Skip to main content
Log in

Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Heme-thiolate haloperoxidases are undoubtedly the most versatile biocatalysts of the hemeprotein family and share catalytic properties with at least three further classes of heme-containing oxidoreductases, namely, classic plant and fungal peroxidases, cytochrome P450 monooxygenases, and catalases. For a long time, only one enzyme of this type—the chloroperoxidase (CPO) of the ascomycete Caldariomyces fumago—has been known. The enzyme is commercially available as a fine chemical and catalyzes the unspecific chlorination, bromination, and iodation (but no fluorination) of a variety of electrophilic organic substrates via hypohalous acid as actual halogenating agent. In the absence of halide, CPO resembles cytochrome P450s and epoxidizes and hydroxylates activated substrates such as organic sulfides and olefins; aromatic rings, however, are not susceptible to CPO-catalyzed oxygen-transfer. Recently, a second fungal haloperoxidase of the heme-thiolate type has been discovered in the agaric mushroom Agrocybe aegerita. The UV–Vis adsorption spectrum of the isolated enzyme shows little similarity to that of CPO but is almost identical to a resting-state P450. The Agrocybe aegerita peroxidase (AaP) has strong brominating as well as weak chlorinating and iodating activities, and catalyzes both benzylic and aromatic hydroxylations (e.g., of toluene and naphthalene). AaP and related fungal peroxidases could become promising biocatalysts in biotechnological applications because they seemingly fill the gap between CPO and P450 enzymes and act as “self-sufficient” peroxygenases. From the environmental point of view, the existence of a halogenating mushroom enzyme is interesting because it could be linked to the multitude of halogenated compounds known from these organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adak S, Bandyopadhyay D, Bandyopadhyay U, Banerjee RK (2001) An essential role of active site arginine residue in iodide binding and histidine residue in electron transfer for iodide oxidation by horseradish peroxidase. Mol Cell Biochem 218:1–11

    Article  CAS  PubMed  Google Scholar 

  • Albrich JM, McCarthy CA, Hurst JK (1981) Biological reactivity of hypochlorous acid: implications for microbicidal mechanisms of leucocyte myeloperoxidase. Proc Natl Acad Sci USA 78:210–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida M, Filipe S, Humanes M, Maia MF, Melo R, Severino N, da Silva JA, Frausto da Silva JJ, Wever R (2001) Vanadium haloperoxidases from brown algae of the Laminariaceae family. Phytochemistry 57:633–642

    Article  CAS  PubMed  Google Scholar 

  • Alvarez RG, Hunter IS, Suckling CJ, Thomas M, Vitinius U (2001) A novel biotransformation of benzofurans and related compounds catalysed by a chloroperoxidase. Tetrahedron Lett 57:8581–8587

    Article  CAS  Google Scholar 

  • Andersson LA, Dawson JH (1991) EXAFS spectroscopy of hemecontaining oxygenases and peroxidases. Struct Bond 64:1–40

    Google Scholar 

  • Ashley PL, Griffin BW (1981) Chloroperoxidase-catalyzed halogenation of antipyrine, a drug substrate of liver microsomal cytochrome P-450. Arch Biochem Biophys 210:167–178

    Article  CAS  PubMed  Google Scholar 

  • Asplund G, Christiansen JV, och Grimvall A (1993) A chloroperoxidase-like catalyst in soil: detection and characterization of some properties. Soil Biol Biochem 25:41–46

    Article  CAS  Google Scholar 

  • Ayala M, Robeldo N, Lopez-Munguia A, Vazquez-Duhalt R (2000) Substrate specificity and ionization potential in chloroperoxidase-catalyzed oxidation of diesel fuel. Environ Sci Technol 34:2804–2809

    Article  CAS  Google Scholar 

  • Baciocchi E, Lanzalunga O, Manduchi L (1999) Prochiral selectivity and deuterium kinetic isotope effect in the oxidation of benzyl alcohol catalyzed by chloroperoxidase. Chem Commun (Camb) 17:1715–1716

    Article  Google Scholar 

  • Baciocchi E, Fabbrini M, Lanzalunga O, Manduchi L, Pochetti G (2001) Pro-chiral selectivity in H2O2-promoted oxidation of arylalkanoles catalysed by chloroperoxidase. Eur J Biochem 268:665–672

    Article  CAS  PubMed  Google Scholar 

  • Baden DG, Corbett MD (1980) Bromoperoxidases from Penicillus capitatus, Penicillus lamourouxii and Rhipocephalus phoenix. Biochem J 187:205–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckwith JR, Hager LP (1963) Biological chlorination. VIII. Late intermediates in the biosynthesis of caldariomycin. J Biol Chem 238:3091–3094

    Article  CAS  PubMed  Google Scholar 

  • Blanke SR, Yi S, Hager LP (1989) Development of semi-continuous and continuous flow bioreactors for the high level production of chloroperoxidase. Biotechnol Lett 11:769–774

    Article  CAS  Google Scholar 

  • Borole A, Dai S, Cheng CL, Rodriguez M, Davison BH (2004) Performance of chloroperoxidase stabilization in mesoporous sol-gel glass using in situ glucose oxidase peroxide generation. Appl Biochem Biotechnol 113:273–286

    Article  PubMed  Google Scholar 

  • Bruns N, Tiller JC (2005) Amphiphilic network as nanoreactor for enzymes in organic solvents. Nano Lett 5:45–48

    Article  CAS  PubMed  Google Scholar 

  • Butler A (1999) Mechanistic considerations of the vanadium haloperoxidases. Coord Chem Rev 187:17–35

    Article  CAS  Google Scholar 

  • Butler A, Walker JV (1993) Marine haloperoxidases. Chem Rev 93:1937–1944

    Article  CAS  Google Scholar 

  • Butler A, Carter JN, Simpson MT (2001) Vanadium in proteins and enzymes. In: Bertini I, Sigel A, Sigel H (eds) Handbook on metalloproteins. Marcel Dekker, New York, pp 153–179

    Google Scholar 

  • Cadicamo CD, Courtieu J, Deng H, Meddour A, O’Hagan D (2004) Enzymatic fluorination in Streptomyces cattleya takes place with an inversion of configuration consistent with an SN2 reaction mechanism. Chembiochem 5:685–690

    Article  CAS  PubMed  Google Scholar 

  • Carmichael RD, Pickard MA (1989) Continous and batch produktion of chloroperoxidase by mycelial pellets of Caldariomyces fumago in an airlift fermenter. Appl Environ Microbiol 55:17–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YP, Lincoln DE, Woodin SA, Lovell CR (1991) Purification and properties of a unique flavin-containing chloroperoxidase from the capitellid polychaete Notomastus lobatus. J Biol Chem 266:23909–23915

    Article  CAS  PubMed  Google Scholar 

  • Clutterbuck PW, Mukhopadhaya SL, Oxford AE, Raistrick H (1940) Studies in the biochemistry of micro-organisms. 65 A) a survey of chlorine metabolism by moulds B) caldariomycin, C5H8O2Cl2, a metabolic product of Caldariomyces fumago. Biochem J 34:664–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colonna S, Gaggero N, Manfredi A, Casella L, Gulotti M, Carrea G, Pasta P (1990) Enantioselective oxidations of sulfides catalyzed by chloroperoxidase. Biochemistry 29:10465–10468

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, van de Velde F, van Rantwijk F, Sheldon RA, van den Hondel CAMJJ, Punt PJ (2001) Expression of the Caldariomyces fumago chloroperoxidase in Aspergillus niger and characterization of the recombinant enzyme. J Biol Chem 276:17635–17640

    Article  CAS  PubMed  Google Scholar 

  • Corbett MD, Chipko BR, Baden DG (1978) Chloroperoxidase-catalysed oxidation of 4-chloroaniline to 4-chloronitrosobenze. Biochem J 175:353–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correia MA (2005) Human and rat liver cytochromes P450: functional markers, diagnostic inhibitor probes, and parameters frequently used in P450 studies. In: Ortiz de Montellano PR (ed) Cytochrome P450 - structure, mechanism and biochemistry, 3rd edn. Plenum, New York, pp 619–657

    Google Scholar 

  • de Jong E, Field JA (1997) Sulfur tuft and turkey tail. Annu Rev Microbiol 51:375–414

    Article  PubMed  Google Scholar 

  • Dembitsky VM (2003) Oxidation, epoxidation and sulfoxidation reactions catalysed by haloperoxidases. Tetrahedron Lett 59:4701–4720

    Article  CAS  Google Scholar 

  • Deng H, O’Hagan D, Schaffrath C (2005) Fluorometabolite biosynthesis and the fluorinase from Streptomyces cattleya. ChemInform. DOI 10.1002/chin.200514282

  • Doerge DR, Corbett MD (1991) Peroxygenation mechanism for chloroperoxidase-catalyzed N-oxidation of arylamines. Chem Res Toxicol 4:556–560

    Article  CAS  PubMed  Google Scholar 

  • Dorovska-Taran V, Posthumus MA, Boeren S, Boersma MG, Teunis CJ, Rietjens IM, Veeger C (1998) Oxygen exchange with water in heme-oxo intermediates during H2O2-driven oxygen incorporation in aromatic hydrocarbons catalyzed by microperoxidase-8. Eur J Biochem 253:568–659

    Article  Google Scholar 

  • Dunford HB (1999) Heme peroxidases. Wiley-VCH, New York

    Google Scholar 

  • Dunford HB, Lambeir AM, Kashem MA, Pickard M (1987) On the mechanism of chlorination by chloroperoxidase. Arch Biochem Biophys 252:292–302

    Article  CAS  PubMed  Google Scholar 

  • England PA, Harford-Cross, Stevenson JA, Rouch DA, Wong LL (1998) The oxidation of naphthalene and pyrene by cytochrome P450cam. FEBS Lett 424:271–274

    Article  CAS  PubMed  Google Scholar 

  • Fang GH, Kenigsberg P, Axley MJ, Nuell M, Hager LP (1986) Cloning and sequencing of chloroperoxidase cDNA. Nucleic Acids Res 14:8061–8071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farhangrazi ZS, Sinclair R, Yamazaki I, Powers LS (1992) Haloperoxidase activity of Phanerochaete chrysosporium lignin peroxidases H2 and H8. Biochemistry 31:10763–10768

    Article  CAS  PubMed  Google Scholar 

  • Folkes LK, Candeias LP, Wardman P (1995) Kinetics and mechanisms of hypochlorous acid reactions. Arch Biochem Biophys 323:120–126

    Article  CAS  PubMed  Google Scholar 

  • Franssen MCR (1994) Haloperoxidases: useful catalysts for halogenation and oxidation reactions. Catal Today 22:441–457

    Article  CAS  Google Scholar 

  • Franssen MCR, van der Plas HC (1992) Haloperoxidases: their properties and their use in organic synthesis. Adv Appl Microbiol 37:41–99

    Article  CAS  Google Scholar 

  • Geigert J, Neidleman SL, Dalietos DJ (1983a) Novel haloperoxidase substrates. Alkynes and cyclopropanes. J Biol Chem 258:2273–2277

    Article  CAS  PubMed  Google Scholar 

  • Geigert J, Neidleman SL, Dalietos DJ, de Witt SK (1983b) Haloperoxidases: enzymatic synthesis of α,β-halohydrins from gaseous alkenes. Appl Environ Microbiol 45:366–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geigert J, Neidleman SL, Dalietos DJ, DeWitt SK (1983c) Novel haloperoxidase reaction: synthesis of dihalogenated products. Appl Environ Microbiol 45:1575–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green MT, Dawson JH, Gray HB (2004) Oxoiron(IV) in chloroperoxidase compound II is basic: implications for P450 chemistry. Science 304:1653–1656

    Article  CAS  PubMed  Google Scholar 

  • Gribble GW (1996) Naturally occuring organohalogen compounds - a comprehencive survey. In: Herz G, Kirby GW, Moore RE, Steglich W, Tamm C (eds) Progress in the chemistry of organic natural products. Springer, Berlin Heidelberg New York, pp 1–498

    Google Scholar 

  • Griffin BW (1983) Mechanism of halide-stimulated activity of chloroperoxidase evidence for enzymatic formation of free hypohalous acid. Biochem Biophys Res Commun 116:873–879

    Article  CAS  PubMed  Google Scholar 

  • Hager LP, Morris DR, Brown FS, Eberwein H (1966) Chloropeoxidase. II. Utilization of halogen anions. J Biol Chem 241:1769–1777

    Article  CAS  PubMed  Google Scholar 

  • Hallenberg PF, Hager LP (1978) Enzymatic assay of chloroperoxidase (EC 1.11.1.10). Methods Enzymol 52:521–529

    Article  CAS  PubMed  Google Scholar 

  • Hansen EH, Schembri MA, Klemm P, Schäfer T, Molin S, Gram L (2004) Elucidation of the antibacterial mechanism of the Curvularia haloperoxidase system by DNA microarray profiling. Appl Environ Microbiol 70:1749–1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison JE, Schultz J (1976) Studies on the chlorinating activity of myeloperoxidase. J Biol Chem 251:1371–1374

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto A, Pickard PA (1984) Chloroperoxidases from Caldariomyces (Leptoxyphium) cultures: glycoproteins with variable carbohydrate content and isoenzymic forms. J Gen Microbiol 130:2051–2058

    CAS  Google Scholar 

  • Hattaka A (2001) Biodegradation of lignin. In: Hofrichter M, Steinbüchel A (eds) Biopolymers: lignin, humic substances and coal. Wiley-VCH, Weinheim, pp 129–180

    Google Scholar 

  • Hauer B, Zelinski T, Habicher T, Breuer M, Anke T, Russ R (2003) Verfahren zur selektiven oxidation von substituierten Toluolen durch mikrobielle Peroxidasen aus coprinus-procedure for the selective oxidation of substituted toluens with microbial peroxidases from coprinus. German Patent Office München No DE 10149266A1

  • Hlavica P (2004) Models and mechanisms of O–O bond activation by cytochrome P450. A critical assessment of the potential role of multiple active intermediates in oxidative catalysis. Eur J Biochem 271:4335–4360

    Article  CAS  PubMed  Google Scholar 

  • Hoekstra EJ, de Leer EWB, Brinkman UAT (1999) Findings supporting the natural formation of trichloroacetic acid in soil. Chemosphere 38:2875–2883

    Article  CAS  Google Scholar 

  • Holland HL, Weber HK (2000) Enzymatic hydroxylation reactions. Curr Opin Biotechnol 11:547–553

    Article  CAS  PubMed  Google Scholar 

  • Holland HL, Brown FM, Lozada D, Mayne BW, Szerminski R, van Vliet AJ (2002) Chloroperoxidase-catalyzed oxidation of methionine derivatives. Can J Chem 80:633–639

    Article  CAS  Google Scholar 

  • Hollenberg PF (1992) Mechanisms of cytochrome P450 and peroxidase-catalyzed xenobiotic metabolism. FASEB J 6:686–694

    Article  CAS  PubMed  Google Scholar 

  • Hollenberg PF, Hager LP (1973) The P-450 nature of the carbon monoxide complex of ferrous chloroperoxidase. J Biol Chem 248:2630–2633

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Dordick JS (2002) Highly enantioselective oxidation of cis-cyclopropylmethanols to corresponding aldehydes catalyzed by chloroperoxidase. J Org Chem 67:314–317

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Hager LP (1998) Unusual propargylic oxidations catalyzed by chloroperoxidase. Biochem Biophys Res Commun 253:544–546

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Hager LP (1999) Highly enantioselective propargylic hydroxylations catalyzed by chloroperoxidase. J Am Chem Soc 121:872–873

    Article  CAS  Google Scholar 

  • Jacks TJ (2005) Evaluation of kojic acid for determining heme and nonheme haloperoxidase activities spectrofluorometrically. Anal Lett 38:921–927

    Article  CAS  Google Scholar 

  • Jannun R, Coe EL (1987) Bromoperoxidase from the marine snail Murex trunculis. Comp Biochem Physiol 88:917–922

    Google Scholar 

  • Joo H, Arisawa A, Lin Z, Arnold FH (1999) A high-throughput digital imaging screen for the discovery and directed evolution of oxygenases. Chem Biol 6:699–706

    Article  CAS  PubMed  Google Scholar 

  • Kedderis GL, Koop DR, Hollenberg PF (1980) N-Demethylation reactions catalyzed by chloroperoxidase. J Biol Chem 255:10174–10182

    Article  CAS  PubMed  Google Scholar 

  • Keener WK, Watwood ME (2004) Chloride analysis using 3,3′,5,5′-tetramethyl-benzidine and chloroperoxidase. Anal Biochem 334:406–408

    Article  CAS  PubMed  Google Scholar 

  • Kenigsberg P, Fang GH, Hager LP (1987) Post-translational modifications of chloroperoxidase from Caldariomyces fumago. Arch Biochem Biophys 254:409–415

    Article  CAS  PubMed  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  CAS  PubMed  Google Scholar 

  • Kooter IM, Koehler BP, Moguilevsky N, Bollen A, Wever R, Johnson MK (1999) The Met243 sulfonium ion linkage is responsible for the anomalous magnetic circular dichroism and optical spectral properties of myeloperoxidase. J Biol Inorg Chem 4:684–691

    Article  CAS  PubMed  Google Scholar 

  • Kudo T, Tomura D, Liu DL, Dai XQ, Shoun H (1996) Two isozymes of P-450nor of Cylindrocarpon tonkinense. Biochimie 78:792–799

    Article  CAS  PubMed  Google Scholar 

  • La Rotta CE, Bon EP (2002) 4-chlorophenol degradation by chloroperoxidase from Caldariomyces fumago: formation of insoluble products. Appl Biochem Biotechnol 98:191–203

    Article  PubMed  Google Scholar 

  • La Rotta Hernandez CE, Lütz S, Liese A, Bon EPS (2005) Activity and stability of Caldariomyces fumago chloroperoxidase modified by reductive alkylation, amidation and cross-linking. Enzyme Microb Technol 37:582–588

    Article  CAS  Google Scholar 

  • Lakner FJ, Hager LP (1996) Chloroperoxidase as enantioselective epoxidation catalyst: an efficient synthesis of (R)-(−)-mevalonolactone. J Org Chem 61:3923–3925

    Article  CAS  PubMed  Google Scholar 

  • Lankinen VP, Bonnen AM, Anton LH, Wood DA, Kalkkinen N, Hatakka A, Thurston (2001) Characteristics and N-terminal amino acid sequence of manganese peroxidase from solid substrate cultures of Agaricus bisporus. Appl Microbiol Biotechnol 55:170–176

    Article  CAS  PubMed  Google Scholar 

  • Laturnus F, Fahimi I, Gryndler M, Hartmann A, Heal MR, Matucha M, Schöler HF, Schroll R, Svensson T (2005) Natural formation and degradation of chloroacetic acids and volatile organochlorines in forest soil. Environ Sci Pollut Res Int 12:233–244

    Article  CAS  PubMed  Google Scholar 

  • Lewis DFV (2001) Guide to cytochromes P450: structure & function. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Littlechild J (1999) Haloperoxidases and their role in biotransformation reactions. Curr Opin Chem Biol 3:28–34

    Article  CAS  PubMed  Google Scholar 

  • Littlechild J, Garcia-Rodriguez E, Dalby A, Isupov M (2002) Structural and functional comparisons between vanadium haloperoxidase and acid phosphatase enzymes. J Mol Recognit 15:291–296

    Article  CAS  PubMed  Google Scholar 

  • Lukat GS, Goff HM (1990) A nuclear magnetic resonance study of axial ligation for the reduced states of chloroperoxidase, cytochrome P-450cam, and porphinatoiron(II) thiolate complexes. Biochim Biophys Acta 1037:351–359

    Article  CAS  PubMed  Google Scholar 

  • Makris TM, Denisov I, Schlichting I, Sligar SG (2005) Activation of molecular oxygen by cytochrome P450. In: Ortiz de Montellano PR (ed) Cytochrome P450—structure, mechanism and biochemistry. Plenum, New York, pp 149–182

    Chapter  Google Scholar 

  • Manoj KM, Hager LP (2001) Utilization of peroxide and its relevance in oxygen insertion reactions catalyzed by chloroperoxidase. Biochim Biophys Acta 1547:408–417

    Article  CAS  PubMed  Google Scholar 

  • Manoj KM, Hager LP (2005) New insight into chloroperoxidase catalyzed reactions. Proceedings of the 14th International Conference on Cytochrome P450, Dallas (Texas), May 31-June 5, 2005, p 139

  • Manoj KM, Hager LP (2006) A colorimetric method for detection and quantification of chlorinating activity of hemeperoxidases. Anal Biochem 348:84–86

    Article  CAS  PubMed  Google Scholar 

  • Manoj KM, Lakner FJ, Hager LP (2000) Epoxidation of indene by chloroperoxidase. J Mol Catal, B Enzym 9:107–111

    Article  CAS  Google Scholar 

  • Manthey JA, Hager LP (1981) Purification and properties of bromoperoxidase from Penicillus capitatus. J Biol Chem 256:11232–11238

    Article  CAS  PubMed  Google Scholar 

  • Marshall GC, Wright GD (1996) Purification and characterization of two haloperoxidases from the glycopeptide antibiotic producer Streptomyces toyocaensis NRRL 15009. Biochem Biophys Res Commun 219:580–583

    Article  CAS  PubMed  Google Scholar 

  • Martínez MJ, Ruiz-Duenas FJ, Guillen F, Martinez AT (1996) Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. Eur J Biochem 237:424–432

    Article  PubMed  Google Scholar 

  • Matsunaga I, Sumimoto T, Ayata M, Ogura H (2002) Functional modulation of a peroxygenase cytochrome P450: novel insight into the mechanisms of peroxygenase and peroxidase enzymes. FEBS Lett 528:90–94

    Article  CAS  PubMed  Google Scholar 

  • Matucha M, Forczek ST, Gryndler M, Uhlirova H, Fuksova K, Schroder P (2003) Trichloroacetic acid in Norway spruce/soil-system. I. Biodegradation in soil. Chemosphere 50:303–309

    Article  CAS  PubMed  Google Scholar 

  • McCarthy MB, White RE (1983) Functional differences between peroxidase compound I and the cytochrome P-450 reactive oxygen intermediate. J Biol Chem 158:9153–9158

    Article  Google Scholar 

  • McLean KJ, Cheesman MR, Rivers SL, Richmond A, Leys D, Chapman SK, Reid GA, Price NC, Kelly SM, Clarkson J, Smith WE, Munro AW (2002) Expression, purification and spectroscopic characterization of the cytochrome P450 CYP121 from Mycobacterium tuberculosis. J Inorg Biochem 91:527–541

    Article  CAS  PubMed  Google Scholar 

  • Miller VP, Tschirret-Guth RA, Ortiz de Montellano PR (1995) Chloroperoxidase-catalyzed benzylic hydroxylation. Arch Biochem Biophys 319:333–340

    Article  CAS  PubMed  Google Scholar 

  • Morel F, Vignais PV (1984) Examination of the oxidase function of the b-type cytochrome in human polymorphonuclear leucocytes. Biochim Biophys Acta 764:213–225

    Article  CAS  PubMed  Google Scholar 

  • Morgan JA, Lu Z, Clark DS (2002) Toward the development of a biocatalytic system for oxidation of p-xylene to tetraphtalic acid: oxidation of 1,4-benzenedimethanol. J Mol Catal, B Enzym 18:147–154

    Article  CAS  Google Scholar 

  • Morris DR, Hager LP (1966) Chloroperoxidase. I. Isolation and properties of the crystalline glycoprotein. J Biol Chem 241:1763–1768

    Article  CAS  PubMed  Google Scholar 

  • Munir IZ, Dordick JS (2000) Soybean peroxidase as an effective bromination catalyst. Enzyme Microb Technol 26:337–341

    Article  CAS  PubMed  Google Scholar 

  • Murphy CD (2003) New frontiers in biological halogenation. J Appl Microbiol 94:539–548

    Article  CAS  PubMed  Google Scholar 

  • Murphy CD, Moore RM, White RL (2000) Peroxidases from marine microalgae. J Appl Phycol 12:507–513

    Article  CAS  Google Scholar 

  • Myneni SCB (2002) Formation of stable chlorinated hydrocarbons in weathering plant material. Science 295:1039–1041

    Article  CAS  PubMed  Google Scholar 

  • Neidleman SL, Levine SD (1968) Enzymatic bromohydrin formation. Tetrahedron Lett 37:4057–4059

    Article  Google Scholar 

  • Neilson AH (2003) Organic bromine and iodine compounds: biological effects and biosynthesis of brominated metabolites. In: Neilson AH (ed) Handbook of environmental chemistry. Springer, Berlin Heidelberg New York, pp 75–204

    Google Scholar 

  • Niedan V, Pavasars I, Oberg G (2000) Chloroperoxidase-mediated chlorination of aromatic groups in fulvic acid. Chemosphere 41:779–785

    Article  CAS  PubMed  Google Scholar 

  • Niu J, Yu G (2004) Molecular structural characteristics governingbiocatalytic chlorination of PAHs by chloroperoxidase from Caldariomyces fumago. Environ Res 15:159–167

    CAS  Google Scholar 

  • Nordblom GD, White RE, Coon MJ (1976) Studies on hydroperoxide-dependent substrate hydroxylation by purified liver microsomal cytochrome P450. Arch Biochem Biophys 175:524–533

    Article  CAS  PubMed  Google Scholar 

  • Nuell MJ, Fang GH, Axley MJ, Kenigsberg P, Hager LP (1988) Isolation and nucleotide sequence of the chloroperoxidase gene from Caldariomyces fumago. J Bacteriol 170:1007–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Öberg G (2002) The natural chlorine cycle—fitting the scattered pieces. Appl Microbiol Biotechnol 58:565–581

    Article  PubMed  CAS  Google Scholar 

  • Okazaki O, Guengerich FP (1993) Evidence for specific base catalysis in N-dealkylation reactions catalyzed by cytochrome P450 and chloroperoxidase. J Biol Chem 268:1546–1552

    Article  CAS  PubMed  Google Scholar 

  • Ortiz de Montellano PR, de Voss JJ (2005) Substrate oxidation by cytochrome P450 enzymes. In: Ortiz de Montellano PR (ed) Cytochrome P450—structure, mechanism and biochemistry, 3rd edn. Plenum, New York, pp 183–245

    Google Scholar 

  • Ortiz-Bermudez P, Srebotnik E, Hammel KE (2003) Chlorination and cleavage of lignin structures by fungal chloroperoxidase. Appl Environ Microbiol 69:5015–5018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osman AM, Koerts J, Boersma MG, Boeren S, Veeger C, Rietjens IM (1996) Microperoxidase/H2O2-catalyzed aromatic hydroxylation proceeds by a cytochrome-P-450-type oxygen-transfer reaction mechanism. Eur J Biochem 240:232–238

    Article  CAS  PubMed  Google Scholar 

  • Pedersén M (1976) A brominating hydroxylating peroxidase from the red alga Cystoclonium purpureum. Plant Physiol 37:6–11

    Article  Google Scholar 

  • Peñéñory AB, Argüello JE, Puiatti M (2004) Novel model sulfur compounds as mechanistic probes for enzymatic and biomimetic oxidations. Eur J Org Chem 2005:114–122

    Article  CAS  Google Scholar 

  • Pfister TD, Ohki T, Ueno T, Hara I, Adachi S, Makino Y, Ueyama N, Lu Y, Watanabe Y (2005) Monooxygenation of an aromatic ring by F43W/H64D/V68I myoglobin mutant and hydrogen peroxide myoglobin mutants as a model for P450 hydroxylation chemistry. J Biol Chem 280:12858–12866

    Article  CAS  PubMed  Google Scholar 

  • Picard M, Gross J, Lübbert E, Tölzer S, Krauss S, van Pee K-H, Berkessel A (1997) Metal-free bacterial haloperoxidases as unusual hydrolases: activation of H2O2 by the formation of peracetic acid. Angew Chem Int Ed Engl 36:1196–1199

    Article  CAS  Google Scholar 

  • Pickard MAK, Kadima TA, Carmichael RD (1991) Chloroperoxidase, a peroxidase with potential. J Ind Microbiol Biotechnol 7:235–241

    CAS  Google Scholar 

  • Plat H, Kren BE, Wever R (1987) The bromoperoxidase from the lichen Xanthoria parietina is a novel vanadium enzyme. Biochem J 248:277–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poliakoff M, Fitzpatrick JM, Farren TR, Anastas PT (2002) Green chemistry: science and politics of change. Science 297:807–810

    Article  CAS  PubMed  Google Scholar 

  • Poulos TL, Johnson EF (2005) Structures of cytochrome P450 enzymes. In: Ortiz de Montellano PR (ed) Cytochrome P450—structure, mechanism, and biochemistry. Plenum, New York, pp 87–114

    Chapter  Google Scholar 

  • Rai GP, Sakai S, Florez AM, Mogollon L, Hager LP (2001) Directed evolution of chloroperoxidase for improved epoxidation and chlorination catalysis. Adv Synth Catal 343:638–645

    Article  CAS  Google Scholar 

  • Rawitch AB, Taurog A, Chernoff SB, Dorris ML (1979) Hog thyroid peroxidase: physical, chemical, and catalytic properties of the highly purified enzyme. Arch Biochem Biophys 194:244–257

    Article  CAS  PubMed  Google Scholar 

  • Reynolds DR (1999) Capnodium citri: the sooty mold fungi comprising the taxon concept. Mycopathologia 148:141–147

    Article  CAS  PubMed  Google Scholar 

  • Roach MP, Chen YP, Woodin SA, Lincoln DE, Lovell CR, Dawson JH (1997) Notomastus lobatus chloroperoxidase and Amphitrite ornata dehaloperoxidase both contain histidine as their proximal heme iron ligand. Biochemistry 36:2197–2202

    Article  CAS  PubMed  Google Scholar 

  • Robinson GK, Jackman SA, Stratford J (2000) Halocompounds. In: Rehm H-J, Reed G, Pühler A, Stadler P (eds) Biotechnology, 2nd edn. Wiley-VCH, New York, pp 173–220

    Google Scholar 

  • Russ R, Zelinski T, Anke T (2002) Benzylic biooxidation of various toluenes to aldehydes by peroxidase. Tetrahedron Lett 43:791–793

    Article  CAS  Google Scholar 

  • Sae ASW, Cunningham BA (1979) Isolation and properties of chloroperoxidase isoenzymes. Phytochemistry 18:1785–1787

    Article  CAS  Google Scholar 

  • Sanfilippo C, Nicolosi G (2002) Catalytic behavior of chloroperoxidase from Caldariomyces fumago in the oxidation of cyclic conjugated dienes. Tetrahedron Asymmetry 13:1889–1892

    Article  CAS  Google Scholar 

  • Sanfilippo C, D’Antona N, Nicolosi G (2004) Chloroperoxidase from Caldariomyces fumago is active in the presence of an ionic liquid as co-solvent. Biotechnol Lett 26:1815–1819

    Article  CAS  PubMed  Google Scholar 

  • Santhanam L, Dordick JS (2002) Chloroperoxidase-catalysed epoxidation of styrene in aqueous and nonaqueous media. Biocatal Biotransform 20:265–274

    Article  CAS  Google Scholar 

  • Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268

    Article  CAS  PubMed  Google Scholar 

  • Schmid A, Hollmann F, Park JB, Bühler B (2002) The use of enzymes in the chemical industry in Europa. Curr Opin Biotechnol 13:359–366

    Article  CAS  PubMed  Google Scholar 

  • Schoemaker HE, Mink D, Wubbolts MG (2003) Dispelling the myths—biocatalysis in industrial synthesis. Science 299:1694–1697

    Article  CAS  PubMed  Google Scholar 

  • Seelbach K, Kragl U (1997) Nanofiltration membranes for cofactor retention in continuous enzymatic synthesis. Enzyme Microb Technol 20:389–392

    Article  CAS  Google Scholar 

  • Shaik S, de Visser SP (2005) Computational approaches to cytochrome P450 function. In: Ortiz de Montellano PR (ed) Cytochrome P450—structure, mechanism and biochemistry, 3 edn. Plenum, New York, pp 45–85

    Google Scholar 

  • Shaw PD, Hager LP (1959) Biological chlorination. III. β-Ketoadipate chlorinase: a soluble enzyme system. J Biol Chem 234:2565–2569

    Article  CAS  PubMed  Google Scholar 

  • Sheffield DJ, Smith AJ, Harry TR, Rogers LJ (1993) Thermostability of the vanadium bromoperoxidase from Corallina officinalis. Biochem Soc Trans 21:445

    Article  Google Scholar 

  • Sheng D, Gold MH (1997) Haloperoxidase activity of manganese peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 345:126–134

    Article  CAS  PubMed  Google Scholar 

  • Shiro Y, Fujii M, Iizuka T, Adachi S, Tsukamoto K, Nakahara K, Shoun H (1995) Spectroscopic and kinetic studies on reaction of cytochrome P450nor with nitric oxide implication for its nitric oxide reduction mechanism. J Biol Chem 270:1617–1623

    Article  CAS  PubMed  Google Scholar 

  • Simons BH, Barnett P, Vollenbroek EGM, Dekker HL, Muijsers AO, Messerschmidt A, Wever R (1995) Primary structure and characterization of the vanadium chloroperoxidase from the fungus Curfularia inaequalis. Eur J Biochem 229:566–574

    Article  CAS  PubMed  Google Scholar 

  • Sono M, Roach MP, Coulter ED, Dawson JH (1996) Heme-containing oxygenases. Chem Rev 96:2841–2887

    Article  CAS  PubMed  Google Scholar 

  • Speicher A (2000) Chemical and in vitro syntheses of brominated and chlorinated 3,4′-dihydroxybibenzyles (halogenated lunularins). J Prakt Chem 342:162–168

    Article  CAS  Google Scholar 

  • Spreti N, Germani R, Incani A, Savelli G (2004) Stabilization of chloroperoxidase by polyethylene glycols in aqueous media: kinetic studies and synthetic applications. Biotechnol Prog 20:96–101

    Article  CAS  PubMed  Google Scholar 

  • Stamets P (2000) Growing gourmet and medicinal mushrooms, 3 edn. Ten Speed Press, Berkeley

    Google Scholar 

  • Stündl UM, Patzak D, Schauer F (2000) Purification of a soluble cytochrome P450 from Trichosporon montevideense. J Basic Microbiol 40:289–292

    Article  PubMed  Google Scholar 

  • Sun W, Kadima TA, Pickard MA, Dunford HB (1994) Catalase activity fo chloroperoxidase and its interaction with peroxidase activity. Biochem Cell Biol 72:321–331

    Article  CAS  PubMed  Google Scholar 

  • Sundaramoorthy M, Terner J, Poulos TL (1995) The crystal structure of chloroperoxidase: a heme peroxidase-cytochrome P450 functional hybrid. Structure (Camb) 3:1367–1377

    Article  CAS  Google Scholar 

  • Sundaramoorthy M, Terner J, Poulos TL (1998) Stereochemistry of the chloroperoxidase active site: crystallographic and molecular-modeling studies. Chem Biol 5:461–473

    Article  CAS  PubMed  Google Scholar 

  • Taurog A, Dorris ML (1991) Peroxidase-catalyzed bromination of tyrosine, thyroglobulin, and bovine serum albumin: comparison of thyroid peroxidase and lactoperoxidase. Arch Biochem Biophys 287:288–296

    Article  CAS  PubMed  Google Scholar 

  • ten Brink HB, Dekker HL, Schoemaker HE, Wever R (2000) Oxidation reactions catalyzed by vanadium chloroperoxidase from Curvularia inaequalis. J Inorg Biochem 80:91–98

    Article  PubMed  Google Scholar 

  • Thomas EL, Fishman M (1986) Oxidation of chloride and thiocyanate by isolated leucocytes. J Biol Chem 261:9694–9702

    Article  CAS  PubMed  Google Scholar 

  • Thomas EL, Bozeman PM, Jefferson MM, King CC (1995) Oxidation of bromide by the human leukocyte enzymes myeloperoxidase and eosinophil peroxidase. J Biol Chem 270:2906–2913

    Article  CAS  PubMed  Google Scholar 

  • Torres E, Aburto J (2005) Chloroperoxidase-catalyzed oxidation of 4,6-dimethyldibenzothiophene as dimer complexes: evidence for kinetic cooperativity. Arch Biochem Biophys 437:224–232

    Article  CAS  PubMed  Google Scholar 

  • Trevisan V, Signoretto M, Colonna S, Pironti V, Strukul G (2004) Microencapsulated chloroperoxidase as a recyclable catalyst for the enantioselective oxidation of sulfides with hydrogen peroxide. Angew Chem Int Ed Engl 116:4189–4191

    Article  Google Scholar 

  • Ullrich R (2005) The haloperoxidase of the fungus Agrocybe aegerita: an extracellular P450 enzyme (in German). Ph.D. thesis, International Graduate School of Zittau (Germany)

  • Ullrich R, Hofrichter M (2005) The haloperoxidase of the agaric fungus Agrocybe aegerita hydroxylates toluene and naphthalene. FEBS Lett 579:6247–6250

    Article  CAS  PubMed  Google Scholar 

  • Ullrich R, Nüske J, Scheibner K, Spantzel J, Hofrichter M (2004) Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Appl Environ Microbiol 70:4575–4581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyay RC (1995) Metabolism of phenolic substances by Pleurotus flabellatus (Berk and Br.) and Agrocybe aegerita (Brig.) Sing. Ph.D. thesis, Faculty of Biology and Pharmacy, Friedrich Schiller University of Jena (Germany)

  • Urlacher VB, Lutz-Wahl S, Schmid RD (2004) Microbial P450 enzymes in biotechnology. Appl Microbiol Biotechnol 64:317–325

    Article  CAS  PubMed  Google Scholar 

  • van Beilen JB, Duetz WA, Schmid A, Witholt B (2003) Practical issues in the application of oxygenases. Trends Biotechnol 21:170–177

    Article  PubMed  CAS  Google Scholar 

  • van de Velde F, Bakker M, van Rantwijk F, Sheldon RA (2001) Chloroperoxidase-catalyzed enantioselective oxidations in hydrophobic organic media. Biotechnol Bioeng 72:523–529

    Article  PubMed  Google Scholar 

  • van Peé K-H (2001) Microbial biosynthesis of halometabolites. Arch Microbiol 175:250–258

    Article  PubMed  Google Scholar 

  • van Peé K-H, Lingens F (1984) Detection of a bromoperoxidase in Streptomyces phaeochromogenes. FEBS Lett 173:5–8

    Article  PubMed  Google Scholar 

  • van Peé K-H, Lingens F (1985) Purification and molecular and catalytic properties of bromoperoxidase from Streptomyces phaeochromogenes. J Gen Microbiol 131:1911–1916

    PubMed  Google Scholar 

  • van Peé K-H, Zehner S (2003) Natural production of organohalogen compounds: enzymology and molecular genetics of biological halogenation. In: Gribble GW (ed) The handbook of environmental chemistry. Springer, Berlin Heidelberg New York, pp 171–199

    Google Scholar 

  • van Peé K-H, Patallo EP (2006) Flavine-dependent halogenases involved in secondary metabolism in bacteria. Appl Microbiol Biotechnol, (in press)

  • van Peé K-H, Sury G, Lingens F (1987) Purification and properties of a non-heme bromoperoxidase from Streptomyces aureofaciens. Biol Chem Hoppe-Seyler 368:1225–1232

    Article  PubMed  Google Scholar 

  • van Rantwijk F, Sheldon RA (2000) Selective oxygen transfer catalysed by heme peroxidases: synthetic and mechanistic aspects. Curr Opin Biotechnol 6:554–564

    Article  Google Scholar 

  • Vazquez-Duhalt R, Ayala M, Marquez-Rocha FJ (2001) Biocatalytic chlorination of aromatic hydrocarbons by chloroperoxidase of Caldariomyces fumago. Phytochemistry 58:929–933

    Article  CAS  PubMed  Google Scholar 

  • Verhagen FJM, Kuyper TW, Wijnberg JBPA, Field JA (1996) The ubiquity of natural adsorbable organic halogen production among basidiomycetes. Appl Microbiol Biotechnol 45:710–718

    Article  CAS  Google Scholar 

  • Verhagen FJM, van Assema FBJ, Boekema BKHL, Swarts HJ, Wijnberg JBPA, Field JA (1999) Dynamics of organohalogen production by the ecologically important fungus Hypholoma fasciculare. FEMS Microbiol Lett 158:167–178

    Article  Google Scholar 

  • Vilter H (1983) Peroxidases from phaeophyceae. 3. Catalysis of halogenation by peroxidases from Ascophyllum-nodosum. Le-Jol Bot Mar 26:429–435

    CAS  Google Scholar 

  • Wagenknecht HA, Woggon WD (1997) Identification of intermediates in the catalytic cycle of chloroperoxidase. Chem Biol 4:367–372

    Article  CAS  PubMed  Google Scholar 

  • Wannstedt C, Rotella D, Siuda JF (1990) Chloroperoxidase mediated halogenation of phenols. Bull Environ Contam Toxicol 44:282–287

    Article  CAS  PubMed  Google Scholar 

  • Wuosmaa AM, Hager LP (1990) Methyl chloride transferase: a carbocation route for biosynthesis of halometabolites. Science 249:160–162

    Article  CAS  PubMed  Google Scholar 

  • Yaipakdee P, Robertson LW (2001) Enzymatic halogenation of flavanones and flavones. Phytochemistry 57:341–347

    Article  CAS  PubMed  Google Scholar 

  • Yamada H, Itoh N, Izumi Y (1985) Chloroperoxidase-catalyzed halogenation of trans-cinnamic acid and its derivatives. J Biol Chem 260(22):11962–11969

    Article  CAS  PubMed  Google Scholar 

  • Yoon KS, Chen YP, Lovell CR, Lincoln DE, Knapp LW, Woodin SA (1994) Localization of the chloroperoxidase of the capitellid polychaete Notomastus lobatus. Biol Bull 187:215–222

    Article  CAS  PubMed  Google Scholar 

  • Zadrazil F (2000) Industrial production of Agrocybe aegerita (Brig.) Sing.: will Agrocybe aegerita become a new culture mushroom. (In German). Champignon 412:296–301

    Google Scholar 

  • Zhu G, Wang P (2005) Novel interface-binding chloroperoxidase for interfacial epoxidation of styrene. J Biotechnol 117:195–202

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Kliemt, A. Dau Hung, M. Kluge, C. Liers, M. Brandt, and U. Schneider for technical and scientific assistance as well as A. Labarere for providing two strains of Agrocybe chaxingu. Financial support by the Bundesministerium für Bildung, Wissenschaft und Forschung (BMBF; projects 0313433D, VNM 05/003) and the German Academic Exchange Service (DAAD; projects A/04/20213 and D/05/11714) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hofrichter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofrichter, M., Ullrich, R. Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance. Appl Microbiol Biotechnol 71, 276–288 (2006). https://doi.org/10.1007/s00253-006-0417-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0417-3

Keywords

Navigation