non-heading Chinese cabbage encoding phosphomannose isomerase, improves stress tolerance in transgenic tobacco

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Phosphomannose isomerase (PMI) is an enzyme that catalyses the first step of the l-galactose pathway for ascorbic acid (AsA) biosynthesis in plants. To clarify the physiological roles of PMI in AsA biosynthesis, the cDNA sequence of PMI was cloned from non-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino) and overexpressed in tobacco transformed with Agrobacterium tumefaciens. The AsA and soluble sugar contents were lower in 35S::BcPMI2 tobacco than in wild-type tobacco. However, the AsA level in BcPMI2-overexpressing plants under stress was significantly increased. The T1 seed germination rate of transgenic plants was higher than that of wild-type plants under NaCl or H2O2 treatment. Meanwhile, transgenic plants showed higher tolerance than wild-type plants. This finding implied that BcPMI2 overexpression improved AsA biosynthetic capability and accumulation, and evidently enhanced tolerance to oxidative and salt stress, although the AsA level was lower in transgenic tobacco than in wild-type tobacco under normal condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AsA:

l-Ascorbic acid

Fru-6P:

Fructose-6-phosphate

GDH:

l-Galactose dehydrogenase

GGP:

GDP-l-galactose phosphorylase

GGT:

GDP-l-galactose transferase

GLDH:

l-Galactono-1,4-lactone dehydrogenase

GME:

GDP-mannose 3′,5′-epimerase

GMP:

GDP-d-mannose pyrophosphorylase

Man-6P:

Mannose-6-phosphate

PMI:

Phosphomannose isomerase

PMM:

Phosphomannomutase

References

  1. Maruta T, Yonemitsu M, Yabuta Y, Tamoi M, Ishikawa T, Shigeoka S (2008) Arabidopsis phosphomannose isomerase 1, but not phosphomannose isomerase 2, is essential for ascorbic acid biosynthesis. J Biol Chem 283:28842–28851

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  3. Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol 35:291–314

    Article  PubMed  CAS  Google Scholar 

  4. Ishikawa T, Shigeoka S (2008) Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci Biotechnol Biochem 72:1143–1154

    Article  PubMed  CAS  Google Scholar 

  5. Hidalgo A, González-Reyes JA, Navas P (1989) Ascorbate free radical enhances vacuolization in onion root meristems. Plant Cell Environ 12:455–460

    Article  CAS  Google Scholar 

  6. Arrigoni O, De Tullio MC (2002) Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta 1569:1–9

    Article  PubMed  CAS  Google Scholar 

  7. Chen Z, Gallie DR (2005) Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138:1673–1689

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264

    Article  PubMed  CAS  Google Scholar 

  9. Ishikawa T, Dowdle J, Smirnoff N (2006) Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiol plantarum 126:343–355

    Article  CAS  Google Scholar 

  10. Linster CL, Adler LN, Webb K, Christensen KC, Brenner C, Clarke SG (2008) A second GDP-l-galactose phosphorylase in Aarabidopsis en route to vitamin C. Covalent intermediate and substrate requirements for the conserved reaction. J Biol Chem 283:18483–18492

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Song GQ, Sink KC, Ma Y, Herlache T, Hancock JF, Loescher WH (2010) A novel mannose-based selection system for plant transformation using celery mannose-6-phosphate reductase gene. Plant Cell Rep 29:163–172

    Article  PubMed  CAS  Google Scholar 

  12. Fujiki Y, Yoshikawa Y, Sato T, Inada N, Ito M, Nishida I, Watanabe A (2001) Dark-inducible genes from Arabidopsis thaliana are associated with leaf senescence and repressed by sugars. Physiol Plant 111:345–352

    Article  PubMed  CAS  Google Scholar 

  13. Brandalise M, Maia IG, Borecky J, Vercesi AE, Arruda P (2003) Overexpression of plant uncoupling mitochondrial protein in transgenic tobacco increases tolerance to oxidative stress. J Bioenerg Biomembr 35:203–209

    Article  PubMed  CAS  Google Scholar 

  14. Li Y, Song YP, Shi GJ, Wang JJ, Hou XL (2009) Response of antioxidant activity to excess copper in two cultivars of Brassica campestris ssp. chinensis Makino. Acta Physiol Plant 31:155–162

    Article  CAS  Google Scholar 

  15. Hoagland DR, Amon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:1–32

    Google Scholar 

  16. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  17. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  18. Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N (2007) Two genes in Arabidopsis thaliana encoding GDP-l-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J 52:673–689

    Article  PubMed  CAS  Google Scholar 

  19. Arakawa N, Tsutsumi K, Sanceda NG, Kurata T, Inagaki C (1981) A rapid and sensitive method for the determination of ascorbic acid using 4,7-diphenyl-1,10-phenanthroline. Agric Biol Chem 45:1289–1290

    Article  CAS  Google Scholar 

  20. Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508–514

    PubMed Central  PubMed  CAS  Google Scholar 

  21. Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Gao JF (2000) Plant physiology laboratory technology. World Books Press, Xi’an, China

  23. Coulin F, Magnenat E, Proudfoot AE, Payton MA, Scully P, Wells TN (1993) Identification of Cys-150 in the active site of phosphomannose isomerase from Candida albicans. Biochemistry 32:14139–14144

    Article  PubMed  CAS  Google Scholar 

  24. Cleasby A, Wonacott A, Skarzynski T, Hubbard RE, Davies GJ, Proudfoot AE, Bernard AR, Payton MA, Wells TN (1996) The X-ray crystal structure of phosphomannose isomerase from Candida albicans at 1.7 Å resolution. Nat Struct Biol 3:470–479

    Article  PubMed  CAS  Google Scholar 

  25. Proudfoot AE, Payton MA, Wells TN (1994) Purification and characterization of fungal and mammalian phosphomannose isomerases. J Protein Chem 13:619–627

    Article  PubMed  CAS  Google Scholar 

  26. Roux C, Gresh N, Perera LE, Piquemal JP, Salmon L (2007) Binding of 5-phospho-d-arabinonohydroxamate and 5-phospho-d-arabinonate inhibitors to zinc phosphomannose isomerase from Candida albicans studied by polarizable molecular mechanics and quantum mechanics. J Comput Chem 28:938–957

    Article  PubMed  CAS  Google Scholar 

  27. Roux C, Lee JH, Jeffery CJ, Salmon L (2004) Inhibition of type I and type II phosphomannose isomerases by the reaction intermediate analogue 5-phospho-d-arabinonohydroxamic acid supports a catalytic role for the metal cofactor. Biochemistry 43:2926–2934

    Article  PubMed  CAS  Google Scholar 

  28. Herold A, Lewis DH (1977) Mannose and green plants: occurrence, physiology and metabolism, and use as a tool to study the role of orthophosphate. New Phytol 79:1–40

    Article  CAS  Google Scholar 

  29. Sharples SC, Fry SC (2007) Radioisotope ratios discriminate between competing pathways of cell wall polysaccharide and RNA biosynthesis in living plant cells. Plant J 52:252–262

    Article  PubMed  CAS  Google Scholar 

  30. Laing WA, Wright MA, Cooney J, Bulley SM (2007) The missing step of the l-galactose pathway of ascorbate biosynthesis in plants, an l-galactose guanyltransferase, increases leaf ascorbate content. Proc Natl Acad Sci USA 104:9534–9539

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Zhang C, Liu J, Zhang Y, Cai X, Gong P, Zhang J, Wang T, Li H, Ye Z (2011) Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep 30:389–398

    Article  PubMed  CAS  Google Scholar 

  32. Davey MW, Van Montagu M, Inzé D, Sanmartin M, Kanellis A, Smirnoff N, Benzie IJJ, Strain JJ, Favell D, Fletcher J (2000) Plant l-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric 80:825–860

    Article  CAS  Google Scholar 

  33. Conklin PL, Barth C (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ 27:959–970

    Article  CAS  Google Scholar 

  34. Gilbert L, Alhagdow M, Nunes-Nesi A, Quemener B, Guillon F, Bouchet B, Faurobert M, Gouble B, Page D, Garcia V, Petit J, Stevens R, Causse M, Fernie AR, Lahaye M, Rothan C, Baldet P (2009) GDP-d-mannose 3′,5′-epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic cell-wall biosynthesis in tomato. Plant J 60:499–508

    Article  PubMed  CAS  Google Scholar 

  35. Cuypers A, Vangronsveld J, Clijsters H (2001) The redox status of plant cells (AsA and GSH) is sensitive to zinc imposed oxidative stress in roots and primary leaves of Phaseolus vulgaris. Plant Physiol Biochem 39:657–664

    Article  CAS  Google Scholar 

  36. Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol 41:1229–1234

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by 973 Program (2009CB119001-04), Science & Technology Pillar Program of Jiangsu Province (BE2012325) and SRT Project of Nanjing Agricultural University (1114A11) and Jiangsu Province (JSS1112), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Zhang, S., Hu, D. et al. BcPMI2, isolated from non-heading Chinese cabbage encoding phosphomannose isomerase, improves stress tolerance in transgenic tobacco. Mol Biol Rep 41, 2207–2216 (2014). https://doi.org/10.1007/s11033-014-3072-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3072-2

Keywords

Navigation