Skip to main content
Log in

Functional Analysis of TiO2 Nanoparticle Toxicity in Three Plant Species

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Titanium dioxide nanoparticles (nano-TiO2) are manufactured and used worldwide in large quantities. However, phytotoxicity research on nano-TiO2 has yielded confusing results, ranging from strong toxicity to positive effects. Therefore, in this research, the effects of nano-TiO2 on the germination and root elongation of seed and seedlings were studied. Additionally, the uptake and physiological responses of mature plants were investigated. Physical chemistry data were analyzed to assess the availability of nano-TiO2. Finally, a hydroponic system designed to overcome nano-TiO2 precipitation was used to reproduce the environmental conditions of actual fields. Nano-TiO2 did not have any effect on seed germination or on most of the plant species tested. Nano-TiO2 had positive effects on root elongation in some species. No physiological differences in enzyme activities or chlorophyll content were detected, even though the plants absorbed nano-TiO2. Physical chemistry data showed that nano-TiO2 agglomerated rapidly and formed particles with much bigger hydrodynamic diameters, even in distilled water and especially in a hydroponic system. Furthermore, agglomerated nano-TiO2 formed precipitates; this would be more severe in an actual field. Consequently, nano-TiO2 would not be also readily available to plants and would not cause any significant effects on plants. Our results and other reports suggest that titanium itself is not phytotoxic, even though plants absorb titanium. In conclusion, nano-TiO2 is not toxic to the three plant species, in vitro or in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ruffini Castiglione M, Giorgetti L, Geri C, Cremonini R (2011) The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J Nanopart Res 1(6):2443–2449. doi:10.1007/s11051-010-0135-8

    Article  Google Scholar 

  2. Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li K, Huang Y, Chen Y, Kolmakov A, Ma X (2013) Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicol 7(3):323–337. doi:10.3109/17435390.2012.658094

    Article  CAS  Google Scholar 

  3. Lee W-M, An Y-J, Yoon H, Kweon H-S (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): Plant agar test for water-insoluble nanoparticles. Environ Toxic Chem 27(9):1915–1921. doi:10.1897/07-481.1

    Article  CAS  Google Scholar 

  4. Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Tech 41(23):8178–8186. doi:10.1021/es071235e

    Article  CAS  Google Scholar 

  5. Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY (2009) Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5(16):1897–1910. doi:10.1002/smll.200801716

    Article  PubMed  CAS  Google Scholar 

  6. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83. doi:10.1016/j.biotechadv.2008.09.002

    Article  PubMed  CAS  Google Scholar 

  7. Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279(1):71–76. doi:10.1111/j.1574-6968.2007.01012.x

    Article  PubMed  CAS  Google Scholar 

  8. Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Tech 40(14):4336–4345. doi:10.1021/es062726m

    Article  CAS  Google Scholar 

  9. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250. doi:10.1016/j.envpol.2007.01.016

    Article  PubMed  CAS  Google Scholar 

  10. Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69(22):8784–8789. doi:10.1158/0008-5472.can-09-2496

    Article  PubMed  CAS  Google Scholar 

  11. Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Tech 40(14):4346–4352. doi:10.1021/es060589n

    Article  CAS  Google Scholar 

  12. Kang SJ, Kim BM, Lee YJ, Chung HW (2008) Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ Mol Mutagen 49(5):399–405. doi:10.1002/em.20399

    Article  PubMed  CAS  Google Scholar 

  13. Nohynek GJ, Dufour EK, Roberts MS (2008) Nanotechnology, cosmetics and the skin: is there a health risk? Skin Pharmacol Phys 21(3):136–149

    Article  CAS  Google Scholar 

  14. Newman MD, Stotland M, Ellis JI (2009) The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens. J Am Acad Dermatol 61(4):685–692. doi:10.1016/j.jaad.2009.02.051

    Article  PubMed  CAS  Google Scholar 

  15. Hong F, Yang F, Liu C, Gao Q, Wan Z, Gu F, Wu C, Ma Z, Zhou J, Yang P (2005) Influences of nano-TiO2 on the chloroplast aging of spinach under light. Biol Trace Elem Res 104(3):249–260. doi:10.1385/bter:104:3:249

    Article  PubMed  CAS  Google Scholar 

  16. Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P (2006) Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110(2):179–190. doi:10.1385/bter:110:2:179

    Article  PubMed  CAS  Google Scholar 

  17. Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104(1):83–91. doi:10.1385/bter:104:1:083

    Article  PubMed  CAS  Google Scholar 

  18. (OECD) OECD (2003) OECD guidelines for the testing of chemicals: proposals for updating guideline 208-terrestrial plant test: seedling emergence and seedling growth test. http://wwwoecdorg/dataoecd/11/31/33653757pdf. Accessed 20 Apr 2011. doi: 10.1016/j.buildenv.2013.04.024

  19. United States Environmental Protection Agency (USEPA) (1996) Ecological effects test guidelines (OPPTS 850.4200): seed germination / root elongation toxicity test. http://wwwepagov/opptsfrs/publications/OPPTS_Harmonized/850_Ecological_Effects_Test_Guidelines/Drafts/850-4200pdf. Accessed 25 Mar 2011. doi: 10.1016/j.buildenv.2013.04.024

  20. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Tech 43(24):9216–9222. doi:10.1021/es9015553

    Article  CAS  Google Scholar 

  21. Kim B, Murayama M, Colman BP, Hochella MF (2012) Characterization and environmental implications of nano- and larger TiO2 particles in sewage sludge, and soils amended with sewage sludge. J Environ Monitor 14(4):1128–1136

    Article  CAS  Google Scholar 

  22. Watson C, Pulford ID, Riddell-Black D (2003) Screening of willow species for resistance to heavy metals: comparison of performance in a hydroponics system and field trials. Int J Phytoremediat 5(4):351–365. doi:10.1080/15226510309359042

    CAS  Google Scholar 

  23. Gent MPN, White JC, Eitzer BD, Mattina MI (2007) Modeling the difference among Cucurbita in uptake and translocation of p,p′-dichlorophenyl-1,1-dichloroethylene. Environ Toxicol Chem 26(12):2476–2485. doi:10.1897/06-258.1

    Article  PubMed  CAS  Google Scholar 

  24. Hoagland D, Arnon D (1950) The water culture method for growing plants without soil. California Agri Exp Sta Circ 347(4):1–39. doi:10.1007/s12374-010-9112-0

    Google Scholar 

  25. Lee JG, Lee BY, Lee HJ (2006) Accumulation of phytotoxic organic acids in reused nutrient solution during hydroponic cultivation of lettuce (Lactuca sativa L.). Sci Hortic 110(2):119–128. doi:10.1016/j.scienta.2006.06.013

    Article  CAS  Google Scholar 

  26. Song U, Lee E (2010) Ecophysiological responses of plants after sewage sludge compost applications. J Plant Biol 53(4):259–267. doi:10.1007/s12374-010-9112-0

    Article  CAS  Google Scholar 

  27. Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57(12):1332–1334. doi:10.1139/b79-163

    Article  CAS  Google Scholar 

  28. Jeffryes C, Gutu T, Jiao J, Rorrer GL (2008) Metabolic insertion of nanostructured TiO2 into the patterned biosilica of the diatom Pinnularia sp. by a two-stage bioreactor cultivation process. ACS Nano 2(10):2103–2112. doi:10.1021/nn800470x

    Article  PubMed  CAS  Google Scholar 

  29. Rodushkin I, Ruth T, Huhtasaari Å (1999) Comparison of two digestion methods for elemental determinations in plant material by ICP techniques. Anal Chim Acta 378(1–3):191–200. doi:10.1016/S0003-2670(98)00635-7

    Article  CAS  Google Scholar 

  30. Badawy AME, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Tech 44(4):1260–1266. doi:10.1021/es902240k

    Article  Google Scholar 

  31. Warheit DB (2008) How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci 101(2):183–185. doi:10.1093/toxsci/kfm279

    Article  PubMed  CAS  Google Scholar 

  32. Doshi R, Braida W, Christodoulatos C, Wazne M, O’Connor G (2008) Nano-aluminum: transport through sand columns and environmental effects on plants and soil communities. Environ Res 106(3):296–303. doi:10.1016/j.envres.2007.04.006

    Article  PubMed  CAS  Google Scholar 

  33. Smilde KW (1981) Heavy-metal accumulation in crops grown on sewage sludge amended with metal salts. Plant Soil 62(1):3–14. doi:10.1007/BF02205020

    Article  CAS  Google Scholar 

  34. Darlington TK, Neigh AM, Spencer MT, Guyen OTN, Oldenburg SJ (2009) Nanoparticle characteristics affecting environmental fate and transport through soil. Environ Toxicol Chem 28(6):1191–1199. doi:10.1897/08-341.1

    Article  PubMed  CAS  Google Scholar 

  35. Lake DL, Kirk PWW, Lester JN (1984) Fractionation, characterization, and speciation of heavy metals in sewage sludge and sludge-amended soils: a review. J Environ Qual 13(2):175–183. doi:10.2134/jeq1984.00472425001300020001x

    Article  CAS  Google Scholar 

  36. Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061. doi:10.1016/j.scitotenv.2010.03.031

    Article  PubMed  CAS  Google Scholar 

  37. Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81(10):1253–1262. doi:10.1016/j.chemosphere.2010.09.022

    Article  PubMed  CAS  Google Scholar 

  38. Wallace A, Alexander GV, Chaudhry FM (1977) Phytotoxicity of cobalt, vanadium, titanium, silver, and chromium. Commun Soil Sci Plant Anal 8(9):751–756. doi:10.1080/00103627709366769

    Article  CAS  Google Scholar 

  39. Tlustoš P, Cígler P, Hrubý M, Kužel S, Száková J, Pavlíková D, Balík J (2005) The role of titanium in biomass production and its influence on essential elements contents in field growing crops. Plant Soil Environ 51:19–25

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the Risk Assessment Division of the National Institute of Environmental Research, Korea (project no. 0458–20110011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Ju Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, U., Shin, M., Lee, G. et al. Functional Analysis of TiO2 Nanoparticle Toxicity in Three Plant Species. Biol Trace Elem Res 155, 93–103 (2013). https://doi.org/10.1007/s12011-013-9765-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9765-x

Keywords

Navigation