Skip to main content

New Trends in Fungal Biooxidation

  • Chapter
  • First Online:
Industrial Applications

Part of the book series: The Mycota ((MYCOTA,volume 10))

Abstract

Biooxidations using isolated biocatalysts for the oxidative conversion of organic compounds and materials are becoming more and more important in the industrial sector. Research in this direction is part of the rapidly developing field of White Biotechnology and is carried out not least against the background of sustainable development and the need to replace environmentally risky technologies by eco-friendly processes. Whereas whole cells are already widely used as oxidative biocatalysts, the application of isolated enzymes is still limited to a few examples. One reason for that is the cost-intensive production and laborious purification of enzymes which are mostly intracellular and sometimes membrane-bound proteins with low stability and complex co-factor requirements. The use of secreted oxidoreductases offers several advantages: they are easier to separate and purify, need only cheap co-substrates such as dioxygen or peroxides and are far more stable than intracellular enzymes. Filamentous fungi secrete a broad spectrum of oxidative biocatalysts which are involved, amongst others, in the degradation of recalcitrant biopolymers, the synthesis of melanins as well as the detoxification of plant ingredients, microbial metabolites and organopollutants. We focus here on novel secreted enzymes - peroxygenases and DyP-type peroxidases - with remarkable catalytic properties. Furthermore selected features of “classic” fungal oxidoreductases, such as laccase, tyrosinase and chloroperoxidase, are discussed against the background of innovative recent developments in the field of enzyme application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In earlier publications AaP is also referred to as Agrocybe aegerita peroxidase, or haloperoxidase–peroxygenase (e.g. Ullrich et al. 2004; Ullrich and Hofrichter 2005; Hofrichter and Ullrich 2006; Kluge et al. 2007)

  2. 2.

    Unlike many other aldehydes, p-nitrobenzaldehyde just slowly exchanges the carbonyl oxygen with water and therefore, the 18O-label could be detected by mass spectrometric analysis.

References

  • Alvarado B, Torres E (2009) Recents patents in the use of peroxidases. Recent Pat Biotechnol 3:88–102

    Article  CAS  Google Scholar 

  • Amir L, Tam TK, Pita M, Meijler MM, Alfonta L, Katz E (2009) Biofuel cell controlled by enzyme logic systems. J Am Chem Soc 131:826–832

    Article  CAS  Google Scholar 

  • Anh DH, Ullrich R, Benndorf D, Svatos A, Muck A, Hofrichter M (2007) The coprophilous mushroom Coprinus radians secretes a haloperoxidase that catalyzes aromatic peroxygenation. Appl Environ Microbiol 73:5477–5485

    Article  CAS  Google Scholar 

  • Anyanwutaku IO, Petroski RJ, Rosazza JP (1994) Oxidative coupling of mithramycin and hydroquinone catalyzed by copper oxidases and benzoquinone. Implications for the mechanism of action of aureolic acid antibiotics. Bioorg Med Chem 2:543–551

    Article  CAS  Google Scholar 

  • Aranda E, Kinne M, Kluge M, Ullrich R, Hofrichter M (2010) Conversion of dibenzothiophene by the mushrooms Agrocybe aegerita and Coprinellus radians and their extracellular peroxygenases. Appl Microbiol Biotechnol 82:1057–1066

    Article  CAS  Google Scholar 

  • Aranda E, Ullrich R, Hofrichter M (2009b) Conversion of polycyclic aromatic hydrocarbons, methyl naphthalenes and dibenzofuran by two fungal peroxygenases. Biodegradation 21:267–281

    Google Scholar 

  • Aron J, Baldwin DA, Marques HM, Pratt JM, Adams PA (1986) Hemes and hemoproteins. 1: Preparation and analysis of the heme-containing octapeptide (microperoxidase-8) and identification of the monomeric form in aqueous solution. J Inorg Biochem 27:227–243

    Article  CAS  Google Scholar 

  • Ashby MT (2008) Inorganic chemistry of defensive peroxidases in the human oral cavity. J Dent Res 87:900–914

    Article  CAS  Google Scholar 

  • Ayala M, Robledo NR, Lopez-Munguia A, Vazquez-Duhalt R (2000) Substrate specificity and ionization potential in chloroperoxidase-catalyzed oxidation of diesel fuel. Environ Sci Technol 34:2804–2809

    Article  CAS  Google Scholar 

  • Azevedo AM, Martins VC, Prazeres DM, Vojinovic V, Cabral JM, Fonseca LP (2003) Horseradish peroxidase: a valuable tool in biotechnology. Biotechnol Annu Rev 9:199–247

    Article  CAS  Google Scholar 

  • Baciocchi E, Bietti M, Gerini MF, Lanzalunga O (2002) The mediation of veratryl alcohol in oxidations promoted by lignin peroxidase: the lifetime of veratryl alcohol radical cation. Biochem Biophys Res Commun 293:832–835

    Article  CAS  Google Scholar 

  • Bajpai P, Anand A, Bajpai PK (2006) Bleaching with lignin-oxidizing enzymes. Biotechnol Annu Rev 12:349–378

    Article  CAS  Google Scholar 

  • Baldrian P (2006) Fungal laccases – occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  CAS  Google Scholar 

  • Bernhardt R (2006) Cytochromes P450 as versatile biocatalysts. J Biotechnol 124:128–145

    Article  CAS  Google Scholar 

  • Blasiak LC, Drennan CL (2009) Structural perspective on enzymatic halogenation. Acc Chem Res 42:147–155

    Article  CAS  Google Scholar 

  • Bollag J-M (1983) Cross-coupling of humus constituents and xenobiotic substances. In: Christman RF, Gjessing ET (eds) Aquatic and terrestrial humic materials. Science Publishing, Michigan, pp 127–141

    Google Scholar 

  • Borole AP, Davison BH (2008) Improving activity of salt-lyophilized enzymes in organic media. Appl Biochem Biotechnol 146:215–222

    Article  CAS  Google Scholar 

  • Bourquelot E, Bertrand G (1895) Le bleuissement et le noircissment des champignons. C R Soc Biol 47:582–584

    Google Scholar 

  • Bruyneel F, Enaud E, Billottet L, Vanhulle S, Marchand-Brynaert J (2008) Regioselective synthesis of 3-hydroxyorthanilic acid and iIts biotransformation into a novel Phenoxazinone dye by use of laccase. Eur J Org Chem 1:72–79

    Article  Google Scholar 

  • Bruyneel F, Payen O, Rescigno A, Tinant B, Marchand-Brynaert J (2009) Laccase-mediated synthesis of novel substituted phenoxazine chromophores featuring tuneable water solubility. Chemistry 15:8283–8295

    Article  CAS  Google Scholar 

  • Burton SG (2003) Oxidizing enzymes as biocatalysts. Trends Biotechnol 21:543–549

    Article  CAS  Google Scholar 

  • Cabanes J, Chazarra S, Garcia-Carmona F (2002) Tyrosinase kinetics: a semi-quantitative model of the mechanism of oxidation of monohydric and dihydric phenolic substrates – reply. J Theor Biol 214:321–328

    Article  CAS  Google Scholar 

  • Carmichael R, Fedorak PM, Pickard MA (1985) Oxidation of phenols by chloroperoxidase. Biotechnol Lett 7:289–294

    Article  CAS  Google Scholar 

  • Cavill GWK, Ralph BJ, Tetaz JR, Werner RL (1953) The chemistry of mould metabolites. Part I. Isolation and characterisation of a red pigment from Coriolus sanguineus (Fr.). J Chem Soc:525–529

    Google Scholar 

  • Chaubey A, Malhotra BD (2002) Mediated biosensors. Biosens Bioelectron 17:441–456

    Article  CAS  Google Scholar 

  • Chefson A, Auclair K (2006) Progress towards the easier use of P450 enzymes. Mol Biosyst 2:462–469

    Article  CAS  Google Scholar 

  • Chen T, Embree HD, Wu LQ, Payne GF (2002) In vitro protein-polysaccharide conjugation: tyrosinase-catalyzed conjugation of gelatin and chitosan. Biopolymers 64:292–302

    Article  CAS  Google Scholar 

  • Chen X, van Pee KH (2008) Catalytic mechanisms, basic roles, and biotechnological and environmental significance of halogenating enzymes. Acta Biochim Biophys Sin 40:183–193

    Article  CAS  Google Scholar 

  • Cherry JR, Lamsa MH, Schneider P, Vind J, Svendsen A, Jones A, Pedersen AH (1999) Directed evolution of a fungal peroxidase. Nat Biotechnol 17:379–384

    Article  CAS  Google Scholar 

  • Christen S, Peterhans E, Stocker R (1990) Antioxidant activities of some tryptophan metabolites: possible implication for inflammatory diseases. Proc Natl Acad Sci USA 87:2506–2510

    Article  CAS  Google Scholar 

  • Cirino PC, Arnold FH (2003) A self-sufficient peroxide-driven hydroxylation biocatalyst. Angew Chem Int Ed Engl 42:3299–3301

    Article  CAS  Google Scholar 

  • Coman V, Vaz-Dominguez C, Ludwig R, Harreither W, Haltrich D, De Lacey AL, Ruzgas T, Gorton L, Shleev S (2008) A membrane-, mediator-, cofactor-less glucose/oxygen biofuel cell. Phys Chem Chem Phys 10:6093–6096

    Article  CAS  Google Scholar 

  • Conesa A, Punt PJ, van den Hondel CA (2002) Fungal peroxidases: molecular aspects and applications. J Biotechnol 93:143–158

    Article  CAS  Google Scholar 

  • Corbett MD, Chipko BR (1979) Chloroperoxidase-catalyzed oxidation of N-methyl-4-chloroaniline. Experientia 35:1150–1151

    Article  CAS  Google Scholar 

  • Couto SR, Toca-Herrera JL (2007) Laccase production at reactor scale by filamentous fungi. Biotechnol Adv 25:558–569

    Article  CAS  Google Scholar 

  • Davis F, Higson SP (2007) Biofuel cells – recent advances and applications. Biosens Bioelectron 22:1224–1235

    Article  CAS  Google Scholar 

  • de Hoog HM, Nallani M, Cornelissen JJ, Rowan AE, Nolte RJ, Arends IW (2009) Biocatalytic oxidation by chloroperoxidase from Caldariomyces fumago in polymersome nanoreactors. Org Biomol Chem 7:4604–4610

    Article  CAS  Google Scholar 

  • Dias DA, Urban S (2009) HPLC and NMR studies of phenoxazone alkaloids from Pycnoporus cinnabarinus. Nat Prod Commun 4:489–498

    CAS  Google Scholar 

  • Dorovska-Taran V, Posthumus MA, Boeren S, Boersma MG, Teunis CJ, Rietjens IM, Veeger C (1998) Oxygen exchange with water in heme-oxo intermediates during H2O2-driven oxygen incorporation in aromatic hydrocarbons catalyzed by microperoxidase-8. Eur J Biochem 253:659–668

    Article  CAS  Google Scholar 

  • Dunford HB (1999) Heme peroxidases, 1st edn. Wiley-VCH, New York, 528 pp

    Google Scholar 

  • Eggert C, Temp U, Dean JF, Eriksson KE (1995) Laccase-mediated formation of the phenoxazinone derivative, cinnabarinic acid. FEBS Lett 376:202–206

    Article  CAS  Google Scholar 

  • Eisenman HC, Frases S, Nicola AM, Rodrigues ML, Casadevall A (2009) Vesicle-associated melanization in Cryptococcus neoformans. Microbiology 155:3860–3867. doi: 10.1099/mic.0.032854–0

    Article  CAS  Google Scholar 

  • Espin JC, Soler-Rivas C, Cantos E, Tomas-Barberan FA, Wichers HJ (2001) Synthesis of the antioxidant hydroxytyrosol using tyrosinase as biocatalyst. J Agric Food Chem 49:1187–1193

    Article  CAS  Google Scholar 

  • Espin JC, Abraham F, Garcia-Viguera C, Ferreres F, Soler-Rivas C, Wichers HJ (2003) Enzymatic synthesis of antioxidant hydroxytyrosol. United States Patent 0180833 A1

    Google Scholar 

  • Faergemand M, Otte J, Qvist KB (1998) Cross-linking of whey proteins by enzymatic oxidation. J Agric Food Chem 46:1326–1333

    Article  Google Scholar 

  • Faraco V, Piscitelli A, Sannia G, Giardina P (2007) Identification of a new member of the dye-decolorizing peroxidase family from Pleurotus ostreatus. World J Microbiol Biotechnol 23:889–893

    Article  CAS  Google Scholar 

  • Fleischmann P, Zorn H (2008) Enzymic pathways for formation of carotenoid cleavage products. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids: natural functions, vol 4. Birkhäuser, Basel, pp 341–366.

    Chapter  Google Scholar 

  • Gasowska-Bajger B, Wojtasek H (2008) Indirect oxidation of the antitumor agent procarbazine by tyrosinase – possible application in designing anti-melanoma prodrugs. Bioorg Med Chem Lett 18:3296–3300

    Article  CAS  Google Scholar 

  • Geigert J, Lee TD, Dalietos DJ, Hirano DS, Neidleman SL (1986) Epoxidation of alkenes by chloroperoxidase catalysis. Biochem Biophys Res Commun 136:778–782

    Article  CAS  Google Scholar 

  • Gómez BL, Nosanchuk JD (2003) Melanin and fungi. Curr Opin Infect Dis 16:91–96

    Article  Google Scholar 

  • Grey CE, Rundbäck F, Adlercreutz P (2008) Improved operational stability of chloroperoxidase through use of antioxidants. J Biotechnol 135:196–201

    Article  CAS  Google Scholar 

  • Groves JT (2005) Models and mechanisms of cytochrome P450 enzymes. In: Ortiz De Montellano PR (ed) Cytochrome P450 – structure, mechanism and biochemistry. Kluwer/Plenum, New York, pp 1–43

    Chapter  Google Scholar 

  • Hager LP, Morris DR, Brown FS, Eberwein H (1966) Chloroperoxidase. II. Utilization of halogen anions. J Biol Chem 241:1769–1777

    CAS  Google Scholar 

  • Hahn V, Mikolasch A, Manda K, Gordes D, Thurow K, Schauer F (2009) Laccase-catalyzed carbon-nitrogen bond formation: coupling and derivatization of unprotected L-phenylalanine with different para-hydroquinones. Amino Acids 37:315–321

    Article  CAS  Google Scholar 

  • Halaouli S, Asther M, Kruus K, Guo L, Hamdi M, Sigoillot JC, Asther M, Lomascolo A (2005) Characterization of a new tyrosinase from Pycnoporus species with high potential for food technological applications. J Appl Microbiol 98:332–343

    Article  CAS  Google Scholar 

  • Halaouli S, Asther M, Sigoillot J-C, Hamdi M, Lomascolo A (2006) Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications. J Appl Microbiol 100:219–232

    Article  CAS  Google Scholar 

  • Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11:349–355

    Article  CAS  Google Scholar 

  • Hanano A, Burcklen M, Flenet M, Ivancich A, Louwagie M, Garin J, Blee E (2006) Plant seed peroxygenase is an original heme-oxygenase with an EF-hand calcium binding motif. J Biol Chem 281:33140–33151

    Article  CAS  Google Scholar 

  • Hansen EH, Albertsen L, Schafer T, Johansen C, Frisvad JC, Molin S, Gram L (2003) Curvularia haloperoxidase: antimicrobial activity and potential application as a surface disinfectant. Appl Environ Microbiol 69:4611–4617

    Article  CAS  Google Scholar 

  • Haq I, Ali S, Qadeer MA (2002) Biosynthesis of L-DOPA by Aspergillus oryzae. Biores Technol 85:25–29

    Article  Google Scholar 

  • Harigaya S, Honda T, Rong L, Miyakoshi T, Chen CL (2007) Enzymatic dehydrogenative polymerization of urushiols in fresh exudates from the lacquer tree, Rhus vernicifera DC. J Agric Food Chem 55:2201–2208

    Article  CAS  Google Scholar 

  • Hasan Z, Renirie R, Kerkman R, Ruijssenaars HJ, Hartog AF, Wever R (2006) Laboratory-evolved vanadium chloroperoxidase exhibits 100-fold higher halogenating activity at alkaline pH: catalytic effects from first and second coordination sphere mutations. J Biol Chem 281:9738–9744

    Article  CAS  Google Scholar 

  • Henson JM, Butler MJ, Day AW (1999) The dark side of the mycelium: Melanins of phytopathogenic fungi. Annu Rev Phytopathol 37:447–471

    Article  CAS  Google Scholar 

  • Hilden K, Hakala TK, Lundell T (2009) Thermotolerant and thermostable laccases. Biotechnol Lett 31:1117–1128

    Article  CAS  Google Scholar 

  • Hill HAO, Wong LL, Barry DF (2008) Oxidation by hydrogen peroxide. United States Patent 0044882 A1

    Google Scholar 

  • Hofrichter M, Ullrich R (2006) Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance. Appl Microbiol Biotechnol 71:276–288

    Article  CAS  Google Scholar 

  • Hofrichter M, Ullrich R, Pecyna M, Kinne M, Kluge M, Aranda E, Liers C, Poraj-Kobielska M, Gröbe G, Scheibner K, Bittner B, Piontek K, Schubert R, Hammel K (2009) Aromatic peroxygenases from mushrooms: extracellular heme-thiolate proteins of a new enzyme sub-subclass? In: Shoun H, Ohkawa H (eds), 16th International Conference on Cytochrome P450 (Nago, Okinawa, Japan), Medimond (International Proceedings), Bologna, (Italy), pp 83–88

    Google Scholar 

  • Horn A (2009) The use of a novel peroxidase from the basidiomycete Agrocybe aegerita as an example of enatioselective sulfoxidation (Der Einsatz einer neuartigen Peroxidase des Basidiomyceten Agrocybe aegerita am Beispiel der enatioselektiven Sulfoxidation). Dissertation, University of Rostock, Rostock

    Google Scholar 

  • Horváth IT, Anastas PT (2007) Innovations and green chemistry. Chem Rev 107:2169–3173

    Article  CAS  Google Scholar 

  • Houborg K, Harris P, Petersen J, Rowland P, Poulsen JC, Schneider P, Vind J, Larsen S (2003a) Impact of the physical and chemical environment on the molecular structure of Coprinus cinereus peroxidase. Acta Crystallogr D Biol Crystallogr 59:989–996

    Article  CAS  Google Scholar 

  • Houborg K, Harris P, Poulsen JC, Schneider P, Svendsen A, Larsen S (2003b) The structure of a mutant enzyme of Coprinus cinereus peroxidase provides an understanding of its increased thermostability. Acta Crystallogr D Biol Crystallogr 59:997–1003

    Article  CAS  Google Scholar 

  • Hüttermann A, Haars A, Trojanowski J, Milstein O, Kharazipour A (1989) Enzymatic modification of lignin for its technical use – strategies and results. In: Glasser WG, Sarkanen S (eds) New polymeric materials from lignin. (ACS symposium series 397) American Chemical Society, Washington, pp 361–371

    Chapter  Google Scholar 

  • Hüttermann A, Mai C, Kharazipour A (2001) Modification of lignin for the production of new compounded materials. Appl Microbiol Biotechnol 55:387–394

    Article  Google Scholar 

  • Ikeda R, Tanaka H, Oyabu H, Uyama H, Kobayashi S (2001) Preparation of artificial urushi via an environmentally benign process. Bull Chem Soc Jpn 74:1067–1073

    Article  CAS  Google Scholar 

  • Jin L, Nicholas DD, Schultz TP (1991) Wood laminates glued by enzymatic oxidation of brown-rotted lignin. Holzforschung 45:467–468

    Article  CAS  Google Scholar 

  • Jolivet S, Arpin N, Wichers HJ, Pellon G (1998) Agaricus bisporus browning: a review. Mycol Res 102:1459–1483

    Article  CAS  Google Scholar 

  • Joo H, Lin Z, Arnold FH (1999) Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation. Nature 399:670–673

    Article  CAS  Google Scholar 

  • Jung D, Paradiso M, Wallacher D, Brandt A, Hartmann M (2009) Formation of cross-linked chloroperoxidase aggregates in the pores of mesocellular foams: characterization by SANS and catalytic properties. ChemSusChem 2:161–164

    Article  CAS  Google Scholar 

  • Kamitaka Y, Tsujimura S, Setoyama N, Kajino T, Kano K (2007) Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis. Phys Chem Chem Phys 9:1793–1801

    Article  CAS  Google Scholar 

  • Kim SJ, Shoda M (1999) Purification and characterization of a novel peroxidase from Geotrichum candidum dec 1 involved in decolorization of dyes. Appl Environ Microbiol 65:1029–1035

    CAS  Google Scholar 

  • Kim YJ, Uyama H (2005) Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell Mol Life Sci 62:1707–1723

    Article  CAS  Google Scholar 

  • Kim SJ, Ishikawa K, Hirai M, Shoda M (1995) Characteristics of a newly isolated fungus, Geotrichum candidum Dec 1, which decolorizes various dyes. J Ferment Bioeng 79:601–607

    Article  CAS  Google Scholar 

  • Kinne M, Ullrich R, Hammel KE, Hofrichter M (2008) Regioselective preparation of (R)-2-(4-Hydroxyphenoxy)propionic acid with a fungal peroxygenase. Tetrahedron Lett 49:5950–5953

    Article  CAS  Google Scholar 

  • Kinne M, Poraj-Kobielska M, Aranda E, Ullrich R, Hammel KE, Scheibner K, Hofrichter M (2009a) Regioselective preparation of 5-hydroxypropranolol and 4'-hydroxydiclofenac with a fungal peroxygenase. Bioorg Med Chem Lett 19:3085–3087

    Article  CAS  Google Scholar 

  • Kinne M, Poraj-Kobielska M, Ralph SA, Ullrich R, Hofrichter M, Hammel KE (2009b) Oxidative cleavage of diverse ethers by an extracellular fungal peroxygenase. J Biol Chem 284:2943–2949

    Article  CAS  Google Scholar 

  • Kjalke M, Andersen MB, Schneider P, Christensen B, Schulein M, Welinder KG (1992) Comparison of structure and activities of peroxidases from Coprinus cinereus, Coprinus macrorhizus and Arthromyces ramosus. Biochim Biophys Acta 1120:248–256

    Article  CAS  Google Scholar 

  • Klibanov AM, Berman Z, Alberti BN (1981) Preparative hydroxylation of aromatic compounds catalyzed by peroxidase. J Am Chem Soc 103:6263–6264

    Article  CAS  Google Scholar 

  • Kluge M, Ullrich R, Scheibner K, Hofrichter M (2007) Spectrophotometric assay for detection of aromatic hydroxylation catalyzed by fungal haloperoxidase-peroxygenase. Appl Microbiol Biotechnol 75:1473–1478

    Article  CAS  Google Scholar 

  • Kluge M, Ullrich R, Dolge C, Scheibner K, Hofrichter M (2009) Hydroxylation of naphthalene by aromatic peroxygenase from Agrocybe aegerita proceeds via oxygen transfer from H2O2 and intermediary epoxidation. Appl Microbiol Biotechnol 81:1071–1076

    Article  CAS  Google Scholar 

  • Kobayashi S, Uyama H, Ikeda R (2001) Artificial urushi. Chemistry 7:4754–4760

    Article  CAS  Google Scholar 

  • Kudanga T, Prasetyo EN, Sipilä J, Nousiainen P, Widsten P, Kandelbauer A, Nyanhongo GS, Gübitz G (2008) Laccase-mediated wood surface functionalization. Eng Life Sci 8:297–302

    Article  CAS  Google Scholar 

  • Kunamneni A, Plou FJ, Ballesteros A, Alcalde M (2008) Laccases and their applications: a patent review. Recent Pat Biotechnol 2:10–24

    Article  CAS  Google Scholar 

  • Liers C, Bobeth C, Pecyna M, Ullrich R, Hofrichter M (2009) DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes. Appl Microbiol Biotechnol 85:1869–1879

    Article  CAS  Google Scholar 

  • Littlechild J (1999) Haloperoxidases and their role in biotransformation reactions. Curr Opin Chem Biol 3:28–34

    Article  CAS  Google Scholar 

  • Littlechild J, Garcia Rodriguez E, Isupov M (2009) Vanadium containing bromoperoxidase – insights into the enzymatic mechanism using X-ray crystallography. J Inorg Biochem 103:617–621

    Article  CAS  Google Scholar 

  • Liu JZ, Wang M (2007) Improvement of activity and stability of chloroperoxidase by chemical modification. BMC Biotechnol 7:23

    Article  CAS  Google Scholar 

  • Lundell T, Wever R, Floris R, Harvey P, Hatakka A, Brunow G, Schoemaker H (1993) Lignin peroxidase L3 from Phlebia radiata. Pre-steady-state and steady-state studies with veratryl alcohol and a non-phenolic lignin model compound 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol. Eur J Biochem 211:391–402

    Article  CAS  Google Scholar 

  • Makris TM, Denisov I, Schlichting I, Sligar SG (2005) Activation of molecular oxygen by cytochrome P450. In: Ortiz De Montellano PR (ed) Cytochrome P450 – structure, mechanism and biochemistry. Kluwer/Plenum, New York, pp 149–182.

    Chapter  Google Scholar 

  • Manda K, Hammer E, Mikolasch A, Gordes D, Thurow K, Schauer F (2006) Laccase-induced derivatization of unprotected amino acid L-tryptophan by coupling with p-hydroquinone 2,5-dihydroxy-N-(2-hydroxyethyl)-benzamide. Amino Acids 31:409–419

    Article  CAS  Google Scholar 

  • Manoj KM, Hager LP (2008) Chloroperoxidase, a janus enzyme. Biochemistry 47:2997–3003

    Article  CAS  Google Scholar 

  • Manoj KM, Lakner FJ, Hager LP (2000) Epoxidation of indene by chloroperoxidase. J Mol Catal B Enzym 9:107–111

    Article  CAS  Google Scholar 

  • Marques HM (2007) Insights into porphyrin chemistry provided by the microperoxidases, the haempeptides derived from cytochrome c. Dalton Trans 2007:4371–4385

    Article  CAS  Google Scholar 

  • Matsunaga I, Sumimoto T, Ayata M, Ogura H (2002) Functional modulation of a peroxygenase cytochrome P450: novel insight into the mechanisms of peroxygenase and peroxidase enzymes. FEBS Lett 528:90–94

    Article  CAS  Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565

    Article  CAS  Google Scholar 

  • Mikolasch A, Schauer F (2009) Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl Microbiol Biotechnol 82:605–624

    Article  CAS  Google Scholar 

  • Mikolasch A, Niedermeyer TH, Lalk M, Witt S, Seefeldt S, Hammer E, Schauer F, Gesell M, Hessel S, Julich WD, Lindequist U (2006) Novel penicillins synthesized by biotransformation using laccase from Trametes spec. Chem Pharm Bull 54:632–638

    Article  CAS  Google Scholar 

  • Mikolasch A, Niedermeyer TH, Lalk M, Witt S, Seefeldt S, Hammer E, Schauer F, Gesell Salazar M, Hessel S, Julich WD, Lindequist U (2007) Novel cephalosporins synthesized by amination of 2,5-dihydroxybenzoic acid derivatives using fungal laccases II. Chem Pharm Bull 55:412–416

    Article  CAS  Google Scholar 

  • Mikolasch A, Wurster M, Lalk M, Witt S, Seefeldt S, Hammer E, Schauer F, Julich WD, Lindequist U (2008) Novel beta-lactam antibiotics synthesized by amination of catechols using fungal laccase. Chem Pharm Bull 56:902–907

    Article  CAS  Google Scholar 

  • Mita N, Tawaki S, Uyama H, Kobayashi S (2003) Laccase-catalyzed oxidative polymerization of phenols. Macromol Biosci 3:253–257

    Article  CAS  Google Scholar 

  • Moehlenbrock MJ, Minteer SD (2008) Extended lifetime biofuel cells. Chem Soc Rev 37:1188–1196

    Article  CAS  Google Scholar 

  • Morgan JA, Lu Z, Clark DS (2002) Toward the development of a biocatalytic system for oxidation of p-xylene to terephthalic acid: oxidation of 1,4-benzenedimethanol. J Mol Catal B Enzym 18:147–154

    Article  CAS  Google Scholar 

  • Morozova OV, Shumakovich GP, Gorbacheva MA, Shleev SV, Yaropolov AI (2007) “Blue” laccases. Biochemistry (Mosc) 72:1136–1150

    Article  CAS  Google Scholar 

  • Nakamura K, Go N (2005) Function and molecular evolution of multicopper blue proteins. Cell Mol Life Sci 62:2050–2066

    Article  CAS  Google Scholar 

  • Omura T (2005) Heme-thiolate proteins. Biochem Biophys Res Commun 338: 404–409

    Article  CAS  Google Scholar 

  • Ortiz de Montellano P (2005) Cytochrome P450 – structure, mechanism and biochemistry, 3rd edn. Kluwer/Plenum, New York, 690 pp

    Book  Google Scholar 

  • Ortiz de Montellano PR, de Voss JJ (2005) Substrate oxidation by cytochrome P450 enzymes. In: Ortiz De Montellano PR (ed) Cytochrome P450 – structure, mechanism and biochemistry. Kluwer/Plenum, New York, pp 183–245

    Chapter  Google Scholar 

  • Osiadacz J, Kaczmarek L, Opolski A, Wietrzyk J, Marcinkowska E, Biernacka K, Radzikowski C, Jon M, Peczynska-Czoch W (1999) Microbial conversion of methyl- and methoxy-substituted derivatives of 5H-indolo[2,3-b]quinoline as a method of developing novel cytotoxic agents. Anticancer Res 19:3333–3342

    CAS  Google Scholar 

  • Otey CR, Bandara G, Lalonde J, Takahashi K, Arnold FH (2006a) Preparation of human metabolites of propranolol using laboratory-evolved bacterial cytochromes P450. Biotechnol Bioeng 93:494–499

    Article  CAS  Google Scholar 

  • Otey CR, Landwehr M, Endelman JB, Hiraga K, Bloom JD, Arnold FH (2006b) Structure-guided recombination creates an artificial family of cytochromes P450. PLoS Biol 4:e112

    Google Scholar 

  • Palmore GTR, Kim H-H (1999) Electro-enzymic reduction of dioxygen to water in the cathode compartment of a biofuel cell. J Electroanal Chem 464:110–117

    Article  CAS  Google Scholar 

  • Paloheimo M, Puranen T, Valtakari L, Kruus K, Kallio J, Mäntylä A, Fagerström R, Ojapalo P, Vehmaanperä J (2006) Novel laccase enzymes and their uses. Patent US 2006/0063246 A1

    Google Scholar 

  • Park JB, Clark DS (2006a) Deactivation mechanisms of chloroperoxidase during biotransformations. Biotechnol Bioeng 93:1190–1195

    Article  CAS  Google Scholar 

  • Park JB, Clark DS (2006b) New reaction system for hydrocarbon oxidation by chloroperoxidase. Biotechnol Bioeng 94:189–192

    Article  CAS  Google Scholar 

  • Partridge M, Murphy DJ (2009) Roles of a membrane-bound caleosin and putative peroxygenase in biotic and abiotic stress responses in Arabidopsis. Plant Physiol Biochem 47:796–806

    Article  CAS  Google Scholar 

  • Parvez S, Kang M, Chung HS, Bae H (2007) Naturally occurring tyrosinase inhibitors: mechanism and applications in skin health, cosmetics and agriculture industries. Phytother Res 21:805–816

    Article  CAS  Google Scholar 

  • Pas LM (2007) Alternative energy: enzyme-based biofuel cells. Basic Biotechnol eJournal 3:93–97

    Google Scholar 

  • Passardi F, Theiler G, Zamocky M, Cosio C, Rouhier N, Teixera F, Margis-Pinheiro M, Ioannidis V, Penel C, Falquet L, Dunand C (2007) PeroxiBase: the peroxidase database. Phytochemistry 68:1605–1611

    Article  CAS  Google Scholar 

  • Pecyna MJ, Schnorr KM, Ullrich R, Scheibner K, Kluge M, Hofrichter M (2008) Fungal peroxygenases and methods of application. Patent WO 2008/119780 A2

    Google Scholar 

  • Pecyna MJ, Ullrich R, Bittner B, Clemens A, Scheibner K, Schubert R, Hofrichter M (2009) Molecular characterization of aromatic peroxygenase from Agrocybe aegerita. Appl Microbiol Biotechnol 84:885–897

    Article  CAS  Google Scholar 

  • Peshkova S, Li K (2003) Investigation of chitosan-phenolics systems as wood adhesives. J Biotechnol 102:199–207

    Article  CAS  Google Scholar 

  • Plonka PM, Grabacka M (2006) Melanin synthesis in microorganisms–biotechnological and medical aspects. Acta Biochim Pol 53:429–443

    CAS  Google Scholar 

  • Priestley GC (1993) Molecular aspects of dermatology. Wiley, Chichester, 226 pp

    Google Scholar 

  • Pühse M, Szweda RT, Ma Y, Jeworrek C, Winter R, Zorn H (2009) Marasmius scorodonius extracellular dimeric peroxidase – exploring its temperature and pressure stability. Biochim Biophys Acta 1794:1091–1098

    Article  CAS  Google Scholar 

  • Rabe KS, Gandubert VJ, Spengler M, Erkelenz M, Niemeyer CM (2008) Engineering and assaying of cytochrome P450 biocatalysts. Anal Bioanal Chem 392:1059–1073

    Article  CAS  Google Scholar 

  • Raghukumar C, D’Souza-Ticlo D, Verma AK (2008) Treatment of colored effluents with lignin-degrading enzymes: an emerging role of marine-derived fungi. Crit Rev Microbiol 34:189–206

    Article  CAS  Google Scholar 

  • Ruiz-Duenas FJ, Camarero S, Perez-Boada M, Martinez MJ, Martinez AT (2001) A new versatile peroxidase from Pleurotus. Biochem Soc Trans 29:116–122

    Article  CAS  Google Scholar 

  • Sakurai T, Kataoka K (2007) Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Chem Rec 7:220–229

    Article  CAS  Google Scholar 

  • Sanfilippo C, Nicolosi G (2002) Catalytic behaviour of chloroperoxidase from Caldariomyces fumago in the oxidation of cyclic conjugated dienes. Tetrahedron: Asym 13:1889–1892

    Article  CAS  Google Scholar 

  • Sanfilippo C, D’Antona N, Nicolosi G (2004) Chloroperoxidase from Caldariomyces fumago is active in the presence of an ionic liquid as co-solvent. Biotechnol Lett 26:1815–1819

    Article  CAS  Google Scholar 

  • Sato M (1969) The conversion of phenolase of p-coumaric acid to caffeic acid with special reference to the role of ascorbic acid. Phytochemistry 8:353–362

    Article  CAS  Google Scholar 

  • Sato T, Hara S, Matsui T, Sazaki G, Saijo S, Ganbe T, Tanaka N, Sugano Y, Shoda M (2004) A unique dye-decolorizing peroxidase, DyP, from Thanatephorus cucumeris Dec 1: heterologous expression, crystallization and preliminary X-ray analysis. Acta Crystallogr D Biol Crystallogr 60:149–152

    Article  CAS  Google Scholar 

  • Sawai-Hatanaka H, Ashikari T, Tanaka Y, Asada Y, Nakayama T, Minakata H, Kunishima N, Fukuyama K, Yamada H, Shibano Y, et al (1995) Cloning, sequencing, and heterologous expression of a gene coding for Arthromyces ramosus peroxidase. Biosci Biotechnol Biochem 59:1221–1228

    Article  CAS  Google Scholar 

  • Scheibner M, Hulsdau B, Zelena K, Nimtz M, de Boer L, Berger RG, Zorn H (2008) Novel peroxidases of Marasmius scorodonius degrade beta-carotene. Appl Microbiol Biotechnol 77:1241–1250

    Article  CAS  Google Scholar 

  • Schmid RD, Urlacher V (2007) Modern biooxidation enzymes, reactions and applications, 1st edn. Wiley-VCH, Weinheim, 300 pp

    Book  Google Scholar 

  • Schoot-Uiterkamp AJM, Mason HS (1973) Magnetic dipole–dipole coupled Cu(II) pairs in nitric oxide-treated tyrosinase: a structural relationship between the active sites of tyrosinase and hemocyanin. Proc Natl Acad Sci USA 70:993–996

    Article  CAS  Google Scholar 

  • Sedlaczek L (1988) Biotransformations of steroids. Crit Rev Biotechnol 7:187–236

    Article  CAS  Google Scholar 

  • Seelbach K, van Deurzen MP, van Rantwijk F, Sheldon RA, Kragl U (1997) Improvement of the total turnover number and space-time yield for chloroperoxidase catalyzed oxidation. Biotechnol Bioeng 55:283–288

    Article  CAS  Google Scholar 

  • Selinheimo E, Autio K, Kruus K, Buchert J (2007) Elucidating the mechanism of laccase and tyrosinase in wheat bread making. J Agric Food Chem 55:6357–6365

    Article  CAS  Google Scholar 

  • Selinheimo E, Lampila P, Mattinen ML, Buchert J (2008) Formation of protein-oligosaccharide conjugates by laccase and tyrosinase. J Agric Food Chem 56:3118–3128

    Article  CAS  Google Scholar 

  • Seo SY, Sharma VK, Sharma N (2003) Mushroom tyrosinase: recent prospects. J Agric Food Chem 51:2837–2853

    Article  CAS  Google Scholar 

  • Shinmen Y, Asami S, Amachi T, Shimizu S, Yamada H (1986) Crystallization and characterization of an extracellular fungal peroxidase. Agric Biol Chem 50:247–249

    Article  CAS  Google Scholar 

  • Si JQ (2001) Use of laccase in baking. Patent US 6296883 B1

    Google Scholar 

  • Silverman HG, Roberto FF (2007) Understanding marine mussel adhesion. Mar Biotechnol 9:661–681

    Article  CAS  Google Scholar 

  • Singh H (1999) Mechanism of oxidation of L-tyrosine by fungal tyrosinases. J Chem 172:83

    Google Scholar 

  • Smith AT, Ngo E (2007) Novel peroxidases and uses. Patent WO 2007/020428 A1

    Google Scholar 

  • Steffensen CL, Andersen ML, Degn PE, Nielsen JH (2008) Cross-linking proteins by laccase-catalyzed oxidation: importance relative to other modifications. J Agric Food Chem 56:12002–12010

    Article  CAS  Google Scholar 

  • Sugano Y (2009) DyP-type peroxidases comprise a novel heme peroxidase family. Cell Mol Life Sci 66:1387–1403

    Article  CAS  Google Scholar 

  • Sugano Y, Sasaki K, Shoda M (1999) cDNA cloning and genetic analysis of a novel decolorizing enzyme, peroxidase gene dyp from Geotrichum candidum Dec 1. J Biosci Bioeng 87:411–417

    Article  CAS  Google Scholar 

  • Sugano Y, Nakano R, Sasaki K, Shoda M (2000) Efficient heterologous expression in Aspergillus oryzae of a unique dye-decolorizing peroxidase, DyP, of Geotrichum candidum Dec 1. Appl Environ Microbiol 66:1754–1758

    Article  CAS  Google Scholar 

  • Sugano Y, Muramatsu R, Ichiyanagi A, Sato T, Shoda M (2007) DyP, a unique dye-decolorizing peroxidase, represents a novel heme peroxidase family: ASP171 replaces the distal histidine of classical peroxidases. J Biol Chem 282:36652–36658

    Article  CAS  Google Scholar 

  • Sugano Y, Matsushima Y, Tsuchiya K, Aoki H, Hirai M, Shoda M (2009) Degradation pathway of an anthraquinone dye catalyzed by a unique peroxidase DyP from Thanatephorus cucumeris Dec. Biodegradation 20:433–440

    Article  CAS  Google Scholar 

  • Sundaramoorthy M, Terner J, Poulos TL (1995) The crystal structure of chloroperoxidase: a heme peroxidase–cytochrome P450 functional hybrid. Structure 3:1367–1377

    Article  CAS  Google Scholar 

  • Suske WA, Held M, Schmid A, Fleischmann T, Wubbolts MG, Kohler HP (1997) Purification and characterization of 2-hydroxybiphenyl 3-monooxygenase, a novel NADH-dependent, FAD-containing aromatic hydroxylase from Pseudomonas azelaica HBP1. J Biol Chem 272:24257–24265

    Article  CAS  Google Scholar 

  • Svitel J, Miertus S (1998) Development of tyrosinase-based biosensors and its application for monitoring of bioremedation of phenol and phenolic compounds. Environ Sci Technol 32:828–832

    Article  CAS  Google Scholar 

  • Syoda M, Sugano Y, Kubota H (2006) Enzyme having decolorizing activity and method for decolorizing dyes by using the same. United States Patent 7041486 B1

    Google Scholar 

  • ten Have R, Franssen MC (2001) On a revised mechanism of side product formation in the lignin peroxidase catalyzed oxidation of veratryl alcohol. FEBS Lett 487:313–317

    Article  CAS  Google Scholar 

  • Thalmann CR, Lötzbeyer T (2002) Enzymatic cross-linking of proteins with tyrosinase. Eur Food Res Technol 214:276–281

    Article  CAS  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Article  CAS  Google Scholar 

  • Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci USA 81:2280–2284

    Article  CAS  Google Scholar 

  • Ullrich R, Hofrichter M (2005) The haloperoxidase of the agaric fungus Agrocybe aegerita hydroxylates toluene and naphthalene. FEBS Lett 579:6247–6250

    Article  CAS  Google Scholar 

  • Ullrich R, Hofrichter M (2007) Enzymatic hydroxylation of aromatic compounds. Cell Mol Life Sci 64:271–293

    Article  CAS  Google Scholar 

  • Ullrich R, Nüske J, Scheibner K, Spantzel J, Hofrichter M (2004) Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Appl Environ Microbiol 70:4575–4581

    Article  CAS  Google Scholar 

  • Ullrich R, Dolge C, Kluge M, Hofrichter M (2008) Pyridine as novel substrate for regioselective oxygenation with aromatic peroxygenase from Agrocybe aegerita. FEBS Lett 582:4100–4106

    Article  CAS  Google Scholar 

  • Ullrich R, Liers C, Schimpke S, Hofrichter M (2009) Purification of homogeneous forms of fungal peroxygenase. Biotechnol J 4:1619–1626

    Google Scholar 

  • Uyama H, Kobayashi S (2003) Enzymatic syntheses of polyphenols. Curr Org Chem 7:1387–1397

    Article  CAS  Google Scholar 

  • van de Velde F, Bakker M, van Rantwijk F, Sheldon RA (2001a) Chloroperoxidase-catalyzed enantioselective oxidations in hydrophobic organic media. Biotechnol Bioeng 72:523–529

    Article  CAS  Google Scholar 

  • van de Velde F, van Rantwijk, Sheldon, RA (2001b) Improving the catalytic performance of peroxidases in organic synthesis. Trends Biotechnol 19:73–80

    Article  CAS  Google Scholar 

  • van Gelder CWG, Flurkeya WH, Wichers HJ (1997) Sequence and structural features of plant and fungal tyrosinases. Phytochemistry 45:1309–1323

    Article  CAS  Google Scholar 

  • van Pee KH, Dong C, Flecks S, Naismith J, Patallo EP, Wage T (2006) Biological halogenation has moved far beyond haloperoxidases. Adv Appl Microbiol 59:127–157

    Article  CAS  Google Scholar 

  • Vazquez Duhalt R, del Pilar Bremauntz M, Barzana E, Tinoco R (2002) Enzymatic oxidation process for desulfurization of fossil fuels. United States Patent 6461859 B1

    Google Scholar 

  • Veeger C (2002) Does P450-type catalysis proceed through a peroxo-iron intermediate? A review of studies with microperoxidase. J Inorg Biochem 91:35–45

    Article  CAS  Google Scholar 

  • Veitch NC (2004) Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65:249–259

    Article  CAS  Google Scholar 

  • Vidal JC, Esteban S, Gil J, Castillo JR (2006) A comparative study of immobilization methods of a tyrosinase enzyme on electrodes and their application to the detection of dichlorvos organophosphorus insecticide. Talanta 68:791–799

    Article  CAS  Google Scholar 

  • Waite JH (1990) Marine adhesive proteins: natural composite thermosets. Int J Biol Macromol 12:139–144

    Article  CAS  Google Scholar 

  • Welinder KG, Mauro JM, Norskov-Lauritsen L (1992) Structure of plant and fungal peroxidases. Biochem Soc Trans 20:337–340

    CAS  Google Scholar 

  • Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187

    Article  CAS  Google Scholar 

  • Widsten P, Kandelbauer A (2008) Adhesion improvement of lignocellulosic products by enzymatic pre-treatment. Biotechnol Adv 26:379–386

    Article  CAS  Google Scholar 

  • Widsten P, Tuominen S, Qvintus-Leino P, Laine JE (2004) The influence of high defibration temperature on the properties of medium-density fiberboard (MDF) made from laccase-treated softwood fibers. Wood Sci Technol 38:521–528

    Article  CAS  Google Scholar 

  • Wong CM, Wong KH, Chen XD (2008) Glucose oxidase: natural occurrence, function, properties and industrial applications. Appl Microbiol Biotechnol 78:927–938

    Article  CAS  Google Scholar 

  • Wu P, Santoni G, Froba M, Rehder D (2008) Modelling the sulfoxygenation activity of vanadate-dependent peroxidases. Chem Biodivers 5:1913–1926

    Article  CAS  Google Scholar 

  • Xu F, Damhus T, Danielsen S, Ostergaard LH (2007) Catalytic applications of laccase. In: Schmid RD, Urlacher VB (eds) Modern biooxidation. Enzymes, reactions and applications. Wiley-VCH, Weinheim, pp 43–75.

    Chapter  Google Scholar 

  • Yamazaki S, Morioka C, Itoh S (2004) Kinetic evaluation of catalase and peroxygenase activities of tyrosinase. Biochemistry 43:11546–11553

    Article  CAS  Google Scholar 

  • Yoshida H (1883) Chemistry of lacquer (urushi). J Chem Soc Trans 43:472–486

    Article  CAS  Google Scholar 

  • Zelena K, Hardebusch B, Hülsdau B, Berger RG, Zorn H (2009a) Generation of norisoprenoid flavors from carotenoids by fungal peroxidases. 57:9951–9955

    CAS  Google Scholar 

  • Zelena K, Zorn H, Nimtz M, Berger RG (2009b) Heterologous expression of the msp2 gene from Marasmius scorodonius. Arch Microbiol 191:397–402

    Article  CAS  Google Scholar 

  • Zhang LH, Bai CH, Wang YS, Jiang YC, Hu MC, Li SN, Zhai QG (2009) Improvement of chloroperoxidase stability by covalent immobilization on chitosan membranes. Biotechnol Lett 31:1269–1272

    Article  CAS  Google Scholar 

  • Zorn H, Langhoff S, Scheibner M, Nimtz M, Berger RG (2003) A peroxidase from Lepista irina cleaves beta,beta-carotene to flavor compounds. Biol Chem 384:1049–1056

    Article  CAS  Google Scholar 

  • Zorn H, Scheibner M, Hülsdau B, Berger RG, de Boer L, Meima RB (2005) Novel enzymes for use in enzymatic bleaching of food products. European Patent Application EP 64132 20060712

    Google Scholar 

  • Zorn H, Szweda RT, Wilms J, Kumar M (2008) Method for modifying non-starch carbohydrate material. European Patent Application 26485/EP/P0

    Google Scholar 

  • Zubieta C, Joseph R, Krishna SS, McMullan D, Kapoor M, Axelrod HL, Miller MD, Abdubek P, Acosta C, Astakhova T, Carlton D, et al (2007a) Identification and structural characterization of heme binding in a novel dye-decolorizing peroxidase, TyrA. Proteins 69:234–243

    Article  CAS  Google Scholar 

  • Zubieta C, Krishna SS, Kapoor M, Kozbial P, McMullan D, Axelrod HL, Miller MD, Abdubek P, Ambing E, Astakhova T, Carlton D, et al (2007b) Crystal structures of two novel dye-decolorizing peroxidases reveal a beta-barrel fold with a conserved heme-binding motif. Proteins 69:223–233

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Pecyna, M. Kinne, M. Inge Kluge, S. Peter, C. Liers, K. Barková, M. Poraj-Kobielska and G. Gröbe for still unpublished results on aromatic peroxygenases. The work in our laboratories was supported by the European Union (integrated project Biorenew), the Deutsche Bundestiftung Umwelt (DBU; projects Pilzliche Peroxygenasen and Pilzliche Sekretome), the Bundesministerium für Forschung (BMBF) and the Deutsche Forschungsgemeinschaft (DFG; projects FUPERS and FUNWOOD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hofrichter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hofrichter, M., Ullrich, R. (2011). New Trends in Fungal Biooxidation. In: Hofrichter, M. (eds) Industrial Applications. The Mycota, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11458-8_21

Download citation

Publish with us

Policies and ethics