Skip to main content

Nanoparticles, Soils, Plants and Sustainable Agriculture

  • Chapter
  • First Online:
Nanoscience in Food and Agriculture 1

Abstract

Humanity faces major challenges involving energy, water, food, environment, poverty, diseases, education, democracy and population. Green nanotechnology could be a solution for providing sustainable energy, clean water and a better environment. Various nanomaterials can sustain the agricultural sectors. Here we review the applications of nanoparticles for soil security and plant nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH, Nafady NA, Khalaf DM (2016) Assessment of silver nanoparticles contamination on faba bean Rhizobium leguminosarum bv. viciae-Glomus aggregatum symbiosis: implications for induction of autophagy process in root nodule. Agric Ecosyst Environ 218:163–177. http://dx.doi.org/10.1016/j.agee.2015.11.022

    Article  CAS  Google Scholar 

  • Abdul Qados AMS (2015) Mechanism of nanosilicon-mediated alleviation of salinity stress in faba bean (Vicia faba L.) plants. Am J Exp Agric 7(2):78–95. ISSN: 2231

    Article  Google Scholar 

  • Abdul Qados AMS, Moftah AE (2015) Influence of silicon and nano-silicon on germination, growth and yield of faba bean (Vicia faba L.) under salt stress conditions. doi:10.9734/AJEA/2015/14109

    Google Scholar 

  • Adams LK, Lyon DY, Alvarez PJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40:3527–3532

    Article  CAS  PubMed  Google Scholar 

  • Adewopo JB, Van Zomeren C, Bhomia RK, Almaraz M, Bacon AR, Eggleston E, Judy JD, Lewis RW, Lusk M, Miller B, Moorberg C, Hodges E, Tiedeman M (2014) Top-ranked priority research questions for soil science in the 21st century. Soil Sci Soc Am J 78:337–347. doi:10.2136/sssaj2013.07.0291

    Article  CAS  Google Scholar 

  • Adhikari T (2011) Nano-particle research in soil science: micronutrients. In: Proceedings of the national symposium on ‘applications of clay science: agriculture environment and industry’, 18–19 February 2011, NBSS & LUP, Nagpur, pp 74–75

    Google Scholar 

  • Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16. doi:10.1146/annurev-bioeng-071811-150124

    Article  CAS  PubMed  Google Scholar 

  • Alidoust D, Isoda A (2013) Effect of γFe2O3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.) Merr.): foliar spray versus soil amendment. Acta Physiol Plant 35:3365–3375. doi:10.1007/s11738-013-1369-8

    Article  CAS  Google Scholar 

  • Aliofkhazraei M (2016) Handbook of nanoparticles. Springer International Publishing, Cham. doi:10.1007/978-3-319-15338-4

    Book  Google Scholar 

  • Anandaraj M, Dinesh R, Srinivasan V, Harnza S (2011) Nanotechnology in agriculture: the use of novel materials and environmental issues. Botanica 59–61:22–34

    Google Scholar 

  • Antisari LV, Carbone S, Gatti A, Vianello G, Nannipieri P (2015) Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag, Co, Ni) engineered nanoparticles. Environ Sci Pollut Res 22:1841–1853. doi:10.1007/s11356-014-3509-0

    Article  CAS  Google Scholar 

  • Aslani F, Bagheri S, Julkapli NM, Juraimi AS, Hashemi FSG, Baghdadi A (2014) Effects of engineered nanomaterials on plants growth: an overview. Sci World J 2014:1–28

    Article  CAS  Google Scholar 

  • Aubert T, Burel A, Esnault M-A, Cordier S, Grasset F, Cabello-Hurtadoc F (2012) Root uptake and phytotoxicity of nanosized molybdenum octahedral clusters. J Hazard Mater 219–220:111–118

    Article  PubMed  CAS  Google Scholar 

  • Bandyopadhyay S, Plascencia-Villa G, Mukherjee A, Rico CM, José-Yacamán M, Peralta-Videa JR, Gardea-Torresdey JL (2015) Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Sci Total Environ 515–516:60–69. doi:10.1016/j.scitotenv.2015.02.014

    Article  PubMed  CAS  Google Scholar 

  • Bansiwal AK, Rayalu SS, Labhasetwar NK, Juwarkar AA, Devotta S (2006) Surfactant-modified zeolite as a slow release fertilizer for phosphorus. J Agric Food Chem 54:4773–4779

    Article  CAS  PubMed  Google Scholar 

  • Basiuk VA, Basiuk EV (2015) Green processes for nanotechnology: from inorganic to bioinspired nanomaterials. Springer, Cham. doi:10.1007/978-3-319-15461-9

    Book  Google Scholar 

  • Baskar V, Venkatesh J, Park SW (2015) Impact of biologically synthesized silver nanoparticles on the growth and physiological responses in Brassica rapa ssp. pekinensis. Environ Sci Pollut Res 22:17672–17682. doi:10.1007/s11356-015-4864-1

    Article  CAS  Google Scholar 

  • Behnassi M, Shahid AS, D’Silva J (2011) Sustainable agricultural development. Springer Science Business Media, London, pp 171–184

    Book  Google Scholar 

  • Bhushan B (2010) Springer handbook of nanotechnology. Springer, Berlin. doi:10.1007/978-3-642-02525-9

    Book  Google Scholar 

  • Boenigk J, Beisser D, Zimmermann S, Bock C, Jakobi J, Grabner D, Groβmann L, Rahmann S, Barcikowski S, Sures B (2014) Effects of silver nitrate and silver nanoparticles on a planktonic community: general trends after short-term exposure. PLoS One 9, e95340. doi:10.1371/journal.pone.00953

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouma J, Batjes NH, Sonneveld MPW, Bindraban P (2015) Enhancing soil security for smallholder agriculture. In: Rattan Lal, Stewart BA (eds) Soil management of smallholder agriculture. Advances in Soil Science Series. CRC Press, Taylor & Francis Group, LLC, Boca Raton, USA, pp 17–37

    Google Scholar 

  • Burke DJ, Pietrasiak N, Situ SF, Abenojar EC, Porche M, Kraj P, Lakliang Y, Samia ACS (2015) Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes. Int J Mol Sci 16:23630–23650. doi:10.3390/ijms161023630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burman U, Saini M, Kumar P (2013) Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem 95(4):605–612

    Article  CAS  Google Scholar 

  • Chauhan N, Hooda V, Pundir CS (2013) In vitro effects of metal oxide nanoparticles on barley oxalate oxidase. J Nanopart Res 15:1493. doi:10.1007/s11051-013-1493-9

    Article  CAS  Google Scholar 

  • Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594. doi:10.1016/j.tifs.2011.09.004

    Article  CAS  Google Scholar 

  • Chichiriccò G, Poma A (2015) Penetration and toxicity of nanomaterials in higher plants. Nanomaterials 5:851–873. doi:10.3390/nano5020851

    Article  CAS  Google Scholar 

  • Cui D, Zhang P, Ma Y-H, He X, Li Y-Y, Zhao Y-C, Zhang Z-Y (2014) Phytotoxicity of silver nanoparticles to cucumber (Cucumis sativus) and wheat (Triticum aestivum). J Zhejiang Univ-Sci A (Appl Phys Eng) 15(8):662–670. doi:10.1631/jzus.A1400114

    Article  CAS  Google Scholar 

  • Da Costa MVJ, Sharma PK (2015) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica. doi:10.1007/s11099-015-0167-5

    Google Scholar 

  • Dan Y, Zhang W, Xue R, Ma X, Stephan C, Shi H (2015) Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma–mass spectrometry analysis. Environ Sci Technol 49(5):3007–3014. doi:10.1021/es506179e

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta N, Shivendu R, Patra D, Srivastava P, Kumar A, Ramalingam C (2016a) Bovine serum albumin interacts with silver nanoparticles with a “side-on” or “end on” conformation. Chem Biol Interact 253:100–111. doi:10.1016/j.cbi.2016.05.018

    Google Scholar 

  • Dasgupta N, Shivendu R, Bhavapriya R, Venkatraman M, Chidambaram R, Avadhani GS, Ashutosh K (2016b) Thermal co-reduction approach to vary size of silver nanoparticle: its microbial and cellular toxicology. Environ Sci Pollut Res 23(5):4149–4163. doi:10.1007/s11356-015-4570-z

    Google Scholar 

  • Dasgupta N, Shivendu R, Shraddha M, Ashutosh K, Chidambaram R (2016c) Fabrication of food grade vitamin E nanoemulsion by low energy approach: characterization and its application. Int J Food Prop 19:700–708. doi:10.1080/10942912.2015.1042587

    Google Scholar 

  • de la Rosa G, Lopez-Moreno ML, de Haro D, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl Chem 85(12):2161–2174

    Google Scholar 

  • de Oliveira JL, Campos EVR, Bakshi M, Abhilash PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32(8):1550–1561. doi:10.1016/j.biotechadv.2014.10.010

    Article  PubMed  CAS  Google Scholar 

  • Deepa M, Sudhakar P, Nagamadhuri KV, Reddy KB, Krishna TG, Prasad TNVKV (2015) First evidence on phloem transport of nanoscale calcium oxide in groundnut using solution culture technique. Appl Nanosci 5:545–551. doi:10.1007/s13204-014-0348-8

    Article  CAS  Google Scholar 

  • Delfani M, Firouzabadi MB, Farrokhi N, Makarian H (2014) Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal 45:530–540

    Article  CAS  Google Scholar 

  • Deng Y, White JC, Xing B (2014) Interaction between engineered nanomaterials and agricultural crops: implications for food safety. J Zhejiang Univ Sci A 15:552–572

    Article  CAS  Google Scholar 

  • Dhingra R, Naidu S, Upreti G et al (2010) Sustainable nanotechnology: through green methods and life-cycle thinking. Sustainability 2:3323–3338

    Article  Google Scholar 

  • Dhoke SK, Mahajan P, Kamble R, Khanna A (2013) Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev 3(1), e1

    Article  CAS  Google Scholar 

  • Dimkpa CO, Hansen T, Stewart J, McLean JE, Britt DW, Anderson AJ (2014) ZnO nanoparticles and root colonization by a beneficial pseudomonad influence essential metal responses in bean (Phaseolus vulgaris). Nanotoxicology. doi:10.3109/17435390.2014.900583

    PubMed  Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2015) Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicology 24:119–129. doi:10.1007/s10646-014-1364-x

    Article  CAS  PubMed  Google Scholar 

  • Ditta A (2012) How helpful is nanotechnology in agriculture? Adv Nat Sci: Nanosci Nanotechnol 3(3):033002. doi:10.1088/2043-6262/3/3/033002

    Google Scholar 

  • Ditta A, Arshad M, Ibrahim M (2015) Nanoparticles in sustainable agricultural crop production: applications and perspectives. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences: nanoparticles and their impact on plants. Springer International Publishing, Cham, pp 55–75. doi:10.1007/978-3-319-14502-4

    Google Scholar 

  • Domokos-Szabolcsy E, Marton L, Sztrik A, Babka B, Prokisch J, Fari M (2012) Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum. Plant Growth Regul 68:525–531. doi:10.1007/s10725-012-9735-x

    Article  CAS  Google Scholar 

  • Domokos-Szabolcsy E, Abdalla N, Alshaal T, Sztrik A, Márton L, El-Ramady H (2014) In vitro comparative study of two Arundo donax L. ecotypes’ selenium tolerance. Int J Hortic Sci 20(3–4):119–122. ISSN 1585-0404

    Google Scholar 

  • Doolette CL, McLaughlin MJ, Kirby JK, Navarro DA (2015) Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): effect of agricultural amendments on plant uptake. J Hazard Mater 300:788–795. doi:10.1016/j.jhazmat.2015.08.012

    Article  CAS  PubMed  Google Scholar 

  • Doong RV, Sharma K, Kim H (2013) Interactions of nanomaterials with emerging environmental contaminants. American Chemical Society, ACS Symposium Series 1150

    Google Scholar 

  • Du W, Sun Y, Ji R, Zhu J, Wu J et al (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828

    Article  CAS  PubMed  Google Scholar 

  • Eckelman MJ, Zimmerman JB, Anastas PT (2008) Toward green nano. J Ind Ecol 12(3):316–328

    Article  CAS  Google Scholar 

  • El Beyrouthya M, El Azzi D (2014) Nanotechnologies: novel solutions for sustainable agriculture. Adv Crop Sci Tech 2, e118. doi:10.4172/2329-8863.1000e118

    Article  Google Scholar 

  • El-Ramady H, Domokos-Szabolcsy É, Abdalla NA, Alshaal TA, Shalaby TA, Sztrik A, Prokisch J, Fári M (2014a) Selenium and nano-selenium in agroecosystems. Environ Chem Lett 12(4):495–510. doi:10.1007/s10311-014-0476-0

    Article  CAS  Google Scholar 

  • El-Ramady HR, Abdalla NA, Alshaal TA, Elhawat N, Domokos-Szabolcsy É, Prokisch J, Sztrik A, Fári M (2014b) Nano-selenium: from in vitro to micro farm experiments. The international Conference “Biogeochemical Processes at Air-Soil-Water Interfaces and Environmental Protection” for the European Society for Soil Conservation, Imola-Ravenna, Italy 23–26 June 2014. doi:10.13140/2.1.2260.4481

    Google Scholar 

  • El-Ramady H, Abdalla N, Alshaal T, El-Henawy A, Faizy SE-DA, Shams MS, Shalaby T, Bayoumi Y, Elhawat N, Shehata S, Sztrik A, Prokisch J, Fári M, Pilon‑Smits EA, Domokos-Szabolcsy É (2015a) Selenium and its role in higher plants. In: Lichtfouse E et al (eds) Environmental chemistry for a sustainable world, vol 7. Springer Science + Business Media B.V, Cham, pp 235–296. doi:10.1007/978-3-319-19276-5_6

    Google Scholar 

  • El-Ramady H, Domokos-Szabolcsy É, Shalaby TA, Prokisch J, Fári M (2015b) Selenium in agriculture: water, air, soil, plants, food, animals and nanoselenium. In: Lichtfouse E (ed) Environmental chemistry for a sustainable world Vol. 5 (CO2 sequestration, biofuels and depollution). Springer, Berlin, pp 153–232. doi:10.1007/978-3-319-11906-9_5

    Google Scholar 

  • El-Ramady H, Abdalla N, Taha HS, Alshaal T, El-Henawy A, Faizy SE-DA, Shams MS, Youssef SM, Shalaby T, Bayoumi Y, Elhawat N, Shehata S, Sztrik A, Prokisch J, Fári M, Domokos-Szabolcsy É, Pilon-Smits EA, Selmar D, Haneklaus S, Schnug E (2015c) Selenium and nano-selenium in plant nutrition. Environ Chem Lett. doi:10.1007/s10311-015-0535-1

    Google Scholar 

  • El-Ramady H, Abdalla N, Taha HS, Alshaal T, El-Henawy A, Faizy SE.-DA, Shams M. S, Shalaby T, Elhawat N, Shehata S, Soaud AA, Sztrik A, Prokisch J, Fári M, Domokos-Szabolcsy É, Haneklaus S, Schnug E, Pilon M, Pilon‑Smits EAH, dos Reis AR, Guilherme LRG, Broadley MR, Selmar D (2015d) Plant physiology of selenium and nano-selenium under abiotic stresses. Environ Chem Lett (submitted)

    Google Scholar 

  • El-Ramady H, Alshaal T, Abdalla N, Prokisch J, Sztrik A, Fári M, Domokos-Szabolcsy É (2016) Selenium and nano-selenium biofortified sprouts using micro-farm systems. In: Bañuelos GS, Lin Z-Q, Guilherme LRG, dos Reis AR (eds) Global advances in selenium research from theory to application, Proceedings of the 4th International Conference on Selenium in the Environment and human health, Sao Paulo, Brazil, 18–21 October 2015. CRC, Taylor & Francis Group, London, pp 189–190

    Google Scholar 

  • Faisal M, Saquib Q, Alatar AA et al (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250–251:318–332

    Article  PubMed  CAS  Google Scholar 

  • FAO (2008) Investing in sustainable crop intensification: the case for soil health. Report of the international technical workshop, FAO, Rome, July, vol 6, Integrated crop management. FAO, Rome. http://www.fao.org/ag/ca/. Accessed 18 May 2014

    Google Scholar 

  • Faria M, Rosemberg RS, Bomfeti CA, Monteiro DS, Barbosa F, Oliveira LC, Rodriguez M, Pereira MC, Rodrigues JL (2014) Arsenic removal from contaminated water by ultrafine δ-FeOOH adsorbents. Chem Eng J 237:47–54

    Article  CAS  Google Scholar 

  • Farooq M, Siddique KHM (2015) Conservation agriculture. Springer International Publishing, Cham. doi:10.1007/978-3-319-11620-4

    Book  Google Scholar 

  • Feichtmeier NS, Walther P, Leopold K (2015) Uptake, effects, and regeneration of barley plants exposed to gold nanoparticles. Environ Sci Pollut Res 22:8549–8558. doi:10.1007/s11356-014-4015-0

    Article  CAS  Google Scholar 

  • Feizi H, Moghaddam PR, Shahtahmassebi N, Fotovat A (2012) Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol Trace Elem Res 146:101–106

    Article  CAS  PubMed  Google Scholar 

  • Foltete AS, Masfaraud JF, Bigorgne E, Nahmani J, Chaurand P, Botta C, Labille J, Rose J, Férard JF, Cotelle S (2011) Environmental impact of sunscreen nanomaterials: ecotoxicity and gentoxicity of altered TiO2 nanocomposites on Vicia faba. Environ Pollut 159:2515–2522. doi:10.1016/j.envpol.2011.06.020

    Article  CAS  PubMed  Google Scholar 

  • Friedrich T, Derpsch R, Kassam AH (2012) Global overview of the spread of conservation agriculture. Field Actions Sci Rep 6:1–7

    Google Scholar 

  • Gao J, Xu G, Qian H, Liu P, Zhao P, Hu Y (2013) Effects of nano-TiO2 on photosynthetic characteristics of Ulmus elongata seedlings. Environ Pollut 176:63–70. doi:10.1016/j.envpol.2013.01.027

    Article  CAS  PubMed  Google Scholar 

  • Gardea-Torresdey JL, Rico CM, White JC (2014) Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48:2526–2540

    Article  CAS  PubMed  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2012) Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl Environ Microbiol 78(18):6749–6758. doi:10.1128/AEM.00941-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geisler-Lee J, Brooks M, Gerfen JR, Wang Q, Fotis C, Sparer A, Ma X, Berg RH, Geisler M (2014) Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana. Nanomaterials 4:301–318. doi:10.3390/nano4020301

    Article  CAS  Google Scholar 

  • Geoffrey BS, Granqvist CG (2011) Green nanotechnology: solutions for sustainability and energy in the built environment. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Ghafariyan MH, Malakouti MJ, Dadpour MR et al (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645–10652

    CAS  PubMed  Google Scholar 

  • Ghodake G, Seo YD, Park DH, Lee DS (2010) Phytotoxicity of carbon nanotubes assessed by Brassica juncea and Phaseolus mungo. J Nanoelectron Optoelectron 5:157–160

    Article  CAS  Google Scholar 

  • Gil-Díaz M, Gonzalez A, Alonso J, Lobo MC (2016) Evaluation of the stability of a nanoremediation strategy using barley plants. J Environ Manag 165:150e158. http://dx.doi.org/10.1016/j.jenvman.2015.09.032

    Article  CAS  Google Scholar 

  • Golubkina NA, Folmanis GE, Tananaev IG (2012) Comparative evaluation of selenium accumulation by Allium Species after foliar application of selenium nanoparticles, sodium selenite and sodium selenate. Dokl Biol Sci 444:176–179. doi:10.1134/S0012496612030076

    Article  CAS  PubMed  Google Scholar 

  • Gruyer N, Dorais M, Bastien C, Dassylva N, Triffault-Bouchet G (2014) Interaction between silver nanoparticles and plant growth. Proc. IS on New Technol. for Env. Control, Energy-Saving and Crop Prod. In: Jung Eek Son et al (eds) Greenhouse and plant factory – GreenSys 2013. Acta Hort. 1037, ISHS 2014, pp 795–800

    Google Scholar 

  • Gui X, Deng Y, Rui Y, Gao B, Luo W, Chen S, Nhan LV, Li X, Liu S, Han Y, Liu L, Xing B (2015a) Response difference of transgenic and conventional rice (Oryza sativa) to nanoparticles (γFe2O3). Environ Sci Pollut Res 22:17716–17723. doi:10.1007/s11356-015-4976-7

    Article  CAS  Google Scholar 

  • Gui X, Zhang Z, Liu S, Ma Y, Zhang P, He X, Li Y, Zhang J, Li H, Rui Y, Liu L, Cao W (2015b) Fate and phytotoxicity of CeO2 nanoparticles on lettuce cultured in the potting soil environment. PLoS One 10(8), e0134261. doi:10.1371/journal.pone.0134261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gunjan B, Zaidi MGH, Sandeep A (2014) Impact of gold nanoparticles on physiological and biochemical characteristics of Brassica juncea. J Plant Biochem Physiol 2:133. doi:10.4172/2329-9029.1000133

    Google Scholar 

  • Guo KW (2012) Green nanotechnology of trends in future energy: a review. Int J Energy Res 36:1–17

    Article  Google Scholar 

  • Haghighi M, da Silva JAT (2014) The effect of N-TiO2 on tomato, onion, and radish seed germination. J Crop Sci Biotechnol 17(4):221–227. doi:10.1007/s12892-014-0056-7

    Article  Google Scholar 

  • Haghighi M, Afifipour Z, Mozafarian M (2012) The effect of N-Si on tomato seed germination under salinity levels. J Biol Environ Sci 6:87–90

    Google Scholar 

  • Handy RD, von der Kammer F, Lead JR, Richard Owen MH, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314. doi:10.1007/s10646-008-0199-8

    Article  CAS  PubMed  Google Scholar 

  • Hasanpour H, MaaliAmiri R, Zeinali H (2015) Effect of TiO2 nanoparticles on metabolic limitations to photosynthesis under cold in Chickpea. Russ J Plant Physiol 62(6):779–787. doi:10.1134/S1021443715060096

    Article  CAS  Google Scholar 

  • Hasegawa H, Mofizur Rahman IM, Azizur Rahman M (2016) Environmental remediation technologies for metal-contaminated soils. Springer, Tokyo. doi:10.1007/978-4-431-55759-3

    Book  Google Scholar 

  • Helaly MN, El-Metwally MA, El-Hoseiny H, Omar SA, El-Sheery NI (2014) Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. Aust J Crop Sci 8:612–624

    CAS  Google Scholar 

  • Hong J, Peralta-Videa JR, Rico CM et al (2014) Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ Sci Technol 48(8):4376–4385

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Rico CM, Zhao L, Adeleye AS, Keller AA, Peralta-Videa JR, Gardea-Torresdey JL (2015) Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci Process Impact 17(1):177–185. doi:10.1039/c4em00551a

    Article  CAS  Google Scholar 

  • Hu YH, Burghaus U, Qiao S (2014a) Nanotechnology for sustainable energy. ACS Symposium Series 1140. American Chemical Society, Washington DC, United States

    Google Scholar 

  • Hu C, Liu X, Li X, Zhao Y (2014b) Evaluation of growth and biochemical indicators of Salvinia natans exposed to zinc oxide nanoparticles and zinc accumulation in plants. Environ Sci Pollut Res Int 21(1):732–739. doi:10.1007/s11356-013-1970-9

    Google Scholar 

  • Huang YC, Fan R, Grusak MA, Sherrier JD, Huang CP (2014) Effects of nano-ZnO on the agronomically relevant rhizobium-legume symbiosis. Sci Total Environ 497–498:78–90. doi:10.1016/j.scitotenv.2014.07.100

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Wang L, Liu L, Hou Y, Li L (2015) Nanotechnology in agriculture, livestock, and aquaculture in China: a review. Agron Sustain Dev 35:369–400. doi:10.1007/s13593-014-0274-x

    Article  Google Scholar 

  • Hudson CP, Roberta B (2015) Nanoecotoxicology: the state of the art. In: Rai M et al (eds) Nanotechnologies in food and agriculture. Springer International Publishing, Switzerland, pp 301–319. doi:10.1007/978-3-319-14024-7_13

    Google Scholar 

  • Husen A, Siddiqi KS (2014) Plants and microbes assisted selenium nanoparticles: characterization and application. J Nanobiotechnol 12:28

    Article  CAS  Google Scholar 

  • Hussain HI, Yi Z, Rookes JE, Kong LX, Cahill DM (2013) Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants. J Nanopart Res 15:1676

    Article  Google Scholar 

  • Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotechol 4(165):1–7. doi:10.4172/2157-7439.1000165

    Google Scholar 

  • Jain A, Shivendu R, Nandita D, Cidambaram R (2016) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci. doi:10.1080/10408398.2016.1160363

    Google Scholar 

  • Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400:396–414. doi:10.1016/j.scitotenv.2008.06.042

    Article  CAS  PubMed  Google Scholar 

  • Kah M (2015) Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front Chem 3:64. doi:10.3389/fchem.2015.00064

    Article  PubMed  PubMed Central  Google Scholar 

  • Kahru A, Dubourguier H-C (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119. doi:10.1016/j.tox.2009.08.016

    Article  CAS  PubMed  Google Scholar 

  • Kalteh M, Alipour ZT, Ashraf S, Aliabadi MM, Nosratabadi AF (2014) Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J Chem Health Risks 4(3):49–55

    CAS  Google Scholar 

  • Kanneganti A, Talasila M (2014) MoO3 nanoparticles: synthesis, characterization and its hindering effect on germination of Vigna Unguiculata seeds. J Eng Res Appl 4(7):116–120

    Google Scholar 

  • Kaveh R, Li Y-S, Ranjbar S, Tehrani R, Brueck CL, Van Aken B (2013) Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 47:10637–10644. doi:10.1021/es402209w

    CAS  PubMed  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya M, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128–2135

    Article  CAS  PubMed  Google Scholar 

  • Khot RL, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70. doi:10.1016/j.cropro.2012.01.007

    Article  CAS  Google Scholar 

  • Kim S, Lee S, Lee I (2012) Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Pollut 223:2799–2806. doi:10.1007/s11270-011-1067-3

    Article  CAS  Google Scholar 

  • Kim J-H, Oh Y, Yoon H, Hwang I, Chang Y-S (2015) Iron nanoparticle-induced activation of plasma membrane H+-ATPase promotes stomatal opening in Arabidopsis thaliana. Environ Sci Technol 49(2):1113–1119

    Article  CAS  PubMed  Google Scholar 

  • Konotop YO, Kovalenko MS, Ulynets VZ, Meleshko AO, Batsmanova LM, Taran NY (2014) Phytotoxicity of colloidal solutions of metal containing nanoparticles. Cytol Genet 48(2):99–102. doi:10.3103/S0095452714020054

    Article  Google Scholar 

  • Kouhi SMM, Lahouti M, Ganjeali A, Entezari MH (2015a) Long-term exposure of rapeseed (Brassica napus L.) to ZnO nanoparticles: anatomical and ultrastructural responses. Environ Sci Pollut Res 22:10733–10743. doi:10.1007/s11356-015-4306-0

    Article  CAS  Google Scholar 

  • Kouhi SMM, Lahouti M, Ganjeali A, Entezari MH (2015b) Comparative effects of ZnO nanoparticles, ZnO bulk particles, and Zn2+ on Brassica napus after long-term exposure: changes in growth, biochemical compounds, antioxidant enzyme activities, and Zn bioaccumulation. Water Air Soil Pollut 226:364. doi:10.1007/s11270-015-2628-7

    Article  CAS  Google Scholar 

  • Lal R (2015) The nexus approach to managing water, soil and waste under changing climate and growing demands on natural resources. In: Kurian M, Ardakanian R (eds) Governing the nexus: water, soil and waste resources considering global change. Springer, Cham, pp 39–61. doi:10.1007/978-3-319-05747-7_3

    Google Scholar 

  • Lalau CM, Mohedano RA, Schmidt EC, Bouzon ZL, Ouriques LC, dos Santos RW, da Costa CH, Vicentini DS, Matias WG (2014) Toxicological effects of copper oxide nanoparticles on the growth rate, photosynthetic pigment content, and cell morphology of the duckweed Landoltia punctate. Protoplasma. doi:10.1007/s00709-014-0671-7

    PubMed  Google Scholar 

  • Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank A, Brisset F, Carriere M (2012) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum): influence of diameter and crystal phase. Sci Total Environ 431:197–208

    Article  CAS  PubMed  Google Scholar 

  • Larue C, Castillo-Michel H, Sobanska S et al (2014a) Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264:98–106

    Article  CAS  PubMed  Google Scholar 

  • Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S, Barthès V, Ouerdane L, Carrière M, Sarret G (2014b) Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264:98–106. doi:10.1016/j.jhazmat.2013.10.053

    Article  CAS  PubMed  Google Scholar 

  • Laware SL, Raskar S (2014) Effect of titanium dioxide nanoparticles on hydrolytic and antioxidant enzymes during seed germination in onion. Int J Curr Microbiol Appl Sci 3(7):749–760

    CAS  Google Scholar 

  • Le Van N, Ma C, Shang J, Rui Y, Liu S, Xing B (2016) Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere 144:661–670. http://dx.doi.org/10.1016/j.chemosphere.2015.09.028

    Article  PubMed  CAS  Google Scholar 

  • Le VN, Rui Y, Gui X, Li X, Liu S, Han Y (2014) Uptake, transport, distribution and bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotechnol 12:50. doi:10.1186/s12951-014-0050-8

    Article  CAS  Google Scholar 

  • Lebedev SV, Korotkova AM, Osipova EA (2014) Influence of Fe0 nanoparticles, magnetite Fe3O4 nanoparticles, and iron (II) sulfate (FeSO4) solutions on the content of photosynthetic pigments in Triticum vulgare. Russ J Plant Physiol 61(4):564–569. doi:10.1134/S1021443714040128

    Article  CAS  Google Scholar 

  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29(3):669–675. doi:10.1002/Etc.58

    Article  CAS  PubMed  Google Scholar 

  • Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, Hao H, Xiaoqing L, Fashui H (2008) Antioxidant stress is promoted by nanoanatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121:69–79

    Article  PubMed  CAS  Google Scholar 

  • Li M, Zhu L, Lin D (2011) Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol 45:1977–1983

    Article  CAS  PubMed  Google Scholar 

  • Li B, Tao G, Xie Y, Cai X (2012) Physiological effects under the condition of spraying nano- SiO2 onto the Indocalamus barbatus McClure leaves. J Nanjing For Univ (Nat Sci Ed) 36:161–164

    Google Scholar 

  • Li K-E, Chang Z-Y, Shen C-X, Yao N (2015) Toxicity of nanomaterials to plants. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences nanoparticles and their impact on plants. Springer International Publishing, Cham, pp 101–123. doi:10.1007/978-3-319-14502-6

    Google Scholar 

  • Libralato G, Costa Devoti A, Zanella M, Sabbioni E, Mičetić I, Manodori L, Pigozzo A, Manenti S, Groppi F, Ghirardini AV (2016) Phytotoxicity of ionic, micro- and nano-sized iron in three plant species. Ecotoxicol Environ Saf 123:81–88. doi:10.1016/j.ecoenv.2015.07.024

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:5686–5691

    CAS  PubMed  Google Scholar 

  • Liu X, Wang F, Shi Z, Tong R, Shi X (2015) Bioavailability of Zn in ZnO nanoparticle-spiked soil and the implications to maize plants. J Nanopart Res 17:175. doi:10.1007/s11051-015-2989-2

    Article  CAS  Google Scholar 

  • Lourtioz J-M, Lahmani M, Dupas-Haeberlin C, Hesto P (2016) Nanosciences and nanotechnology: evolution or revolution? Springer International Publishing, Cham. doi:10.1007/978-3-319-19360-1

    Book  Google Scholar 

  • Maddineni SB, Badal KM, Shivendu R, Nandita D (2015) Diastase assisted green synthesis of size-controllable gold nanoparticles. RSC Adv 5:26727–26733. doi:10.1039/C5RA03117F

    Article  CAS  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles: a review. Environ Pollut 172:76–85. http://dx.doi.org/10.1016/j.envpol.2012.08.011

    Article  CAS  PubMed  Google Scholar 

  • Manikandan A, Subramanian KS (2014) Fabrication and characterisation of nanoporous zeolite based N fertilizer. Afr J Agric Res 9:276–284

    Article  CAS  Google Scholar 

  • Mastronardi E, Tsae P, Zhang X, Monreal C, DeRosa MC (2015) Strategic role of nanotechnology in fertilizers: potential and limitations. In: Rai M et al (eds) Nanotechnologies in food and agriculture. Springer International Publishing, Cham, pp 25–67. doi:10.1007/978-3-319-14024-7_2

    Google Scholar 

  • McKenzie L, Hutchison J (2004) Green nanoscience: an integrated approach to greener products, processes, and applications. Chem Today 2004:25–28

    Google Scholar 

  • Meena RK, Chouhan N (2015) Biosynthesis of silver nanoparticles from plant (fenugreek seeds) reducing method and their optical properties. Res J Recent Sci 4(IVC-2015):47–52. ISSN 2277–2502

    CAS  Google Scholar 

  • Mehrian SK, Heidari R, Rahmani F, Najaf S (2015) Effect of chemical synthesis silver nanoparticles on germination indices and seedlings growth in seven varieties of Lycopersicon esculentum Mill (tomato) plants. J Clust Sci. doi:10.1007/s10876-015-0932-4

    Google Scholar 

  • Menard A, Drobne D, Jemec A (2011) Ecotoxicity of nanosized TiO2: review of in vivo data. Environ Pollut 159:677–684. doi:10.1016/j.envpol.2010.11.027

    Article  CAS  PubMed  Google Scholar 

  • Meyyappan M (2004) Nanotechnology education and training. J Mater Educ 26(3–4):311–320

    Google Scholar 

  • Mohammadi R, Maali-Amiri R, Abbasi A (2013) Effect of TiO2 nanoparticles on chickpea response to cold stress. Biol Trace Elem Res 152(3):403–410. doi:10.1007/s12011-013-9631-x

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi R, Amiria RM, Mantri NL (2014) Effect of TiO2 nanoparticles on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress. Russ J Plant Physiol 61(6):768–775. doi:10.1134/S1021443714050124. ISSN 10214437

    Article  CAS  Google Scholar 

  • Mohanraj J (2013). Effect of nano-zeolite on nitrogen dynamics and green house gas emission in rice soil eco system. M. Tech. (Ag.) Thesis, TNAU, Coimbatore, India

    Google Scholar 

  • Monreal CM, DeRosa M, Mallubhotla SC, Bindraban PS, Dimkpa C (2015) Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol Fertil Soils. doi:10.1007/s00374-015-1073-5

    Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12):4447–4453. doi:10.1021/es7029637

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee A, Peralta-Videa JR, Bandyopadhyay S, Rico CM, Zhao L, Gardea-Torresdey JL (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6:132–138. doi:10.1039/c3mt00064h

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mura S, Greppi G, Irudayaraj J (2015) Latest developments of nanotoxicology in plants. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences nanoparticles and their impact on plants. Springer International Publishing, Cham, pp 125–152. doi:10.1007/978-3-319-14502-7

    Google Scholar 

  • Nair PMG, Chung IM (2014) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignification, and molecular level changes. Environ Sci Pollut Res. doi:10.1007/s11356-014-3210-3

    Google Scholar 

  • Nair PMG, Chung IM (2015a) The responses of germinating seedlings of green peas to copper oxide nanoparticles. Biol Plant 59(3):591–595. doi:10.1007/s10535-015-0494-1

    Article  CAS  Google Scholar 

  • Nair PMG, Chung IM (2015b) Changes in the growth, redox status and expression of oxidative stress related genes in chickpea (Cicer arietinum L.) in response to copper oxide nanoparticle exposure. J Plant Growth Regul 34:350–361. doi:10.1007/s00344-014-9468-3

    Article  CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Nair R, Poulose AC, Nagaoka Y, Yoshida Y, Maekawa T, Sakthi Kumar D (2011) Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. J Fluoresc 21:2057–2068. doi:10.1007/s10895-011-0904-5

    Article  CAS  PubMed  Google Scholar 

  • Nandita D, Shivendu R, Deepa M, Chidambaram R, Ashutosh K, Rishi S (2015) Nanotechnology in agro-food: from the field to plate. Food Res Int 69:381–400

    Article  Google Scholar 

  • Nath D (2015) Safer nanoformulation for the next decade. In: Basiuk VA, Basiuk EV (eds) Green processes for nanotechnology. Springer International Publishing, Cham, pp 327–352. doi:10.1007/978-3-319-15461-9_12

    Google Scholar 

  • Ngô C, Van de Voorde MH (2014) Nanotechnologies in agriculture and food. In: Ngô C, Van de Voorde MH (eds) Nanotechnology in a nutshell. Springer, New York, pp 233–247

    Chapter  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22. doi:10.1016/j.envpol.2007.06.006

    Article  CAS  PubMed  Google Scholar 

  • Ouda SM (2014) Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Res J Microbiol 9:34–42. doi:10.3923/jm.2014.34.42

    Article  CAS  Google Scholar 

  • Oukarroum A, Barhoumi L, Samadani M, Dewez D (2015) Toxic effects of nickel oxide bulk and nanoparticles on the aquatic plant Lemna gibba L. Biomed Res Int 2015:501326. http://dx.doi.org/10.1155/2015/501326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palmqvist NG, Bejai S, Meijer J, Seisenbaeva GA, Kessler VG (2015) Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management. Sci Rep 5:10146. doi:10.1038/srep10146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan B, Xing B (2012) Applications and implications of manufactured nanoparticles in soils: a review. Eur J Soil Sci. doi:10.1111/j.1365-2389.2012.01475.x

    Google Scholar 

  • Papkina AV, Perfileva AI, Zhivet’yev MA, Borovskii GB, Graskova IA, Klimenkov IV, Lesnichaya MV, Sukhov BG, Trofimov BA (2015) Complex effects of selenium-arabinogalactan nanocomposite on both phytopathogen Clavibacter michiganensis subsp. sepedonicus and potato plants. Nanotechnol Russ 10(5–6):484–491. doi:10.1134/S1995078015030131

    Article  CAS  Google Scholar 

  • Pardha-Saradhi P, Yamal G, Peddisetty T et al (2014) Plants fabricate Fe-nanocomplexes at root surface to counter and phytostabilize excess ionic Fe. Biometals 27(1):97–114

    Article  CAS  PubMed  Google Scholar 

  • Park B, Appell M (2013) Advances in applied nanotechnology for agriculture. ACS Symposium Series 1143. American Chemical Society

    Google Scholar 

  • Patil SS, Shedbalkar UU, Truskewycz A, Chopade BA, Ball AS (2016) Nanoparticles for environmental clean-up: a review of potential risks and emerging solutions. Environ Technol Innov 5:10–21

    Article  Google Scholar 

  • Patra P, Choudhury SR, Mandal S, Basu A, Goswami A, Gogoi R, Srivastava C, Kumar R, Gopal M (2013) Effect sulfur and ZnO nanoparticles on stress physiology and plant (Vigna radiata) nutrition. In: Giri PK et al (eds) Advanced nanomaterials and nanotechnology, Springer Proceedings in Physics 143. Springer, Berlin, pp 301–309. doi:10.1007/978-3-642-34216-5_31

    Chapter  Google Scholar 

  • Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosad G, Hong J, Gardea-Torresdey JL (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186:1–15. doi:10.1016/j.jhazmat.2010.11.020

    Article  CAS  PubMed  Google Scholar 

  • Perreault F, Popovic R, Dewez D (2014) Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba. Environ Pollut 185:219–227. doi:10.1016/j.envpol.2013.10.027

    Article  CAS  PubMed  Google Scholar 

  • Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452–453:321–332. dx.doi.org/10.1016/j.scitotenv.2013.02.059

    Article  PubMed  CAS  Google Scholar 

  • Polonini HC, Brayner R (2015) Nanoecotoxicology: the state of the art. In: Rai M et al (eds) Nanotechnologies in food and agriculture. Springer International Publishing, Cham, pp 301–319. doi:10.1007/978-3-319-14024-7_13

    Google Scholar 

  • Pradhan S, Patra P, Mitra S, Dey KK, Jain S, Sarkar S, Roy S, Palit P, Goswami A (2014) Manganese nanoparticles: impact on non-nodulated plant as a potent enhancer in nitrogen metabolism and toxicity study both in vivo and in vitro. J Agric Food Chem 62(35):8777–8785. doi:10.1021/jf502716c

    Article  CAS  PubMed  Google Scholar 

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713. doi:10.5897/AJBX2013.13554

    Article  CAS  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293. doi:10.1007/s00253-012-3969-4

    Article  CAS  PubMed  Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsis tetragonoloba L.). Agric Res 2(1):48–57. doi:10.1007/s40003-012-0049-z

    Article  CAS  Google Scholar 

  • Ranjan S, Nandita D, Arkadyuti RC, Melvin SS, Chidambaram R, Rishi S, Ashutosh K (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16(6):2464. doi:10.1007/s11051-014-2464-5

    Article  Google Scholar 

  • Ramesh M, Palanisamy K, Babu K, Sharma NK (2014) Effects of bulk & nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticum aestivum Linn. J Glob Biosci 3:415–422

    Google Scholar 

  • Raskar SV, Laware SL (2014) Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int J Curr Microbiol Appl Sci 3:467–473

    CAS  Google Scholar 

  • Razzaq A, Ammara R, Jhanzab HM, Mahmood T, Hafeez A, Hussain S (2016) A novel nanomaterial to enhance growth and yield of wheat. J Nanosci Tech 2(1):55–58

    Google Scholar 

  • Reddy PP (2015) Climate resilient agriculture for ensuring food security. Springer, New Delhi. doi:10.1007/978-81-322-2199-9

    Book  Google Scholar 

  • Resham S, Khalid M, Gul Kazi A (2015) Nanobiotechnology in agricultural development. In: Barh D et al (eds) PlantOmics: the omics of plant science. Springer, New Delhi, pp 683–698. doi:10.1007/978-81-322-2172-2_24

    Google Scholar 

  • Rickerby DG, Morrison M (2007) Nanotechnology and the environment: a European perspective. Sci Technol Adv Mater 8:19–24

    Article  CAS  Google Scholar 

  • Rickerby DG, Morrison M (2014) Introduction. In: Rickerby DG (ed) Nanotechnology for sustainable manufacturing. CRC Press Taylor & Francis Group, LLC, Boca Raton, USA

    Google Scholar 

  • Rico CM, Hong J, Morales MI et al (2013a) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47:5635–5642

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Morales MI, McCreary R et al (2013b) Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 47:14110–14118

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Barrios AC, Tan W, Rubenecia R, Lee SC, Varela-Ramirez A, Peralta-Videa JR, Gardea-Torresdey JL (2015) Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environ Sci Pollut Res Int 22(14):10551–10558. doi:10.1007/s11356-015-4243-y

    Article  CAS  PubMed  Google Scholar 

  • Roohizadeh G, Majd A, Arbabian S (2015) The effect of sodium silicate and silica nanoparticles on seed germination and some of growth indices in the Vicia faba L. Trop Plant Res 2(2):85–89. ISSN (E): 2349–1183

    Google Scholar 

  • Ruffini MC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia Int J Cytol Cytosystematics Cytogenet 62(2):161–165. doi:10.1080/00087114.2004.10589681

    Google Scholar 

  • Salamanca-Buentello F, Daar AS (2016) Dust of wonder, dust of doom: a landscape of nanotechnology, nanoethics, and sustainable development. In: Bagheri A et al (eds) Global bioethics: the impact of the UNESCO International Bioethics Committee, Advancing Global Bioethics, vol 5. Springer International Publishing, Cham, pp 101–123. doi:10.1007/978-3-319-22650-7_10

    Chapter  Google Scholar 

  • Sarabi M, Afshar AS, Mahmoodzadeh H (2015) Physiological analysis of silver nanoparticles and AgNO3 effect to Brassica napus L. J Chem Health Risks 5(4):285–294

    CAS  Google Scholar 

  • Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. J Sociol Food Agric 15(2):22–44. ISSN: 0798–1759

    Google Scholar 

  • Seabra AB, Rai M, Durán N (2014) Nano carriers for nitric oxide delivery and its potential applications in plant physiological process: a mini review. J Plant Biochem Biotechnol 23(1):1–10. doi:10.1007/s13562-013-0204-z

    Article  CAS  Google Scholar 

  • Sedghi M, Hadi M, Toluie SG (2013) Effect of nano zinc oxide on the germination of soybean seeds under drought stress. Ann West Univ Timis¸oara ser Biol XVI(2):73–78

    Google Scholar 

  • Selva Preetha P, Subramanian KS, Sharmila Rahale C (2014) Sorption characteristics of nanozeolite based slow release sulphur fertilizer. Int J Dev Res 4:225–228

    Google Scholar 

  • Servin A, Elmer W, Mukherjee A, De la Torre-Roche R, Hamdi H, White JC, Bindraban P, Dimkpa C (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17:92. doi:10.1007/s11051-015-2907-7

    Article  CAS  Google Scholar 

  • Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148

    Article  CAS  Google Scholar 

  • Shamim N, Sharma VK (2013) Sustainable nanotechnology and the environment: advances and achievements, ACS Symposium Series 1124. American Chemical Society, Washington, DC. doi:10.1021/bk-2013-1124.ch001

    Book  Google Scholar 

  • Shams G, Ranjbar M, Amiri A (2013) Effect of silver nanoparticles on concentration of silver heavy element and growth indexes in cucumber (Cucumis sativus L. negeen). J Nanopart Res 15:1630. doi:10.1007/s11051-013-1630-5

    Article  CAS  Google Scholar 

  • Shankramma K, Yallappa S, Shivanna MB, Manjanna J (2015) Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Appl Nanosci. doi:10.1007/s13204-015-0510-y

    Google Scholar 

  • Shapira P, Youtie J (2015) The economic contributions of nanotechnology to green and sustainable growth. In: Basiuk VA, Basiuk EV (eds) Green processes for nanotechnology. Springer International Publishing, Cham, pp 409–434. doi:10.1007/978-3-319-15461-9_15

    Google Scholar 

  • Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93(6):906–915

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Peng C, Yang Y, Yang J, Zhang H, Yuan X, Chen Y, Hu T (2014) Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens. Nanotoxicology 8(2):179–188. doi:10.3109/17435390.2013.766768

    Article  CAS  PubMed  Google Scholar 

  • Shivendu R, Nandita D, Sudandiradoss C, Ramalingam C, Ashutosh K (2015) A novel approach to evaluate titanium dioxide nanoparticle-protein interaction through docking: an insight into the mechanism of action. P Natl A Sci India B. doi:10.1007/s40011-015-0673-z

    Google Scholar 

  • Shivendu R, Nandita D, Bhavapriya R, Ganesh SA, Chidambaram R, Ashutosh K (2016) Microwave-irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evaluation. Environ Sci Pollut Res. doi:10.1007/s11356-016-6440-8

    Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21:13–17. http://dx.doi.org/10.1016/j.sjbs.2013.04.005

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33(11):2429–2437. doi:10.1002/etc.2697

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Mohammad F (2015a) Nanotechnology and plant sciences nanoparticles and their impact on plants. Springer International Publishing, Cham. doi:10.1007/978-3-319-14502-0

    Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015b) Role of nanoparticles in plants. In: Siddiqui MH, Al-Whaibi MH, Mohammad F, Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences nanoparticles and their impact on plants. Springer International Publishing, Cham, pp 19–32. doi:10.1007/978-3-319-14502-2

    Google Scholar 

  • Silva TU, Pokhrel LR, Dubey B, Maier KJ, Tolaymat TM, Liu X (2014) Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: comparison between general linear model-predicted and observed toxicity. Sci Total Environ 468–469:968–976

    Article  PubMed  CAS  Google Scholar 

  • Smalley (1996) From Wikipedia: https://en.wikipedia.org/wiki/Richard_Smalley/23.12.2015

  • Smita S, Gupta SK, Bartonova A, Dusinska M, Gutleb AC, Rahman Q (2012) Nanoparticles in the environment: assessment using the causal diagram approach. Environ Health 11(Suppl 1):S13. doi:10.1186/1476-069X-11-S1-S13

    Article  PubMed  PubMed Central  Google Scholar 

  • Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J et al (2015) Nano-fertilizers and their smart delivery system. In: Nanotechnologies in food and agriculture. Springer International Publishing, Cham, pp 81–101. doi:10.1007/978-3-319-14024-7_3

    Google Scholar 

  • Soliman AS, El-feky SA, Darwish E (2015) Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. J Hort For 7(2):36–47. doi:10.5897/JHF2014.0379

    Article  CAS  Google Scholar 

  • Song U, Shin M, Lee G, Roh J, Kim Y, Lee EJ (2013) Functional analysis of TiO2 nanoparticle toxicity in three plant species. Biol Trace Elem Res 155:93–103. doi:10.1007/s12011-013-9765-x

    Article  CAS  PubMed  Google Scholar 

  • Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27(2):82–89. doi:10.1016/j.tibtech.2008.10.010

    Article  CAS  PubMed  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay – dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  CAS  PubMed  Google Scholar 

  • Subramanian KS, Sharmila Rahale C (2012) Ball milled nanosized zeolite loaded with zinc sulfate: a putative slow release Zn fertilizer. Int J Innov Hortic 1:33–40

    Google Scholar 

  • Subramanian KS, Manikandan A, Thirunavukkarasu M, Rahale CS (2015) Nano-fertilizers for balanced crop nutrition. In: Rai M et al (eds) Nanotechnologies in food and agriculture. Springer International Publishing, Cham, pp 69–80. doi:10.1007/978-3-319-14024-7_3

    Google Scholar 

  • Sun D, Hussain HI, Yi Z et al (2014) Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep 33:1389–1402. doi:10.1007/s00299-014-1624-5

    Article  CAS  PubMed  Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Prabu P, Rajendran V, Kannan N (2012a) Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. J Nanopart Res 14:1294–1296

    Article  CAS  Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2012b) Silica nanoparticles for increased silica availability in maize (Zea mays L.) seeds under hydroponic conditions. Curr Nanosci 8:1–7

    Article  Google Scholar 

  • Takeuchi MT, Kojima M, Luetzow M (2014) State of the art on the initiatives and activities relevant to risk assessment and risk management of nanotechnologies in the food and agriculture sectors. Food Res Int. doi:10.1016/j.foodres.2014.03.022

    Google Scholar 

  • Tarafdar JC, Sharma S, Raliya R (2013) Nanotechnology: interdisciplinary science of applications. Afr J Biotechnol 12(3):219–226

    Article  Google Scholar 

  • Tarafdar JC, Raliya R, Mahawar H, Rathore I (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res 3(3):257–262

    Article  CAS  Google Scholar 

  • Taran NY, Gonchar OM, Lopatko KG, Batsmanova LM, Patyka MV, Volkogon MV (2014) The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Res Lett 9:289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taranath TC, Patil BN, Santosh TU, Sharath BS (2015) Cytotoxicity of zinc nanoparticles fabricated by Justicia adhatoda L. on root tips of Allium cepa L.-a model approach. Environ Sci Pollut Res Int 22(11):8611–8617. doi:10.1007/s11356-014-4043-9

    Article  CAS  PubMed  Google Scholar 

  • Thirunavukkarasu M (2014). Synthesis and evaluation of sulphur nano-fertilizers for groundnut. Ph.D. thesis submitted to Tamil Nadu Agricultural University, Coimbatore, India

    Google Scholar 

  • Thiruvengadam M, Gurunathan S, Chung I-M (2015) Physiological, metabolic, and transcriptional effects of biologically-synthesized silver nanoparticles in turnip (Brassica rapa ssp. rapa L.). Protoplasma 252:1031–1046. doi:10.1007/s00709-014-0738-5

    Article  CAS  PubMed  Google Scholar 

  • Thul ST, Sarangi BK (2015) Implications of nanotechnology on plant productivity and its rhizospheric environment. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences: nanoparticles and their impact on plants. Springer International Publishing, Cham, pp 37–54. doi:10.1007/978-3-319-14502-3

    Google Scholar 

  • Thul ST, Sarangi BK, Pandey RA (2013) Nanotechnology in agroecosystem: implications on plant productivity and its soil environment. Expert Opin Environ Biol 2:1. doi:10.4172/2325-9655.1000101

    Article  Google Scholar 

  • Tyagi H, Jha S, Sharma M, Giri J, Tyagi AK (2014) Rice SAPs are responsive to multiple biotic stresses and overexpression of OsSAP1, an A20/AN1 zinc-finger protein, enhances the basal resistance against pathogen infection in tobacco. Plant Sci 225:68–76. doi:10.1016/j.plantsci.2014.05.016

    Article  CAS  PubMed  Google Scholar 

  • Virkutyte J, Varma RS (2013) Green synthesis of nanomaterials: environmental aspects. In: Shamim N, Sharma VK (eds) Sustainable nanotechnology and the environment: advances and achievements. ACS Symposium Series 1124. American Chemical Society, Washington DC, United States, pp 11–39

    Google Scholar 

  • Vochita G, Oprisan M, Racuciu M, Creanga D (2016) Genotoxicity of nanoparticulate zinc ferrite – possible application in plant biotechnology. In: Sontea V, Tiginyanu I (eds) 3rd international conference on nanotechnologies and biomedical engineering, IFMBE Proceedings 55. doi:10.1007/978-981-287-736-9_72. Springer Science + Business Media Singapore, Singapore, pp 297–300

    Google Scholar 

  • Wang P, Menzies NW, Lombi E, Sekine R, Blamey FP, Hernandez-Soriano MC, Cheng M, Kappen P, Peijnenburg WJ, Tang C, Kopittke PM (2015a) Silver sulfide nanoparticles (Ag2S-NPs) are taken up by plants and are phytotoxic. Nanotoxicology 9(8):1041–1049. doi:10.3109/17435390.2014.999139

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Wang F, Gao S (2015b) Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Environ Sci Pollut Res 22:2837–2845. doi:10.1007/s11356-014-3525-0

    Article  CAS  Google Scholar 

  • Watson J-L, Fang T, Dimkpa CO, Britt DW, McLean JE, Jacobson A, Anderson AJ (2015) The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals 28:101–112. doi:10.1007/s10534-014-9806-8

    Article  CAS  PubMed  Google Scholar 

  • Wen Y, Zhang L, Chen Z, Sheng X, Qiu J, Xu D (2016) Co-exposure of silver nanoparticles and chiral herbicide imazethapyr to Arabidopsis thaliana: enantioselective effects. Chemosphere 145:207–214. http://dx.doi.org/10.1016/j.chemosphere.2015.11.035

    Article  CAS  PubMed  Google Scholar 

  • Wigger H, Zimmermann T, Pade C (2015) Broadening our view on nanomaterials: highlighting potentials to contribute to a sustainable materials management in preliminary assessments. Environ Syst Decis 35:110–128. doi:10.1007/s10669-014-9530-5

    Article  Google Scholar 

  • Xiang L, Zhao H-M, Li Y-W, Huang X-P, Wu X-L, Zhai T, Yuan Y, Cai Q-Y, Mo C-H (2015) Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environ Sci Pollut Res 22:10452–10462. doi:10.1007/s11356-015-4172-9

    Article  CAS  Google Scholar 

  • Yanık F, Vardar F (2015) Toxic effects of aluminum oxide (Al2O3) nanoparticles on root growth and development in Triticum aestivum. Water Air Soil Pollut 226:296. doi:10.1007/s11270-015-2566-4

    Article  CAS  Google Scholar 

  • Yuvakkumar R, Elango V, Rajendran V, Kannan NS, Prabu P (2011) Influence of nanosilica powder on the growth of maize crop (Zea Mays L.). Int J Green Nanotechnol 3(3):80–190

    Article  CAS  Google Scholar 

  • Zahra Z, Arshad M, Rafique R, Mahmood A, Habib A, Qazi IA, Khan SA (2015) Metallic nanoparticle (TiO2 and Fe3O4) application modifies rhizosphere phosphorus availability and uptake by Lactuca sativa. J Agric Food Chem 63(31):6876–6882. doi:10.1021/acs.jafc.5b01611

    Article  CAS  PubMed  Google Scholar 

  • Zhai G, Walters KS, Peate DW, Alvarez PJJ, Schnoor JL (2014) Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ Sci Technol Lett 1(2):146–151. doi:10.1021/ez400202b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Zhang H, Tu C, Hu X, Li L, Luo Y, Christie P (2015) Phytotoxicity of ZnO nanoparticles and the released Zn(II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination. Environ Sci Pollut Res 22:11109–11117. doi:10.1007/s11356-015-4325-x

    Article  CAS  Google Scholar 

  • Zhao L, Hernandez-Viezcas JA, Peralta-Videa JR, Bandyopadhyay S, Peng B, Munoz B, Keller AA, Gardea-Torresdey JL (2013a) ZnO nanoparticle fate in soil and zinc bioaccumulation in corn plants (Zea mays) influenced by alginate. Environ Sci Process Impact 15:260–266. doi:10.1039/C2EM30610G

    Article  CAS  Google Scholar 

  • Zhao L, Sun Y, Hernandez-Viezcas JA, Servin AD, Hong J, Genhua N, Peralta-Videa JR, Duarte-Gardea M, Gardea-Torresdey JL (2013b) Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem 61:11945–11951. dx.doi.org/10.1021/jf404328e

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Peralta-Videa JR, Rico CM, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62:2752–2759. doi:10.1021/jf405476u

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank the outstanding contribution of STDF research teams (Science and Technology Development Fund, Egypt) and MBMF/DLR (the Federal Ministry of Education and Research of the Federal Republic of Germany), (Project ID 5310) for their help. Great support from this German-Egyptian Research Fund (GERF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan El-Ramady .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shalaby, T.A. et al. (2016). Nanoparticles, Soils, Plants and Sustainable Agriculture. In: Ranjan, S., Dasgupta, N., Lichtfouse, E. (eds) Nanoscience in Food and Agriculture 1. Sustainable Agriculture Reviews, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-39303-2_10

Download citation

Publish with us

Policies and ethics