Skip to main content
Log in

Effect of silver nanoparticles on concentration of silver heavy element and growth indexes in cucumber (Cucumis sativus L. negeen)

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The tremendous progress on nanoparticle research area has been made significant effects on the economy, society, and the environment. Silver nanoparticle is one of the most important particles in these categories. Silver nanoparticles can be converted to the heavy silver metal in water by oxidation. Moreover, in the high amounts of silver concentration, they will be accumulated in different parts of the plant. However, by changing the morphology of the plant, the production will be harmful for human consumptions. In this study, nano-powders with average 50 nm silver particles are mixed with deionized distilled water in a completely randomized design. Seven treatments with various concentrations of suspension silver nanoparticles were prepared and repeated in four different parts of the plant in a regular program of spraying. Samples were analyzed to study the growth indexes and concentration of silver in different parts of the plant. It was observed that with increasing concentration of silver nanoparticles on cucumber, the growth indexes (except pH fruit), and the concentration of silver heavy metal are increased significantly. The incremental concentration had the linear relationship with correlation coefficient 0.95 and an average of 0.617 PPM by increasing of each unit in one thousand concentration of nanosilver. Although, by increasing concentration of silver nanoparticles as spraying form, the plant morphological characteristics were improved, the concentration of silver heavy metal in various plant organs was increased. These results open a new pathway to consider the effect of nanoparticles on plant’s productions for human consumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams L, Panda CH (1998) Differential effect of artificial substrate and humidity on growth and Ca status of cucumber and tomato hydroponic culture. Acta Hort 401:4032–4044

    Google Scholar 

  • Alam MGM, Snow ET, Tanaka A (2003) Arsenic and heavy metal contamination of vegetables grown in Santa village, Bangladesh. Sci Total Environ 308:83–96. doi:10.1016/S0048-9697(02)00651-4

    Article  CAS  Google Scholar 

  • Assadi M, Ferdowsi M (1993) Management of hazardous waste materials. Publications of environmental protection organization, Tehran, pp 374

  • Baheiraei N, Hedayati M (2011) Antibacterial silver nanoparticles in industry and medicine. Publication of Jihad Amirkabir University, Tehran, pp 97

  • Bahemuka TE, Mubofu EB (1999) Heavy metals in edible green vegetables grown along the sites of the Sinza and Msimbazi rivers in Dar es Salaam, Tanzania. Food Chem 66:63–66. doi:10.1016/S0308-8146(98)00213-1

    Article  CAS  Google Scholar 

  • Benn TM, Westerhoff PK (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139. doi:10.1021/es7032718

    Article  CAS  Google Scholar 

  • Biderigh S (2000) The plant of greenhouse cucumber, tomato and strawberry. Varasteh publications, Rasht, pp 100

  • Blackwell KJ, Singleton I, Tobin JM (1995) Metal cation uptake by yeast: a review. Appl Microbiol Biotechnol 43:579–584. doi:10.1007/BF00164757

    Article  CAS  Google Scholar 

  • Caoas J, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee E, Olszyk D (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27(9):1922–1931

    Article  Google Scholar 

  • Christina MP, Nicola W, Ian TR, Amanda MS, Frederic JS, Theodore AS (2009) Silver impairs neurodevelopment: studies in PC12 cells. Environ Health Perspect 118(1):73–79. doi:10.1289/ehp.0901149

    Google Scholar 

  • Davies JC (2009) Nanotechnology oversight: an agenda for the new administration. Project on Emerging Technologies. Woodrow Wilson International Center for Scholars, Washington, DC. http://www.nanotechproject.org/process/assets/files/6709/pen13.pdf. Accessed 1 June 2009

  • Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and apteral heterogeneity of the stomata foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134:151–160. doi:10.1021/es7032718

    Article  CAS  Google Scholar 

  • Eisvand HR, Ashouri P (2010) Physiology of stress. Lorestan University Publication, Lorestan, pp 230

  • Enayati A, Ebrahimnejad P (2012) Nano pesticides production and application. J Mazand Univ Med Sci 22(86):298–311

    Google Scholar 

  • FAO year production. (2006) Food and agriculture organization of the united Nation, Rome

  • Ghayoor E, Karamzadeh S (2002) Plant physiology. Sanjesh Publication, Tehran, pp 243

  • Gottschalk F, Scholz RW, Nowack B (2010) Probabilistic material flow modeling for assessing the environmental exposure to compounds: methodology and an application to engineered nano-TiO2 particles. Environ Model Softw 25:320–332. doi:10.1016/j.envsoft.2009.08.011

    Article  Google Scholar 

  • Gove PB (1993) Merriam-Webster Editorial Staff, eds. Webster’s third new international dictionary of the English language, unabridged. Merriam-Webster, Inc, Springfield, pp 2662

  • Grier N (1983) Silver and its compounds, disinfection, sterilization and preservation. Lea and Febiger, Philadelphia, pp 375

  • Irannejad H, Shahbazian N (2006) Resistance of crop plants to environmental stresses. Karno Publication, Tehran, pp 230

  • Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, Boller M, Burkhardt M (2010) Release of silver nanoparticles from outdoor facades. Environ Pollut 158(9):2900–2905. doi:10.1016/j.envpol.2010.06.009

    Article  CAS  Google Scholar 

  • Kafi M, Borzooei A, Salehi M, Kamandi A, Maasoomi A, Nabati J (2010) Physiology of environmental stresses in plants. Jahad University Publication, Mashhad, pp 502

  • Kalloo G, Bergh BO (1993) Genetic improvement of vegetable crops. Pergamon Press, Oxford, ISBN-13: 9780080408262

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851. doi:10.1897/08-090.1

    Article  CAS  Google Scholar 

  • Knight H (2010) Antibacterial socks may boost greenhouse emissions. New Sci, 13 August 2010 http://www.newscientist.com/article/mg20727735.300-antibacterial-socks-may-boost-greenhouse-emissions.html?DCMP=OTC-rss&nsref=environment. Accessed 18 July 2011

  • Lea MC (1889) On allotropic forms of silver. Am J Sci 37:476–491

    Google Scholar 

  • Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants Mung Bean (Phaseolus radiatus) and Wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921. doi:10.1897/07-481.1

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250. doi:10.1016/j.envpol.2007.01.016

    Article  CAS  Google Scholar 

  • Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam P, Chiu JF, Che CM (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12(4):527–534. doi:10.1007/s00775-007-0208-z

    Article  CAS  Google Scholar 

  • Lux R (2006) The nanotech report, 4th edn. Lux Research, New York

    Google Scholar 

  • Mapanda F, Mangwayana EN, Nyamangara J, Giller KE (2005) The effects of long-term irrigation using water on heavy metal contents of soils under vegetables. Agric Ecosyst Environ 107:151–156. doi:10.1016/j.agee.2004.11.005

    Article  CAS  Google Scholar 

  • Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB (2006) Safe handling of nanotechnology. Nature 444(7117):267–269. doi:10.1038/444267a

    Article  CAS  Google Scholar 

  • Mohammadi A, Gholami A (1999) Heavy metals and their toxic effects on plants. In: National conference of environment and consequence of its pollution, Iran, 6–8 May 1999

  • Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165

    Google Scholar 

  • Murashov V (2006) Comments on ‘‘Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles” by Yang L, Watts DJ, Toxicology Letters. (2005); 158, 122–132. Toxicol Lett 164:185–187. doi:10.1016/j.toxlet.2006.03.002

    Article  CAS  Google Scholar 

  • Naidu R, Oliver D, McConnell S (2003) Heavy metal phytotoxicity in soils. In: Proceedings of the fifth national workshop on the assessment of site contamination. National Environment Protection Council Service Corporation, Adelaide, pp 235–241

  • Nel A, Xia T, Mdler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. doi:10.1126/science.1114397

    Article  CAS  Google Scholar 

  • Nowack B (2010) Nanosilver revisited downstream. Science 330:1054–1055. doi:10.1126/science.1198074

    Article  CAS  Google Scholar 

  • Orcutt DM, Nilsen ET (2000) The physiology of plant under stress: soil and biotic factors. Wiley, New York, pp 481–517

    Google Scholar 

  • Panyala NR, Pena-Mendez EM, Havel J (2008) Silver or silver nanoparticles: a hazardous threat to the environment and human health? J Appl Biomed 6:117–129

    CAS  Google Scholar 

  • Peyvast GH (2002) Vegetate. Agricultural Sciences Publication, 3rd edn. Publications Knowledge Possible. Tehran, pp 487

  • Rico CM, Sanghamitra M, Maria DG, Jose RPV, Jorge LGT (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498. doi:10.1021/jf104517j

    Article  CAS  Google Scholar 

  • Roco MC (2003) Broader societal issue of nanotechnology. J Nanopart Res 5(3–4):181–189. doi:10.1023/A:1025548512438

    Article  Google Scholar 

  • Service RF (2004) Nanotechnology grows up. Science 304:1732–1734. doi:10.1126/science.304.5678.1732

    Article  CAS  Google Scholar 

  • Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructure plasmonic sensors. Chem Rev 108(2):494–521. doi:10.1021/cr068126n

    Article  CAS  Google Scholar 

  • Suematsu H, Murai K, Tokoi Y, Suzuki T, Nakayama T, Jiang W, Niihara K (2007) Nanosized powder preparation with high energy conversion efficiency by pulsed wire discharge. J Chin Ceram Soc 35:1–9

    Google Scholar 

  • Taniguchi N (1974) On the basic concept of NanoTechnology. In: Proceedings of ICPE, Tokyo, 2, pp 18–23

  • Uchida M (1995) Antimicrobial zeolite and its application. Chem Ind 46:48–54

    Google Scholar 

  • USEPA (2007) Nanotechnology white paper. EPA/100/B-07/001 Washington, DC, pp 136

  • Warheit DB (2004) Nanoparticles: health impacts? Mater Today 7:32–35. doi:10.1016/S1369-7021(04)00081-1

    Article  CAS  Google Scholar 

  • Yang L, Watts D (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158(2):122–132. doi:10.1016/j.toxlet.2005.03.003

    Article  CAS  Google Scholar 

  • Yang K, Wang XL, Zhu LZ, Xing BS (2006) Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes. Environ Sci Technol 40(18):5804–5810. doi:10.1021/es061081n

    Article  CAS  Google Scholar 

  • Zeliadt N (2010) Silver beware: antimicrobial nanoparticles in soil may harm plant life, Scientific American. http://www.scientificamerican.com/article.cfm?id=Silver-beware-antimicrobial-nanoparticles-in-soil-may-harm-plant-life. Accessed 9 Aug 2010

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717. doi:10.1039/B805998E

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The results of this article are obtained from the research plan entitle: “The effect of antimicrobial silver nanoparticles on concentration of silver heavy element in cucumber (Cucumis sativus L. negeen).” Financial grant was supported by research center, Shiraz Branch, Islamic Azad University, Shiraz, Iran. The authors are grateful to Professor Eskandari and Mrs. Mallahi from Islamic Azad University-Shiraz branch, Dr. Feizi from Ferdowsi University Mashhad, and Dr. Mojtaba Ranjbar from Department of Electrical and Computer Engineering at National University of Singapore for their help and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamabbas Shams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shams, G., Ranjbar, M. & Amiri, A. Effect of silver nanoparticles on concentration of silver heavy element and growth indexes in cucumber (Cucumis sativus L. negeen). J Nanopart Res 15, 1630 (2013). https://doi.org/10.1007/s11051-013-1630-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1630-5

Keywords

Navigation