Skip to main content

Advertisement

Log in

Nano carriers for nitric oxide delivery and its potential applications in plant physiological process: A mini review

  • Review Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) plays a key role in plant growth and defense. Since NO is a small molecule, devoid of charge and relatively lipophilic, it easily crosses cell membranes, acting as an important signaling messenger. Recently, several papers described the beneficial effects due to application of small molecular weight NO donors in plants. Exogenous NO donors break seed dormancy, stimulate plant germination and greening, control iron homeostasis in plants, and improve plant tolerance to salinity, metal toxicity, temperature and drought stress. However, these NO donors are thermally and photochemically unstable. A promising strategy that has been successfully used in biomedical applications is the combination of NO donors with nanomaterials. The encapsulation of NO donors in nanoparticles/nanotubes is able to control the release of therapeutic amounts of NO, thus improving its beneficial effects. Although nanomaterials have been used successfully to carry agrochemicals in plants, the delivery of NO is still to be studied. In this context, the present review highlights the advantages of applications of NO donors in plants, the uses of nanotechnology in agriculture, and the necessity to develop new strategies based on the combination of NO and nanomaterials in agriculture. Therefore, this review hopes to open up new perspectives in the area of nanobiotechnology, NO and agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CNT:

Carbon nanotubes

FITC:

Fluoresceinisothiocyanate

NO:

Nitric oxide

PAMAM:

Polyamidoamine

PAH:

Poly(allylamine hydrochloride)

PLGAPoly:

(lactic-co-glycolic) acid

PEHAM:

Poly (etherhydroxylamine)

ROS:

Reactive oxygen species

RSNOs:

S-nitrosothiols

SNAP:

S-nitroso-N-acetlyphenicillamine

SNP:

Sodium nitroprusside

References

  • Aftab T, Khan MMA, Naeem M, Idrees M, Moinuddin et al (2012) Exogenous nitricoxide donor protects Artemisia annua from oxidative stress generated by boron and aluminium toxicity. Ecotoxicol Environ Saf 80:60–68

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Puebla RA, Ross DJ, Nazri GA, Aroca RF (2005) Surface-enhanced Raman scattering on nanoshells with tunable surface plasmon resonance. Langmuir 21:10504–10508

    Article  CAS  PubMed  Google Scholar 

  • Amadeu TP, Seabra AB, de Oliveira MG, Costa AMA (2007) S-nitrosoglutathione-containing hydrogel accelerates rat cutaneous wound repair. J Eur Acad Dermatol Venereol 21:629–637

    CAS  PubMed  Google Scholar 

  • Amadeu TP, Seabra AB, de Oliveira MG, Costa AMA (2008) Nitric oxide donor improves healing if applied on inflammatory and proliferative phase. J Surg Res 149:84–93

    Article  CAS  PubMed  Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nanosilica—from medicine to pest control. Parasitol Res 103:253–258

    Article  CAS  PubMed  Google Scholar 

  • Baudouin E (2011) The language of nitric oxide signaling. Plant Biol 13:233–242

    Article  CAS  PubMed  Google Scholar 

  • Bavita A, Shashi B, Navtej SB (2012) Nitric oxide alleviates oxidative damage induced by high temperature stress in wheat. Indian J Exp Biol 50:372–378

    CAS  PubMed  Google Scholar 

  • Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation and inhibits hypocotyl elongation: three light-inducible responses in plants. Planta 210:215–221

    Article  CAS  PubMed  Google Scholar 

  • Benini PGZ, McGarvey BR, Franco DW (2008) Functionalization of PAMAM dendrimers with [Ru-III(EDTA)(H2O)](-). Nitric Oxide 19:245–251

    Article  CAS  PubMed  Google Scholar 

  • Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Annu Rev Plant Physiol 59:21–40

    CAS  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Canas JE, Long M, Nations S, Vadan R, Dai L et al (2008) Effects of functionalized and non- functionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931

    Article  CAS  PubMed  Google Scholar 

  • Carpenter AW, Schoenfisch MH (2012) Nitric oxide release: Part II. Therapeutic applications. Chem Soc Rev 41:3742–3752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chang WL, Shaily M, Katherine Z, Li D, Yu-Chang T et al (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675

    Article  Google Scholar 

  • Collom L, Emnanis D, Wael H, Anindya G (2008) Ruthenium complexes of amido macrocyclic ligands for NO release. 64th Southwest regional meeting of the American Chemical Society, Abstract

  • Corpas FJ, Leterrier M, Valderrama R, Airaki M, Chaki M et al (2011) Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci 181:604–611

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira MG, Shishido SM, Seabra AB, Morgon NH (2002) Thermal stability of primary S-nitrosothiols: roles of autocatalysis and structural effects on the rate of nitric oxide release. J Phys Chem A 106:8963–8970

    Article  Google Scholar 

  • Ding F (2012) Effects of salinity and nitric oxide donor sodium nitroprusside (SNP) on development and salt secretion of salt glands of Limonium bicolor. Acta Physiol Plant. doi 10.1007/s11738-012-1114-8

  • Ditta A (2012) How helpful is nanotechnology in agriculture? Adv Nat Sci Nanosci Nanotechnol 3:033002

    Article  Google Scholar 

  • Duran N, Marcato PD, De Conti R, Alves OL, Costa FTM et al (2010) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc 21:949–959

    Article  CAS  Google Scholar 

  • El-Temsah YS, Joner EJ (2010) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49

    Article  PubMed  Google Scholar 

  • Eva JG, Lesley CB, Jamie RL (2011) Phytotoxicity of silver nanoparticles to Lemna minor L. Environ Pollut 159:1551–1559

    Article  Google Scholar 

  • Ferreira LC, Cataneo AC (2010) Nitric oxide in plants: a brief discussion on this multifunctional molecule. Sci Agric 67:236–243

    Article  CAS  Google Scholar 

  • Gao Q, Wang GJ, Wan AJ (2008) Synthesis and characterization of chitosan-based diazeniumdiolates. Polym Mat Sci Eng 12

  • García-Mata C, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1196–1204

    Article  PubMed  Google Scholar 

  • Gniazdowska A, Krasuska A, Czajkowska K, Bogatek R (2010) Nitric oxide, hydrogen cyanide and ethylene are required in the control of germination and undisturbed development of young apple seedlings. Plant Growth Regul 61:75–84

    Article  CAS  Google Scholar 

  • Gomes AJ, Barbougli PA, Espreafico EM, Tfouni E (2008) Trans-[Ru(NO)(NH3)(4)(py)](BF4)(3)center dot H2O encapsulated in PLGA microparticles for delivery of nitric oxide to B16-F10 cells: cytotoxicity and phototoxicity. J Inorg Biochem 102:757–766

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Melendi P, Fernandez-Pacheco R, Coronado MJ, Corredor E, Testillano PS et al (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101:187–195

    Article  CAS  PubMed  Google Scholar 

  • Graziano M, Beligni MV, Lamattina L (2002) Nitric oxide improves internal iron availability in plants. Plant Physiol 130:1852–1859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grover M, Singh SR, Venkateswarlu B (2012) Nanotechnology: scope and limitations in agriculture. Int J Nanotechnol Appl 2:10–38

    Google Scholar 

  • Gupta KJ, Igamberdiev AU, Manjunatha G, Segu S, Moran JF et al (2011a) The emerging roles of nitric oxide (NO) in plant mitochondria. Plant Sci 181:520–526

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT (2011b) On the origins of nitric oxide. Trends Plant Sci 16:160–168

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Hincha DK, Mur LAJ (2011c) NO way to treat a cold. New Phytol 189:360–363

    Article  CAS  PubMed  Google Scholar 

  • Hadadd PS, Seabra AB (2012) Biomedical Applications of Magnetic Nanoparticles. In: Gotsiridze-Columbus N (ed) Iron Oxides: Structure, Properties and Applications. Nova, Nova York, pp 165–188

    Google Scholar 

  • Hayes RT, Owen DJ, Chauhan AS, Pulgam VR (2011) PEHAM dendrimers for use in agriculture. US Patent 20110230348

  • Hetrick EM, Shin JH, Stasko NA, Johnson CB, Wespe DA et al (2008) Bactericidal efficacy of nitric oxide-releasing silica nanoparticles. ACS Nano 2:235–246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holtz RD, Souza AG, Brocchi M, Martins D, Duran N et al (2010) Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent. Nanotechnology 21:185102

    Article  CAS  PubMed  Google Scholar 

  • Huang SL, Kee PH, Kim H, Moody MR, Chrzanowski SM et al (2009) Nitric Oxide-loaded echogenic liposomes for nitric oxide delivery and inhibition of intimal hyperplasia. J Am Coll Cardiol 54:652–659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ignarro LJ (2000) Nitric Oxide, Biology and Pathobiology. Academic, San Diego

    Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li ZR et al (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    Article  CAS  PubMed  Google Scholar 

  • Kim SW, Kim KS, Lamsal K, Kim YJ, Kim SB et al (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764

    PubMed  Google Scholar 

  • Klepper LA (1975) Evolution of nitrogen oxide gases from herbicide treated plant tissues. WSSA Abstracts 184:70

    Google Scholar 

  • Koehler JJ, Zhao J, Jedlicka SS, Porterfield DM, Rickus JL (2008) Compartmentalized nanocomposite for dynamic nitric oxide release. J Phys Chem B 112:15086–15093

    Article  CAS  PubMed  Google Scholar 

  • Lee WM, Kwak JI, An YJ (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491–499

    Article  CAS  PubMed  Google Scholar 

  • Li ZZ, Chen JF, Liu F, Lu AQ, Wang Q et al (2007) Study of UV shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag Sci 63:241–246

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  PubMed  Google Scholar 

  • Lin CC, Jih PJ, Lin HH, Lin JS, Chang LL et al (2011) Nitric oxide activates superoxide dismutase and ascorbate peroxidase to repress the cell death induced by wounding. Plant Mol Biol 77:235–249

    Article  CAS  PubMed  Google Scholar 

  • Lin A, Wang Y, Tang J, Xue P, Li C et al (2012) Nitric oxide and orotein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol 158:451–464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Laks P, Heiden P (2002) Controlled release of biocides in solid wood. Part 1. Efficacy against Gloeophyllum trabeum, a brown-rot wood decay fungus. J Appl Polym Sci 86:596–607

    Article  CAS  Google Scholar 

  • Liu Y, Laks P, Heiden P (2003) Nanoparticles for the controlled release of fungicides in wood: soil Jar studies using Gloeophyllum trabeum and Trametes versicolor wood decay fungi. Holzforschung 57:35–139

    Google Scholar 

  • Liu J, He SG, Zhang ZQ, Cao JP, Lv PT et al (2009a) Nano-silver pulse treatments inhibit stem-end bacteria on cut gerbera cv. Ruikou flowers. Postharvest Biol Technol 54:59–62

    Article  CAS  Google Scholar 

  • Liu Q, Chen B, Wang Q, Shi X, Xiao Z et al (2009b) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–1010

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Deng Z, Cheng H, He X, Song S (2011) Nitrite, sodium nitroprusside, potassium ferricyanide and hydrogen peroxide release dormancy of Amaranthus retroflexus seeds in a nitric oxide-dependent manner. Plant Growth Regul 64:155–161

    Article  CAS  Google Scholar 

  • Mazumdar H, Ahmed GU (2011) Phytotoxicity effect of silver nanoparticles on Oryza sativa. Int J Chem Tech Res 3:1494–1500

    CAS  Google Scholar 

  • Min JS, Kim SW, Jung JH, Lamsal K, Bin Kim S et al (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J 25:376–380

    Article  CAS  Google Scholar 

  • Molina MM, Seabra AB, de Oliveira MG, Itri R, Haddad PS (2013) Nitric oxide donor superparamagnetic iron oxide nanoparticles. Mat Sci Eng C-Biomim 33:746–751

    Article  CAS  Google Scholar 

  • Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165

    Google Scholar 

  • Musante C, White JC (2012) Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxicol 27:510–517

    Article  CAS  PubMed  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y et al (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J et al (2008) Environmental behaviour and ecotoxicology of engineered nanoparticles to algae, plant and fungi. Revista 17:372–386

    CAS  Google Scholar 

  • Paradise WA, Vesper BJ, Goel A, Waltonen JD, Altman KW et al (2010) Nitric Oxide: perspectives and emerging studies of a well known cytotoxin. Int J Mol Sci 11:2715–2745

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica–silver for control of various plant diseases. Plant Pathol J 22:295–302

    Article  Google Scholar 

  • Pasupathy K, Lin S, Hu Q, Luo H, Dr PCK (2008) Direct plant gene delivery with a poly (amidoamine) dendrimer. Biotechnol J 3:1078–1082

    Article  CAS  PubMed  Google Scholar 

  • Perez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545

    Article  CAS  PubMed  Google Scholar 

  • Prashanth KVH, Tharanathan RN (2007) Chitin/chitosan: modifications and their unlimited application potential – an overview. Trends Food Sci Tech 18:117–131

    Article  CAS  Google Scholar 

  • Racuciu M, Creanga DE (2007) TMA-OH coated magnetic nanoparticles internalized in vegetal tissues. Romanian J Phys 52:395–395

    CAS  Google Scholar 

  • Ramirez L, Simontacchi M, Murgia I, Zabaleta E, Lamattina L (2011) Nitric oxide, nitrosyl iron complexes, ferritin and frataxin: a well equipped team to preserve plant iron homeostasis. Plant Sci 181:582–592

    Article  CAS  PubMed  Google Scholar 

  • Sabo-Attwood T, Unrine, Stone JW, Murphy CJ, Ghoshroy S et al. (2011) Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology, doi:10.3109/17435390.2011.579631

  • Samaj J, Baluska F, Voigt B, Schlicht M, Volkmann D et al (2004) Endocytosis, actin cytoskeleton, and signaling. Plant Physiol 135:1150–1161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Samuel JP, Samboju NC, Yau KY, Webb SR, Burroughs F (2011) Use of dendrimer nanotechnology for delivery of biomolecules into plant cells. US Patent 20110093982

  • Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata—An endemic and endangered medicinal. Tree Taxon Nano Vision 2:61–68

    Google Scholar 

  • Schoenfisch MH, Hetrick EM, Stasko NA, Johnson CB (2009) Use of nitric oxide to enhance the efficacy of silver and other topical wound care agents. PCT Int Appl WO 2 009 049 208

  • Seabra AB (2011) Nitric oxide-releasing nanomaterials and skin care. In: Beck R, Pohlmann A, Guterres S (eds) Nanocosmetics and Nanomedicines, 1st edn. Springer, New York, pp 253–268

    Chapter  Google Scholar 

  • Seabra AB, Durán N (2010) Nitric oxide-releasing vehicles for biomedical applications. J Mat Chem 20:1624–1637

    Article  CAS  Google Scholar 

  • Seabra AB, Durán N (2012) Nanotechnology allied to nitric oxide release materials for dermatological applications. Curr Nanosci 8:520–525

    Article  CAS  Google Scholar 

  • Seabra AB, Fitzpatrick A, Paul J, de Oliveira MG, Weller R (2004) Topically applied S-nitrosothiol-containing hydrogels as experimental and pharmacological nitric oxide donors in human skin. Brit J Dermatol 151:977–983

    Article  CAS  Google Scholar 

  • Seabra AB, Pankotai E, Fecher M, Somlai A, Kiss L et al (2007) S-nitrosoglutathione-containing hydrogel increases dermal blood flow in streptozotocin-induced diabetic rats. Brit J Dermatol 156:814–818

    Article  CAS  Google Scholar 

  • Seabra AB, da Silva R, de Souza GFP, de Oliveira MG (2008) Antithrombogenic polynitrosated polyester/poly(methyl methacrylate) blend for the coating of blood-contacting surfaces. Artif Organs 32:262–267

    Article  CAS  PubMed  Google Scholar 

  • Seabra AB, Martins DM, da Silva R, Simões MMSG, Brocchi M et al (2010) Antibacterial nitric oxide polyester for the coating of blood-contacting artificial materials. Artif Organs 34:E204–E214

    Article  CAS  PubMed  Google Scholar 

  • Shi HT, Li RJ, Cai W, Liu W, Wang CL et al (2012) In vivo role of nitric oxide in plant response to abiotic and biotic stress. Plant Sign Behavior 7:438–440

    Google Scholar 

  • Shin JH, Metzger SK, Schoenfisch MH (2007) Synthesis of nitric oxide-releasing silica nanoparticles. J Am Chem Soc 129:4612–4619

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Basalah MO (2011) Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248:447–455

    Article  CAS  PubMed  Google Scholar 

  • Simplício FI, Seabra AB, de Souza GFP, de Oliveira MG (2010) In vitro inhibition of linoleic acid peroxidation by primary S-nitrosothiols. J Braz Chem Soc 21:1885–1895

    Article  Google Scholar 

  • Slowing II, Vivero-Escoto JL, Wu C-W, Lin VSY (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–1288

    Article  CAS  PubMed  Google Scholar 

  • Solgi M, Kafi M, Taghavi TS, Naderi R (2009) Essential oils and silver nanoparticles (SNP) as novel agents to extend vase-life of gerbera (Gerbera jamesonii cv. ‘Dune’) flowers. Postharvest Biol Technol 53:155–158

    Article  CAS  Google Scholar 

  • Srivastava S, Dubey RS (2012) Nitric oxide alleviates manganese toxicity by preventing oxidative stress in excised rice leaves. Acta Physiol Plant 34:819–825

    Article  CAS  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  CAS  PubMed  Google Scholar 

  • Stasko NA, Schoenfisch MH (2006) Dendrimers as a scaffold for nitric oxide release. J Am Chem Soc 128:8265–8271

    Article  CAS  PubMed  Google Scholar 

  • Stasko NA, Fischer TH, Schoenfisch MH (2008) S-nitrosothiol-modified dendrimers as nitric oxide delivery vehicles. Biomacromolecules 9:834–841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taladriz-Blanco P, Rodrıguez-Lorenzo L, Sanles-Sobrido M, Herve P, Correa-Duarte MA et al (2009) SERS study of the controllable release of nitric oxide from aromatic nitrosothiols on bimetallic, bifunctional nanoparticles supported on carbon nanotubes. ACS Appl Mater Interf 1:56–59

    Article  CAS  Google Scholar 

  • Tan J, Zhao H, Hong J, Han Y, Li H et al (2008) Effects of exogenous nitric oxide on photosynthesis, antioxidant capacity and proline accumulation in wheat seedlings subjected to osmotic stress. World J Agricul Sci 4:307–313

    Google Scholar 

  • Taylor TM, Davidson PM, Bruce BD, Weiss J (2005) Liposomal nanocapsules in food science and agriculture. Crit Ver Food Sci Nutr 45:587–605

    Article  CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnol l2:295–300

    Article  Google Scholar 

  • Trotel-Aziz P, Couderchet M, Vernet G, Aziz A (2006) Chitosan stimulates defense reactions in grapevine leaves and inhibits development of Botrytis cinerea. Eur J Plant Pathol 114:405–413

    Article  CAS  Google Scholar 

  • Wang SH, Zhang H, Jianga SJ, Zhang L, He QY et al (2010) Effects of the nitric oxide donor sodium nitroprusside on antioxidant enzymes in wheat seedling roots under nickel stress. Russ J Plant Physiol 57:833–839

    Article  CAS  Google Scholar 

  • Wendehenne D, Hancock JT (2011) New frontiers in nitric oxide biology in plant. Plant Sci 181:507–508

    Article  PubMed  Google Scholar 

  • Wiesman Z, Ben Dom N, Sharvit E, Grinberg S, Linder C et al (2007) Novel cationic vesicle platform derived from vernonia oil for efficient delivery of DNA through plant cuticle membranes. J Biotechnol 130:85–94

    Article  CAS  PubMed  Google Scholar 

  • Yoo J, C Lee C (2006) http://www.aapsj.org/abstracts/AM_2006/staged/AAPS,001991.PDF

  • Zhang L, Wang Y, Zhao L, Shi S, Zhang L (2006) Involvement of nitric oxide in light-mediated greening of barley seedlings. J Plant Phys 163:818–826

    Article  CAS  Google Scholar 

  • Zhang XY, Dong YJ, Qiu XK, Hu GQ, Wang YH et al (2012) Exogenous nitric oxide alleviates iron-deficiency chlorosis in peanut growing on calcareous soil. Plant Soil Environ 58:111–120

    CAS  Google Scholar 

  • Zheng C, Jiang D, Liu F, Dai T, Liu W et al (2009) Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environ Exp Bot 67:222–227

    Article  CAS  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monitor 10:713–717

    Article  CAS  Google Scholar 

  • Zhukovskii VA (2008) Problems and prospects for development and production of surgical suture materials. Fibre Chem 40:208–216

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Professor Carol Collins, for revision and suggestions. Support from, INOMAT (MCT/CNPq), CNPq, FAPESP, and the Brazilian Network in Nanotoxicology (MCTqCNPq) are acknowledged. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amedea B. Seabra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seabra, A.B., Rai, M. & Durán, N. Nano carriers for nitric oxide delivery and its potential applications in plant physiological process: A mini review. J. Plant Biochem. Biotechnol. 23, 1–10 (2014). https://doi.org/10.1007/s13562-013-0204-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-013-0204-z

Keywords

Navigation