Skip to main content

Advertisement

Log in

The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Zn is an essential element for plants yet some soils are Zn-deficient and/or have low Zn-bioavailability. This paper addresses the feasibility of using ZnO nanoparticles (NPs) as soil amendments to improve Zn levels in the plant. The effects of soil properties on phytotoxicity and Zn bioavailability from the NPs were studied by using an acidic and a calcareous alkaline soil. In the acid soil, the ZnO NPs caused dose-dependent phytotoxicity, observed as inhibition of elongation of roots of wheat, Triticum aestivum. Phytotoxicity was mitigated in the calcareous alkaline soil although uptake of Zn from the ZnO NPs occurred doubling the Zn level compared to control plants. This increase occurred with a low level of Zn in the soil solution as expected from the interactions of Zn with the soil components at the alkaline pH. Soluble Zn in the acid soil was 200-fold higher and shoot levels were tenfold higher than from the alkaline soil correlating with phytotoxicity. Mitigation of toxicity was not observed in plants grown in sand amended with a commercial preparation of humic acid: growth, shoot uptake and solubility of Zn from the NPs was not altered by the humic acid. Thus, variation in humic acid between soils may not be a major factor influencing plant responses to the NPs. These findings illustrate that formulations of ZnO NPs to be used as a soil amendment would need to be tuned to soil properties to avoid phytotoxicity yet provide increased Zn accumulations in the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adani F, Genevi P, Zaccheo P, Zocchi G (1998) The effect of commercial humic acid on tomato plant growth and mineral nutrition. J Plant Nutr 21:561–575

  • Alloway BJ (2009) Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health 31:537–548

    Article  CAS  PubMed  Google Scholar 

  • Beyer WN, Green CE, Beyer M, Chaney RL (2013) Phytotoxicity of zinc and manganese to seedlings grown in soil contaminated by zinc smelting. Environ Pollut 179:167–176

    Article  CAS  PubMed  Google Scholar 

  • Bian SW, Mudunkowotuwa IA, Tupasjngjhe T, Grassian VH (2011) Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size and adsorption of humic acid. Langmuir 27:6059–6068

    Article  CAS  PubMed  Google Scholar 

  • Borill P, Connorton JM, Balk J, Miller AJ, Sanders D, Uauy C (2014) Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. Front Plant Sci 5:53. doi: 10.3389/fpls.2014.00053, 21 Feb 2014

  • Boussen S, Soubrand M, Bril H, Ouerfelli K, Abdeljaouad S (2013) Transfer of lead, zinc and cadmium from mine tailings to wheat (Tricum aestivum) in carbonated Mediterranean (Northern Tunisia) soils. Geoderma 192:227–236

    Article  CAS  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification. Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Canellas LP, Olivares FL, Okorokova-Façanha AL, Façanha AR (2002) Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol 130(4):1951–1957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dimkpa CO, Calder A, Britt DW, McLean JE, Anderson AJ (2011) Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions. Environ Pollut 159:1749–1756

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14(9):1125–1129

    Article  Google Scholar 

  • Dimkpa CO, Latta DE, McLean JE, Britt DW, Boyanov MI, Anderson AJ (2013a) Fate of Cuo and ZnO nano- and microparticles in the plant environment. Environ Sci Technol 47:4734–4742

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2013b) Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals 26:913–924. doi:10.1007/s10534-013-9667-6

    Article  CAS  PubMed  Google Scholar 

  • Drew MC, Saker LR (1978) Nutrient supply and the growth of the seminal root system in barley. J Exp Bot 29(2):435–451

    Article  CAS  Google Scholar 

  • Fang T, Watson JL, Goodman J, Dimkpa CO, Martineau N, Das S, McLean JE, Britt DW, Anderson AJ (2013) Does doping with aluminum alter the effects of ZnO nanoparticles on the metabolism of soil pseudomonads? Microbiol Res 168(2):91–98

    Article  CAS  PubMed  Google Scholar 

  • Fernandez D, Garcia-Gomez C, Babin M (2013) In vitro evaluation of cellular responses induced by ZnO nanoparticles, zinc ions and bulk ZnO in fish cells. Sci Total Environ 452–453:262–274

    Article  PubMed  Google Scholar 

  • Gavlack RG, Horneck DA, Miller RO, Kotuby-Amacher J (2003) Plant, soil, and water reference methods for the Western region. Western Regional Extension Publications 125, University of California, Davis

  • Hart JJ, Norvell WA, Welch RM, Sullivan LA, Kochian LV (1998) Characterization of zinc uptake, binding and translocation in intact seedlings of bread and durum wheat cultivars. Plant Physiol 118:219–226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166(3):207–215

    Article  CAS  PubMed  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere—a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Jones JB Jr, Case VW (1990) Sampling, handling, and analyzing plant tissue samples. In: Westerman RL (ed) Soil testing and plant analysis, 3rd edn. Soil Sci Soc Am., Inc, Madison

    Google Scholar 

  • Karakurt Y, Unlu H, Unlu H, Padem H (2009) The influence of foliar and soil fertilization humic acid on yield and quality of pepper. Acta Agric Scand Sect B – Soil Plant Sci 59:233–237

  • Kairyte K, Kadys A, Luksiene Z (2013) Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. J Photochem Photobiol B 128:78–84

    Article  CAS  PubMed  Google Scholar 

  • Kopec DM. Humorous humics: soil amendments worth applying. Univ AZ (2000) Cooperative Extension Turf Tips October 7(10). http://turf.arizona.edu/tipsoct00.htm. Accessed Jan 24, 2014

  • Li L, Schuster M (2014) Influence of phosphate and solution pH on the mobility of ZnO nanoparticles in saturated sand. Sci Total Environ 472:971–978

  • Li BY, Zhou DM, Cang L, Zhang HL, Fan ZH, Qin SW (2007) Soil micronutrient availability to crops as affected by long-term inorganic and organic fertilizer applications. Soil Tillage Res 96:166–173

    Article  Google Scholar 

  • Li M, Pokhrel S, Jin X, Mädler L, Damoiseaux R, Hoek EMV (2011) Stability, bioavailability, and bacterial toxicity of ZnO and iron-doped ZnO nanoparticles in aquatic media. Environ Sci Technol 45(2):755–761

    Article  CAS  PubMed  Google Scholar 

  • Lin DH, Xing BS (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    Article  CAS  PubMed  Google Scholar 

  • López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320

    Article  PubMed Central  PubMed  Google Scholar 

  • Ma JF, Goto S, Tamai K, Ichii M (2001) Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol 127:1773–1778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma X, Gieser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Williams PL, Diamon SA (2013) Ecotoxicity of manufactured ZnO nanoparticles: a review. Environ Pollut 172:76–85

    Article  CAS  PubMed  Google Scholar 

  • Malik KA, Azam F (1985) Effect of humic acid on wheat (Triticum aestivum L.) seedling growth. Environ Exp Bot 25:245–252

  • Martínez C, Yáñez C, Yoon S, Bruns MA (2007) Biogeochemistry of metalliferous peats: sulfur speciation and depth distributions of dsrAB genes and Cd, Fe, Mn, S, and Zn in soil cores. Environ Sci Technol 41:5323–5329

    Article  PubMed  Google Scholar 

  • McBeath TM, McLaughlin MJ (2014) Efficacy of zinc oxides as fertilisers. Plant Soil 374:843–855

    Article  CAS  Google Scholar 

  • McBride MB (1994) Environmental chemistry of soils. Oxford University Press, New York, p 339

    Google Scholar 

  • Milani N, McLaughlin MJ, Hettiaratchchi GM, Beak DG, Kirby JK, Stacey S (2010) Fate of nanoparticulate zinc oxide fertilisers in soil: diffusion and solid phase speciation. In: Soil solutions for a changing world: 19th world congress of soil science, Brisbane, QLD, Australia

  • Myers SS, Zanobetti A, Kloog I, Huybers P, Leakey AD, Bloom AJ, Carlisle E, Dietterich LH, Fitzgerald G, Hasegawa T, Holbrook NM, Nelson RL, Ottman MJ, Raboy V, Sakai H, Sartor KA, Schwartz J, Seneweera S, Tausz M, Usui Y (2014) Increasing CO2 threatens human nutrition. Nature 510:139–142. doi:10.1038/nature13179

    Article  CAS  PubMed  Google Scholar 

  • Omar FM, Aziz HA, Stoll S (2013) Aggregation and disaggregation of ZnO nanoparticles: influence of pH and adsorption of Suwannee river humic acid. Sci Total Environ 468–469:195–201

    Google Scholar 

  • Pedler JF, Kinraide TB, Parker DR (2004) Zinc rhizotoxicity in wheat and radish is alleviated by micromolar levels of magnesium and potassium in solution culture. Plant Soil 259:191–199

    Article  CAS  Google Scholar 

  • Pellet DM, Grunes DL, Kochian LV (1995) Organic acid exudation as an aluminium-tolerance mechanism in maize (Zea mayes L.). Planta 196:788–795

    Article  CAS  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105

    Article  CAS  PubMed  Google Scholar 

  • Priester JH, Ge Y, Mielke RE, Horst AM, Moritz SC, Espinosa K, Gelb J, Walker SL, Nisbet RM, An YJ, Schimel JP, Palmer RG, Hernandez-Viezcas JA, Zhao L, Gardea-Torresdey JL, Holden PA (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci USA 109:E2451–E2456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richard O, Pineau C, Loubet S, Chalies C, Vile D, Marques L, Berthomieu P (2011) Diversity analysis of the response to Zn within the Arabidopsis thaliana species revealed low contribution of Zn translocation to Zn tolerance and a new role for Zn in lateral root development. Plant Cell Environ 34:1065–1078

    Article  CAS  PubMed  Google Scholar 

  • Roy RN, Finck A, Blair GJ, Tandon HLS (2006) Plant nutrition for food security: a guide for integrated nutrient management. FAO Fertil Plant Nutr Bull.ftp://ftp.fao.org/docrep/fao/009/a0443e/a0443e.pdf . Accessed 17 July 2013

  • Russel SR, Sanderson J (1967) Nutrient uptake by different parts of the intact roots of plants. J Exp Bot 18(3):491–508

    Article  Google Scholar 

  • Spark KM, Wells JD, Johnson BB (1995) Characterizing trace metal adsorption on kaolinite. Eur J Soil Sci 46:633–640

    Article  CAS  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions. John Wiley & Sons, New York

  • Uyusur B, Darnault CJG, Snee PT, Kokën, Jacobson AR, Wells RR (2010) Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dots nanomaterials in the vadose zone. J Contam Hydrol 118(3–4):184–198. doi:10.1016/j.jconhyd.2010.09.013

    Article  CAS  PubMed  Google Scholar 

  • Welch RM (1995) Micronutrient nutrition of plants. Crit Rev Plant Sci 14:49–82

    Article  CAS  Google Scholar 

  • Welch RM, Graham RD (2002) Breeding crops for enhanced micronutrient content. Plant Soil 245:205–214

    Article  CAS  Google Scholar 

  • Yang K, Lin D, Xing B (2009) Interactions of humic acid with nanosized inorganic oxides. Langmuir 25:3571–3576

  • Zandonadi DB, Canellas LP, Façanha AR (2007) Indolacetic and humic acids induce lateral root development through concerted plasmalemma and tonoplast H+ pumps. Planta 225:1583–1595

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from the USDA, (USDA-CSREES 2011-03581), the Utah Water Research Laboratory and the Utah Agricultural Experiment Station. Utah Agricultural Experiment Station paper number 8741. We thank undergraduates Melanie Wright, Kjersti Matherson, and Elliot Morrell for their help with the growth studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne J. Anderson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watson, JL., Fang, T., Dimkpa, C.O. et al. The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals 28, 101–112 (2015). https://doi.org/10.1007/s10534-014-9806-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-014-9806-8

Keywords

Navigation