Skip to main content

Models and Mechanisms of Cytochrome P450 Action

  • Chapter
Cytochrome P450

11. Conclusion

Cytochrome P450 has been called the Rosetta Stone of iron proteins. Perhaps nowhere else in the biological sciences has the rich interplay between structural, spectroscopic, mechanistic, computational, and chemical modeling techniques led to such a detailed level of understanding of such an important system. The central paradigm of biological oxygen activation is now recognized to involve the formation a ferryl, or oxoiron intermediate. Oxoiron(IV) porphyrin cation radicals have been observed in peroxidase, cytochrome oxidase, CPO, cytochrome P450, and in a variety of model systems. Model system studies, especially those of iron, manganese, and ruthenium porphyrins and related ligands, have led to important advances in catalysis and in catalytic asymmetric oxygenation. Advances in computational studies of such complex, open-shell systems have begun to provide a rigorous physical underpinning for the body of complex and sometimes confusing experimental results. In this chapter, I have tried to weave together all of these aspects to provide for the reader a unified picture of the current understanding in the field of cytochrome P450 research. More detailed presentations are to be found in the chapters that follow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hayaishi, O., M. Katagiri, and S. Rothberg (1955). Mechanism of the pyrochatecase reaction. J. Am. Chem. Soc. 77, 5450–5451.

    CAS  Google Scholar 

  2. Tchen, T.T. and K. Block (1956). On the mechanism of cyclization of squalene. J. Am. Chem. Soc. 78, 1516–1517.

    CAS  Google Scholar 

  3. Ortiz de Montellano, P.R. and J.J. De Voss (2002). Oxidizing species in the mechanism of cytochrome P450. Nat. Prod. Rep. 19, 477–493.

    PubMed  Google Scholar 

  4. Sundaramoorty, M., J. Terner, and T.L. Poulos (1995). The crystal structure of chloroperoxidase: A heme peroxidase-cytochrome P450 functional hybrid. Structure 3, 1367–1377.

    Google Scholar 

  5. Manoj, K.M. and L.P. Hager (2001). Utilization of peroxide and its relevance in oxygen insertion reactions catalyzed by chloroperoxidase. Biochim. Biophy. Acta 1547, 408–417.

    CAS  Google Scholar 

  6. (a) Groves, J.T. and C.C.-Y. Wang (2000). Nitric oxide synthase: Models and mechanisms. Curr. Opin. Chem. Biol. 4, 687–695; (b) Mansuy, D. and J.L. Boucher (2002). Oxidation of N-hydroxyguanidines by cytochromes P450 and NO-synthases and formation of nitric oxide, Drug Metab. Rev. 34(3), 593–606.

    PubMed  CAS  Google Scholar 

  7. Santhanam, L. and J.S. Dordick (2002). Chloroperoxidase-catalyzed epoxidation of styrene in aqueous and nonaqueous media. Biocatal. Biotransform. 20, 265–274.

    CAS  Google Scholar 

  8. Rantwijk, F. and R.A. Sheldon (2000). Selective oxygen transfer catalysed by peroxidases: Synthetic and mechanistic aspects. Curr. Opin. Biotech. 11, 554–564.

    PubMed  Google Scholar 

  9. Van Beilen, J.B. and Z. Li (2002). Enzyme technology: An overview. Curr. Opin. Biotech. 13, 338–344.

    PubMed  Google Scholar 

  10. Glieder, A., E.T. Farinas, and F.H. Arnold (2002). Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat. Biotechnol. 20, 1135–1139.

    PubMed  CAS  Google Scholar 

  11. Crane, B.R., A.S. Arvai, S. Ghosh, E.D. Getzoff, D.J. Stuehr, and J.A. Tainer (2000). Structures of the N-omega-hydroxy-L-arginine complex of inducible nitric oxide synthase oxygenase dimer with active and inactive pterins. Biochem. 39, 4608–4621.

    CAS  Google Scholar 

  12. Raman, C.S., H.Y. Li, P. Martasek, G. Southan, B.S.S. Masters, and T.L. Poulos (2001). Crystal structure of nitric oxide synthase bound to nitro imdazole reveals a novel inactivation mechanism. Biochemistry 40, 13448–13455.

    PubMed  CAS  Google Scholar 

  13. Li, H.Y., C.S. Raman, P. Martasek, B.S.S. Masters, and T.L. Poulos (2001). Crystallographic studies on endothelial nitric oxide synthase complexed with nitric oxide and mechanism-based inhibitors. Biochemistry 40, 5399–5406.

    PubMed  CAS  Google Scholar 

  14. Fujii, H. (2002). Electronic structure and reactivity of high-valent oxo iron porphyrins. Coord. Chem. Rev. 226, 51–60.

    CAS  Google Scholar 

  15. Woggon, W.-D., H.-A. Wagenknecht, and C. Claude (2001). Synthetic active site analogues of hemethiolate proteins characterization and identification of intermediates of the catalytic cycles of cytochrome P450cam and chloroperoxidase. J. Inorg. Biochem. 83, 289–300.

    PubMed  CAS  Google Scholar 

  16. Ortiz de Montellano, P.R. (ed.) (1995). Cytochrome P-450: Structure, Mechanism and Biochemistry, 2 edn. Plenum Press, New York.

    Google Scholar 

  17. Guengerich, F.P. (2001). Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem. Res. Toxicol. 14, 611–650.

    PubMed  CAS  Google Scholar 

  18. Meunier, B. and J. Bernadou (2002). Metal-oxo species in P450 enzymes and biomimetic models. Oxo-hydroxo tautomerism with water-soluble metalloporphyrins. Top. Catal. 21, 47–54.

    CAS  Google Scholar 

  19. Groves, J.T. (2003). The bioinorganic chemistry of iron in oxygenases and supramolecular assemblies. Proc. Nat. Acad. Sci. USA 100, 3569–3574.

    PubMed  CAS  Google Scholar 

  20. Shteinman, A.A. (2001). The role of metal-oxygen intermediates in biological and chemical mono-oxygenation of alkanes. Russ. Chem. Bull. 50, 1795–1810.

    CAS  Google Scholar 

  21. Makris, T.M., R. Davydov, I.G. Denisov, B.M. Hoffman, and S.G. Sligar (2002). Mechanistic enzymology of oxygen activation by the cytochromes P450. Drug Metab. Rev. 34, 691–708.

    PubMed  CAS  Google Scholar 

  22. Watanabe, Y. and H. Fujii (2000). Characterization of high-valent oxo-metalloporphyrins. In B. Meunier (ed.), Structure and Bonding, Vol 97, Springer-Verlag, Berlin, pp. 61–89.

    Google Scholar 

  23. McLain, J., J. Lee, and J.T. Groves (1999). Biomimetic oxygenations related to cytochrome P450: Metal-oxo and metal-peroxo intermediates. In B. Meunier (ed.), Biomimetic Oxidations. ICP Publishers, pp. 91–170.

    Google Scholar 

  24. Groves, J.T., R.C. Haushalter, M. Nakamura, T.E. Nemo, and B.J. Evans (1981). High-valent ironporphyrin complexes related to peroxidase and cytochrome P-450. J. Am. Chem. Soc. 102, 2884–2886.

    Google Scholar 

  25. Groves, J.T. and G.A. McClusky (1976). Aliphatic hydroxylation via oxygen rebound. Oxygen transfer catalyzed by iron. J. Am. Chem. Soc. 98, 859.

    CAS  Google Scholar 

  26. Schunemann, V., C. Jung, J. Terner, A.X. Trautwein, and R. Weiss (2002). Spectroscopic studies of peroxyacetic acid reaction intermediates of cytochrome P450cam and chloroperoxidase. J. Inorg. Biochem. 91, 586–596.

    PubMed  CAS  Google Scholar 

  27. Kellner, D.G., S.C. Hung, K.E. Weiss, and S.G. Sligar (2002). Kinetic characterization of compound I formation in the thermostable cytochrome P450 Cyp119. J. Biol. Chem. 277, 9641–9644.

    PubMed  CAS  Google Scholar 

  28. Gelb, M.H., D.C. Heimbrook, P. Malkonen, and S.G. Sligar (1982). Stereochemistry and deuterium isotope effects in camphor hydroxylation by the cytochrome P450cam monoxygenase system. Biochemistry 21, 370–377.

    PubMed  CAS  Google Scholar 

  29. Groves, J.T. and D.V. Adhyam (1984). Hydroxylation by cytochrome P-450 and metalloporphyrin models. Evidence for allylic rearrangement. J. Am. Chem. Soc. 106, 2177–2181.

    CAS  Google Scholar 

  30. Traylor, T.G. and F. Xu (1988). Model reactions related to cytochrome P-450. Effects of alkene structure on the rates of epoxide formation. J. Am. Chem. Soc. 110, 1953–1958.

    CAS  Google Scholar 

  31. Fish, K.M., G.E. Avaria, and J.T. Groves (1988). Rearrangement of alkyl hydroperoxides mediated by cytochrome P-450: Evidence for the oxygen rebound mechanism, In J. Miners, D.J. Birkett, R. Dew, B.K. May and M.E. McManus (eds.), Microsomes and Drug Oxidations. Taylor and Francis, New York, pp. 176–183.

    Google Scholar 

  32. Kupfer, R., S.Y. Liu, A.J. Allentoff, and J.A. Thompson (2001). Comparisons of hydroperoxide isomerase and monooxygenase activities of cytochrome P450 for conversions of allylic hydroperoxides and alcohols to epoxyalcohols and diols: Probing substrate reorientation in the active site. Biochemistry 40, 11490–11501.

    PubMed  CAS  Google Scholar 

  33. Vaz, A.D.N., D.F. McGinnity, and M.J. Coon (1998). Epoxidation of olefins by cytochrome P-450: Evidence from site-specific mutagenesis for hydroperoxo-iron as an electrophilic oxidant. Proc. Natl. Acad. Sci. USA, 95, 3555–3560.

    PubMed  CAS  Google Scholar 

  34. Newcomb, M., P.F. Hollenberg, and M.J. Coon (2003). Multiple mechanisms and multiple oxidants in P450-catalyzed hydroxylations. Arch. Biochem. Biophys. 409, 72–79.

    PubMed  CAS  Google Scholar 

  35. Veeger, C. (2002). Does P450-type catalysis proceed through a peroxo-iron intermediate? A review of studies with microperoxidase. J. Inorg. Biochem. 9, 35–45.

    Google Scholar 

  36. Davydov, R., T.M. Markis, V. Kofman, D.E. Werst, S.G. Sligar, and B.M. Hoffman (2001). Hydroxylation of camphor by reduced oxycytochrome P-450cam: Mechanistic implications of Epr and Endor studies of catalytic intermediates in native and mutant enzymes. J. Am. Chem. Soc., 123, 1413–1415.

    Google Scholar 

  37. Ogliaro, F., S.P. de Visser, S. Cohen, P.K. Sharma, and S. Shaik (2002). Searching for the second oxidant in the catalytic cycle of cytochrome P450: A theoretical investigation of the iron(III)-hydroperoxo species and its epoxidation pathways. J. Am. Chem. Soc. 124, 2806–2817.

    PubMed  CAS  Google Scholar 

  38. Kamachi, T., Y. Shiota, T. Ohta, and K. Yoshizawa (2003). Does the hydroperoxo species of cytochrome P450 participate in olefin epoxidation with the main oxidant, compound I? criticism from density functional theory calculations. Bull. Chem. Soc. Jpn. 6, 721–732.

    Google Scholar 

  39. Groves, J.T. and Y. Watanabe (1988). Reactive iron porphyrin derivatives related to the catalytic cycles of cytochrome P450 and peroxidase. Studies of the mechanism of oxygen activation. J. Am. Chem. Soc. 110, 8443–8452.

    CAS  Google Scholar 

  40. Akhtar, M., D. Corina, S. Miller, A.Z. Shyadehi, and J.N. Wright (1994). Mechanism of the acyl-carbon cleavage and related reactions catalyzed by multifunctional P-450s: Studies on cytochrome P45017r. Biochemistry 33, 4410–4418.

    PubMed  CAS  Google Scholar 

  41. Cole, P.A. and C.H. Robinson (1988). A peroxide model reaction for placental aromatase. J. Am. Chem. Soc. 110, 1284–1285.

    CAS  Google Scholar 

  42. Vaz, A.D.N., E.S. Roberts, and M.J. Coon (1991). Olefin formation in the oxidative deformylation of aldehydes by cytochrome P-450. Mechanistic implications for catalysis by oxygen-derived peroxide. J. Am. Chem. Soc. 113, 5886–5887.

    CAS  Google Scholar 

  43. Sheng, D., D.P. Ballou, and V. Massey (2001). Mechanistic studies of cyclohexanone monooxygenase: Chemical properties of intermediates involved in catalysis. Biochemistry 40, 11156–11167.

    PubMed  CAS  Google Scholar 

  44. Colonna, S., N. Gaggero, G. Carrea, G. Ottolina, P. Pasta, and F. Zambianchi (2002). First asymmetric epoxidation catalysed by cyclohexanone monooxygenase. Tetrahedron Lett. 43, 1797–1799.

    CAS  Google Scholar 

  45. Watanabe, Y. (2001). Alternatives to the oxoferryl porphyrin cation radical as the proposed reactive intermediate of cytochrome P450: Two-electron oxidized Fe(III) porphyrin derivatives. J. Biol. Inorg. Chem. 6, 846–856.

    PubMed  CAS  Google Scholar 

  46. Groves, J.T. and N. Jin (1999). Unusual kinetic stability of a ground state singlet oxomanganese(V) porphyrin. Evidence for a spin state crossing effect. J. Am. Chem. Soc. 121, 2923–2924.

    Google Scholar 

  47. Volz, T.J., D.A. Rock, and J.P. Jones (2002). Evidence for two different active oxygen species in cytochrome P-450 BM3 mediated sulfoxidation and N-dealkylation reactions. J. Am. Chem. Soc. 124, 9724–9725.

    PubMed  CAS  Google Scholar 

  48. Nam, W., S.W. Jin, M.H. Lim, J.Y. Ryu, and C. Kim (2002). Anionic ligand effect on the nature of epoxidizing intermediates in iron porphyrin complexcatalyzed epoxidation reactions. Inorg. Chem. 41, 3647–3652.

    PubMed  CAS  Google Scholar 

  49. Machii, K., Y. Watanabe, and I. Morishima (1995). Acylperoxo-iron(III) porphyrin complexes: A new entry of potent oxidants for the alkene epoxidation. J. Am. Chem. Soc. 117, 6691–6697.

    CAS  Google Scholar 

  50. Suzuki, N., T. Higuchi, and T. Nagano (2002). Multiple active intermediates in oxidation reaction catalyzed by synthetic heme-thiolate complex relevant to cytochrome P450. J. Am. Chem. Soc. 124, 9622–9628.

    PubMed  CAS  Google Scholar 

  51. Yoshioka, S., T. Tosha, S. Takahashi, K. Ishimori, H. Hori, and I. Morishima (2002). Roles of the proximal hydrogen bonding network in cytochrome P450cam-catalyzed oxygenation. J. Am. Chem. Soc. 124, 14571–14579.

    PubMed  CAS  Google Scholar 

  52. Manchester, J.I., J.P. Dinnocenzo, L.A. Higgins, and J.P. Jones (1997). A new mechanistic probe for cytochrome P450: An application of isotope effect profiles. J. Am. Chem. Soc. 119, 5069–5070.

    CAS  Google Scholar 

  53. Ortiz de Montellano, P.R. and R.A. Stearns (1987). Bicyclopentane P450. J. Am. Chem. Soc. 109, 3415–3420.

    CAS  Google Scholar 

  54. Atkinson, J.K. and K.U. Ingold (1993). Cytochrome P450 hydroxylation of hydrocarbons: Variation in the rate of oxygen rebound using cyclopropyl radical clocks including two new ultrafast probes. Biochemistry 32, 9209–9214.

    PubMed  CAS  Google Scholar 

  55. Newcomb, M. and P.H. Toy (2000). Hypersensitive radical probes and the mechanisms of cytochrome P450-catalyzed hydroxylation reactions. Acc. Chem. Res. 33, 449–455.

    PubMed  CAS  Google Scholar 

  56. Bowry, V.W. and K.U. Ingold (1991). A radical clock investigation of microsomal cytochrome P-450 hydroxylation of hydrocarbons. Rate of oxygen rebound. J. Am. Chem. Soc. 113, 5699–5707.

    CAS  Google Scholar 

  57. Newcomb, M., R. Shen, S.-Y. Choi, P.T. Toy, P.F. Hollenberg, A.D.N. Vaz et al. (2000). Cytochrome P450-catalyzed hydroxylation of mechanistic probes that distinguish between radicals and cations. Evidence for cationic but not for radical intermediates. J. Am. Chem. Soc. 122, 2677–2686.

    CAS  Google Scholar 

  58. Wüst, M. and R.B. Croteau (2002). Hydroxylation of specifically deuterated limonene enantiomers by cytochrome P450 limonene-6-hydroxylase reveals the mechanism of multiple product formation. Biochemistry 41, 1820–1827.

    PubMed  Google Scholar 

  59. Audergon, C., K.R., Iyer, J.P. Jones, J.F. Darbyshire, and W.F. Trager (1999). Experimental and theoretical study of the effect of active-site constrained substrate motion on the magnitude of the observed intra-molecular isotope effect for the P450 101 catalyzed benzylic hydroxylation of isomeric xylenes and 4,4′-dimethylbiphenyl. J. Am. Chem. Soc. 121, 41–47.

    CAS  Google Scholar 

  60. (a) Shaik, S., S.P. de Visser, F. Ogliaro, H. Schwarz, and D. Schröder (2002). Two-state reactivity mechanisms of hydroxylation and epoxidation by cytochrome P-450 revealed by theory. Curr. Opin. Chem. Biol. 6, 556–567; (b) Sharma, P.K., S.P. de Visser, and S. Shaik (2003). Can a single oxidant with two spin states masquerade as two different oxidants? A study of the sulfoxidation mechanism by cytochrome P450. J. Am. Chem. Soc. 125, 8698–8699.

    PubMed  CAS  Google Scholar 

  61. Schröder, D., A. Fiedler, M.F. Ryan, and H. Schwarz (1994). Surprisingly low reactivity of base FeO+ in its spin-allowed, highly exothermic reaction with molecular hydrogen to generate Fe+ and water. J. Phys. Chem. 98, 68–70.

    Google Scholar 

  62. Schoneboom, J.C., H. Lin, N. Reuter, W. Thiel, S. Cohen, F. Ogliaro et al. (2002). The elusive oxidant species of cytochrome P450 enzymes: Characterization by combined quantum mechanical/molecular mechanical (Qm/Mm) calculations. J. Am. Chem. Soc. 124, 8142–8151.

    PubMed  Google Scholar 

  63. Auclaire, K., Z. Hu, D.M. Little, P.R. Ortiz de Montellano, and J.T. Groves (2002). Revisiting the mechanism of P-450 enzymes using the radical clocks norcarane and spiro[2,5]octane, 2002. J. Am. Chem. Soc. 124, 6020–6027.

    Google Scholar 

  64. Newcomb, M., R.N. Shen, Y. Lu, M.J. Coon, P.F. Hollenberg, D.A. Kopp et al. (2002). Evaluation of norcarane as a probe for radicals in cytochome P450-and soluble methane monooxygenasecatalyzed hydroxylation reactions. J. Am. Chem. Soc. 124, 6879–6886.

    PubMed  CAS  Google Scholar 

  65. Ogliaro, F., S.P. de Visser, J.T. Groves, and S. Shaik (2001). Chameleon states: High-valent metal-oxo species of cytochrome P450 and its ruthenium analog. Angew. Chem. Int. Ed. 40, 2874–2878.

    CAS  Google Scholar 

  66. Sharma, P.K., S.P. de Visser, F. Ogliaro, and S. Shaik (2003). Is the ruthenium analogue of compound I of cytochrome P450 an efficient oxidant? A theoretical investigation of the methane hydroxylation reaction. J. Am. Chem. Soc. 125, 2291–2300.

    PubMed  CAS  Google Scholar 

  67. Kamachi, T. and K. Yoshizawa (2003). A theoretical study on the mechanism of camphor hydroxylation by compound I of cytochrome P450. J. Am. Chem. Soc. 125, 4652–4661.

    PubMed  CAS  Google Scholar 

  68. Guallar, V., M.-H. Baik, S.J. Lippard, and R.A. Friesner (2003). Peripheral heme substituents control the hydrogen-atom abstraction chemistry in cytochromes P450. Proc. Natl. Acad. Sci., USA 100, 6998–7002.

    PubMed  CAS  Google Scholar 

  69. Reyes, M.B. and B.K. Carpenter (1998). Evidence for interception of nonstatistical reactive trajectories for a singlet biradical in supercritical propane. J. Am. Chem. Soc. 120, 1641–1642.

    CAS  Google Scholar 

  70. McMahon, R.J. (2003). Chemical reactions involving quantum tunneling. Science 299, 833–834.

    PubMed  CAS  Google Scholar 

  71. Zuev, P.S., R.S. Sheridan, T.V. Albu, D.G. Truhlar, D.A. Hrovat, and W.T. Borden (2003). Carbon tunneling from a single quantum state. Science 299, 867–870.

    PubMed  CAS  Google Scholar 

  72. Horn, A.H.C. and T. Clark (2003). Does metal ion complexation make radical clocks run fast? J. Am. Chem. Soc. 125, 2809–2816.

    PubMed  CAS  Google Scholar 

  73. Kopp, D.A. and S.J. Lippard (2002). Soluble methane monooxygenase: Activation of dioxygen and methane. Curr. Opin. Chem. Biol. 568–576.

    Google Scholar 

  74. Austin, R.N., H.-K. Chang, G.J. Zylstra, and J.T. Groves (2000). The non-heme diiron alkane monooxygenase of Pseudomonas oleovorans (AlkB) hydroxylates via a substrate radical intermediate. J. Am. Chem. Soc. 122, 11747–11748.

    CAS  Google Scholar 

  75. Brazeau, B.J., R.N. Austin, C. Tarr, J.T. Groves, and J.D. Lipscomb (2001). Intermediate Q from soluble methane monooxygenase hydroxylates the mechanistic substrate probe norcarane: Evidence for a stepwise reaction. J. Am. Chem. Soc. 123, 11831–11837.

    PubMed  CAS  Google Scholar 

  76. Austin, R.N., K. Buzzi, E. Kim, G.B. Zylstra, and J.T. Groves (2003). Xylene monooxygenase, a membrane-spanning non-heme diiron enzyme that hydroxylates hydrocarbons via a substrate radical intermediate. J. Biol. Inorg. Chem. 8, 733–739.

    PubMed  CAS  Google Scholar 

  77. Wei, C.C., Z.-Q. Wang, A.L. Meade, J.F. McDonald, and D.J. Stuehr (2002). Why do nitric oxide synthases use tetrahydrobiopterin? J. Inorg. Biochem. 91, 618–624.

    PubMed  CAS  Google Scholar 

  78. Wei, C.C., Z.Q. Wang, Q. Wang, A.L. Meade, C. Hemann, R. Hille et al. (2001). Rapid kinetic studies link tetrahydrobiopterin radical formation to heme-dioxy reduction and arginine hydroxylation in inducible nitric-oxide synthase. J. Biol. Chem. 276, 315–319.

    PubMed  CAS  Google Scholar 

  79. Hurshman, A.R., C. Krebs, D.E. Edmondson, B.H. Huynh, and M.A. Marletta (1999). Formation of a pterin radical in the reaction of the heme domain of inducible nitric oxide synthase with oxygen. Biochemistry 38, 15689–15696.

    PubMed  CAS  Google Scholar 

  80. Hurshman, A.R. and M.A. Marletta (2002). Reactions catalyzed by the heme domain of inducible nitric oxide synthase: Evidence for the involvement of tetrahydrobiopterin in electron transfer. Biochemistry 41, 3439–3456.

    PubMed  CAS  Google Scholar 

  81. Rosen, G.M., P. Tsai, and S. Pou (2002). Mechanism of free-radical generation by nitric oxide synthase. Chem. Rev. 102, 1191–1199.

    PubMed  CAS  Google Scholar 

  82. Blasko, E., C.B. Glaser, J.J. Devlin, W. Xia, R.I. Feldman, M.A. Polokoff et al. (2002). Mechanistic studies with potent and selective inducible nitric-oxide synthase dimerization inhibitors. J. Biol. Chem. 277, 295–302.

    PubMed  CAS  Google Scholar 

  83. Davydov, R., A. Ledbetter-Rogers, P. Martasek, M. Larukhin, M. Sono, J.H. Dawson et al. (2002). Epr and endor characterization of intermediates in the cryoreduced oxy-nitric oxide synthase heme domain with bound L-arginine or N-G-hydroxyarginine. Biochemistry 41, 10375–10381.

    PubMed  CAS  Google Scholar 

  84. Huang, H., J.M. Hah, and R.B. Silverman (2001). Mechanism of nitric oxide synthase. Evidence that direct hydrogen atom abstraction from the O-H bond of N-G-hydroxyarginine is not relevant to the mechanism. J. Am. Chem. Soc. 123, 2674–2676.

    PubMed  CAS  Google Scholar 

  85. Li, H., H. Shimizu, M. Flinspach, J. Jamal, W. Yang, M. Xian et al. (2002). The novel binding mode of N-alkyl-N′hydroxyguanidine to neuronal nitric oxide synthase provides mechanistic insights into no biosynthesis. Biochemistry 41, 13868–13875.

    PubMed  CAS  Google Scholar 

  86. Groves, J.T. and Y.-Z. Han (1995). Models and mechanisms of cytochrome P450 action. In P.R.O.d. Montellano (ed.), Cytochrome P-450. Structure, Mechanism and Biochemistry. Plenum Press, New York, pp. 3–48.

    Google Scholar 

  87. Davies, J.A., P.L. Watson, A. Greenberg, and J.F. Liebman (1994). Selective Hydrocarbon Activation: Principle and Progress. VCH, New York.

    Google Scholar 

  88. Watanabe, Y. (1999). High valent intermediates. In K. Kadish, (ed.), The Porphyrin Encyclopedia. pp. 97–117.

    Google Scholar 

  89. Groves, J.T., T.E. Nemo, and R.S. Myers (1979). Hydroxylation and epoxidation catalyzed by ironporphine complexes. Oxygen transfer from iodosylbenzene. J. Am. Chem. Soc. 101, 1032–1033.

    CAS  Google Scholar 

  90. Penner-Hahn, J.E., T.J. McMurry, M. Renner, L. Latos-Grazynsky, K.S. Eble, I.M. Davis et al. (1983). X-ray absorption spectroscopic studies of high-valent iron porphyrins: Horseradish peroxidase (HRP) compounds I and II. J. Biol. Chem. 258, 12761–12764.

    PubMed  CAS  Google Scholar 

  91. Penner-Hahn, J.E., K.S. Eble, T.J. McMurry, M. Renner, A.L. Balch, J.T. Groves et al. (1986). Structural characterization of horseradish peroxidase using EXAFS spectroscopy. Evidence for Fe=O ligation in compounds I and II. J. Am. Chem. Soc. 108, 7819–7825.

    CAS  Google Scholar 

  92. Groves, J.T., R. Quinn, T.J. McMurry, G. Lang, and B. Boso (1984). Iron(IV) porphyrins from iron(III) porphyrin cation radicals. J. Chem. Soc. Chem. Commun. 1455–1456.

    Google Scholar 

  93. Boso, B., G. Lang, T. McMurry, and J.T. Groves (1983). Mössbauer-effect study of tight spin coupling in oxidized chloro-5,10-,15,20-tetra(mesityl) porphyrinatoiron(III). J. Chem. Phys. 79, 1122–1126.

    CAS  Google Scholar 

  94. Jayaraj, K., A. Gold, R.N. Austin, L.M. Ball, J. Terner, D. Mandon et al. (1997). Compound I and compound II analogues from porpholactones. Inorg. Chem. 36, 4555–4566.

    PubMed  CAS  Google Scholar 

  95. Ayougou, K., D. Mandon, J. Fischer, R. Weiss, M. Muther, and V. Schunemann (1996). Molecular structure of the chloroiron(III) derivative of the meso-unsubstituted 2,7,12,17-tetramethyl-3,8,13, 18-tetramesitylporphyrin and weak ferromagnetic exchange interactions in the a(lu) oxoiron(IV) porphyrin Pi radical cation complex. Chem. Eur. J. 2, 1159–1163.

    CAS  Google Scholar 

  96. Jayaraj, K., J. Terner, A. Gold, D.A. Roberts, R.N. Austin, D. Mandon et al. (1996). Influence of meso substituents on electronic states of (oxoferryl)porphyrin Pi-cation radicals. Inorg. Chem. 35, 1632–1640.

    PubMed  CAS  Google Scholar 

  97. Jayaraj, K., A. Gold, R.N. Austin, D. Mandon, R. Weiss, J. Terner et al. (1995). Compound-I and compound-II analogs of a chlorine. J. Am. Chem. Soc. 117, 9079–9080.

    CAS  Google Scholar 

  98. Muther, M., E. Bill, A.X. Trautwein, D. Mandon, R. Weiss, A. Gold et al. (1994). Spin coupling in distorted high-valent Fe (IV) porphyrin radical complexes. Hyperfine Interact. 91, 803–808.

    Google Scholar 

  99. Nam, W., S.K. Choi, M.H. Lim, J.U. Rohde, I. Kim, J. Kim et al. (2003). Reversible formation of iodosylbenzene-iron porphyrin intermediates in the reaction of oxoiron (IV) porphyrin Pi-cation radicals and iodobenzene. Angew. Chem. Int. Ed. 42, 109–111.

    CAS  Google Scholar 

  100. Groves, J.T. and T.J. McMurry (1985). Synthetic analogs of oxidized heme proteins. Preparation and characterization of iron(IV) porphyrins. Rev. Port. Chim. 27, 102–103.

    Google Scholar 

  101. Fujii, H., T. Yoshimura, and H. Kamada (1997). Imidazole, and p-nitrophenolate complexes of oxoiron(IV) porphyrin-cation radicals as models for compounds I of peroxidase and catalase. Inorg. Chem. 36, 6142–6143.

    CAS  Google Scholar 

  102. Groves, J.T., R.C. Haushalter, M. Nakamura, T.E. Nemo, and B.J. Evans (1981). High-valent iron-porphyrin complexes related to peroxidase and cytochrome P-450. J. Am. Chem. Soc. 102, 2884–2886.

    Google Scholar 

  103. Groves, J.T. and Y. Watanabe (1988). Reactive iron porphyrin derivatives related to the catalytic cycles of cytochrome P450 and peroxidase. Studies of the mechanism of oxygen activation. J. Am. Chem. Soc. 110, 8443–8452.

    CAS  Google Scholar 

  104. Nam, W., Y.M. Goh, Y.J. Lee, M.H. Lim, and C. Kim (1999). Biomimetic alkane hydroxylations by an iron(III) porphyrin complex with H2O2 and by a high-valent iron(IV) oxo porphyrin cation radical complex. Inorg. Chem. 38, 3238.

    CAS  Google Scholar 

  105. Gross, Z. and S.A. Nimri (1994). Pronounced axial ligand effect on the reactivity of oxoiron(IV) porphyrin cation radicals. Inorg. Chem. 33, 1731–1732.

    CAS  Google Scholar 

  106. Gross, Z., S. Nimri, C.M. Barzilay, and L. Simkhovich (1997). Reaction profile of the last step in cytochrome P-450 catalysis revealed by studies of model complexes. J. Biol. Inorg. Chem. 2, 492–506.

    CAS  Google Scholar 

  107. Gross, Z. and S. Ini (1997). Remarkable effects of metal, solvent and oxidant on metalloporphyrin-catalyzed enantioselective epoxidation of olefins. J. Org. Chem. 62, 5514–5521.

    CAS  Google Scholar 

  108. Groves, J.T., Z. Gross, and M.K. Stern (1994). Preparation and reactivity of oxoiron(IV) porphyrins. Inorg. Chem. 33, 5065–5072.

    CAS  Google Scholar 

  109. Liu, M.H. and Y.O. Su (1998). Selective electrocatalysis of alkene oxidations in aqueous media. Electrochemical and spectral characterization of oxo-ferryl porphyrin, oxo-ferryl porphyrin radical cation and their reaction products with alkenes at room temperature. J. Electroanal. Chem. 452, 113–125.

    CAS  Google Scholar 

  110. Nam, W., H.J. Han, S.Y. Oh, Y.J. Lee, M.H. Choi, S.Y. Han et al. (2000). New insights into the mechanisms of O-O bond cleavage of hydrogen peroxide and tert-alkyl hydroperoxides by iron (III) porphyrin complexes. J. Am. Chem. Soc. 122, 8677–8684.

    CAS  Google Scholar 

  111. Groves, J.T., W.J. Kruper, and R.C. Haushalter (1980). Hydrocarbon oxidations with oxometalloporphinates. Isolation and reactions of a (porphinato)manganese(V) complex. J. Am. Chem. Soc. 102, 6377–6380.

    Google Scholar 

  112. Hill, C.L. and B.C. Schardt (1980). Alkane activation and functionalization under mild conditions by a homogeneous manganese(III)porphyriniodosylbenzene oxidizing system. J. Am. Chem. Soc. 102, 6374–6375.

    CAS  Google Scholar 

  113. Meunier, B., E. Guilmet, M.E. De Carvalho, and R. Poilblanc (1984). Sodium hypochlorite: A convenient oxygen source for olefin epoxidation catalyzed by (porphyrinato)manganese complexes. J. Am. Chem. Soc. 106, 6668–6676.

    CAS  Google Scholar 

  114. De Poorter, B. and B. Meunier (1985). Metalloporphyrin-catalyzed epoxidation of terminal olefins with hypochlorite salts or potassium hydrogen persulfate. Perkin Trans. II, J. Chem. Soc. 1735–1740.

    Google Scholar 

  115. Collman, J.P., J.I. Brauman, and B. Meunier (1984). Epoxidation of olefins by cytochrome P-450 model compounds: Mechanism of oxygen atom transfer. Proc. Natl. Acad. Sci. USA 81, 3245–3248.

    PubMed  CAS  Google Scholar 

  116. Collman, J.P., J.I. Brauman, B. Meunier, T. Hayashi, T. Kodadek, and S.A. Raybuck (1985). Epoxidation of olefins by cytochrome P-450 model compounds: Kinetics and stereochemistry of oxygen atom transfer and origin of shape selectivity. J. Am. Chem. Soc. 107, 2000–2005.

    CAS  Google Scholar 

  117. Collman, J.P., T. Kodadek, and J.I. Brauman (1986). Oxygenation of styrene by cytochrome P-450 model systems. A mechanistic study. J. Am. Chem. Soc. 108, 2588–2594.

    CAS  Google Scholar 

  118. Groves, J.T. and M.K. Stern (1988). Synthesis, characterization and reactivity of oxomanganese (IV) porphyrin complexes, J. Am. Chem. Soc. 110, 8628–8638.

    CAS  Google Scholar 

  119. Collins, T.J. and S.W. Gordon-Wylie (1989). A manganese(V)-oxo complex. J. Am. Chem. Soc. 111, 4511–4513.

    CAS  Google Scholar 

  120. Collins, T.J., R.D. Powell, C. Slebodnick, and E.S. Uffelman (1990). A water-stable manganese(V)-oxo complex: Definitive assignment of a Mn(V)=O infrared vibration. J. Am. Chem. Soc. 112, 899–901.

    CAS  Google Scholar 

  121. MacDonnell, F.M., N.L.P. Fackler, C. Stern, and T.V. O’Halloran (1994). Air oxidation of a five-coordinate Mn(III) dimer to a high-valent oxomanganese(V) complex. J. Am. Chem. Soc. 116, 7431–7432.

    CAS  Google Scholar 

  122. Miller, C.G., S.W. Gordon-Wylie, C.P. Horwitz, S.A. Strazisar, D.K. Periano, G.R. Clark et al. (1998). A method for driving O-atom transfer: Secondary ion binding to a tetraamide macrocyclic ligand. J. Am. Chem. Soc. 120, 11540–11541.

    CAS  Google Scholar 

  123. Srinivasan, K.M., P. Michaud, and J.K. Kochi (1986). Epoxidation of olefins with cationic (salen)manganese(III) complexes. The modulation of catalytic activity by substituents. J. Am. Chem. Soc. 108, 2309–2320.

    CAS  Google Scholar 

  124. Palucki, M.F., N.S. Finney, P.J. Pospisil, M.L. Güler, T. Ishida, and E.N. Jacobsen (1998). The mechanistic basis for electronic effects on enantioselectivity in the (salen)Mn(III)-catalyzed epoxidation reaction. J. Am. Chem. Soc. 120, 948–954.

    CAS  Google Scholar 

  125. Feichtinger, D. and D.A. Plattner (1997). Direct proof for O=Mn-V(salen) complexes. Angew. Chem. Int. Ed. 36, 1718–1719.

    CAS  Google Scholar 

  126. Sivasubramanian, K.V., M. Ganesan, S. Rajagopal, and R. Ramaraj (2002). Iron(III)-salen complexes as enzyme models: Mechanistic study of oxo(salen)iron complexes oxygenation of organic sulfides. J. Org. Chem. 67, 1506–1514.

    PubMed  CAS  Google Scholar 

  127. Jacobsen, E.N. (1995). Transition metal-catalyzed oxidations: asymmetric epoxidation. In G. Wilkinson, F.G.A. Stone, E.W. Abel, and L.S. Hegedus (eds), Comprehensive Organometallic Chemistry II, Vol. 12. Pergamon: New York.

    Google Scholar 

  128. (a) Katsuki, T. (1995). Catalytic asymmetric oxidations using optically-active (salen)manganese(III) complexes as catalysts. Coord. Chem. Rev. 140, 189; (b) Katsuki, T. (2002). Chiral metallosalen complexes: Structures and catalyst tuning for asymmetric epoxidation and cyclopropanation. Adv. Synth. Catal. 344 (2), 131–147.

    CAS  Google Scholar 

  129. Gross, Z., G. Golubkov, and L. Simkhovich (2000). Epoxidation catalysis by a manganese corrole and isolation of an oxomanganese(V) corrole. Angew. Chem. Int. Ed. 39, 4045–4047.

    CAS  Google Scholar 

  130. Meier-Callahan, A.E., H.B. Gray, and Z. Gross (2000). Stabilization of high-valent metals by corroles: Oxo tris(pentafluorophenyl)corrolato chromium(V). Inorg. Chem. 39, 3605–3607.

    PubMed  CAS  Google Scholar 

  131. Meier-Callahan, A.E., A.J. Di Bilio, L. Simkhovich, A. Mahammed, I. Goldberg, H.B. Gray et al. (2001). Chromium corroles in four oxidation states. Inorg. Chem. 40, 6788–6793.

    PubMed  CAS  Google Scholar 

  132. Mahammed, A., H.B. Gray, A.E. Meier-Callahan, and Z. Gross (2003). Aerobic oxidations catalyzed by chromium corroles. J. Am. Chem. Soc. 125, 1162–1163.

    PubMed  CAS  Google Scholar 

  133. Groves, J.T., Y. Watanabe, and T.J. McMurry (1983). Oxygen activation by metalloporphyrins—formation and decomposition of an acylperoxymanganese(III) complex. J. Am. Chem. Soc. 105, 4489.

    CAS  Google Scholar 

  134. Groves, J.T. and M.K. Stern (1988). Synthesis, characterization and reactivity of oxomanganese(IV) porphyrin complexes. J. Am. Chem. Soc. 110, 8628.

    CAS  Google Scholar 

  135. Groves, J.T. and Y. Watanabe (1986). Oxygen activation by metalloporphyrins related to peroxidase and cytochrome-P-450—direct observation of the O-O bond-cleavage step. J. Am. Chem. Soc. 108, 7834–7836.

    CAS  Google Scholar 

  136. Groves, J.T. and S.S. Marla (1995). Peroxynitrite-induced DNA strand scission mediated by a manganese porphyrin. J. Am. Chem. Soc. 117, 9578–9579.

    CAS  Google Scholar 

  137. Bernadou, J., A.-S. Fabiano, A. Robert, and B. Meunier (1994). “Redox Tautomerism” in highvalent metal-oxo-aquo complexes. Origin of the oxygen atom in epoxidation reactions catalyzed by water-soluble metalloporphyrins. J. Am. Chem. Soc. 116, 9375–9376.

    CAS  Google Scholar 

  138. Pitie, M., J. Bernadou, and B. Meunier (1995). Oxidation at carbon-1′ of DNA deoxyriboses by the Mn-TMPyP/KHSO5 system results from a cytochrome P-450-type hydroxylation reaction. J. Am. Chem. Soc. 117, 2935–2936.

    CAS  Google Scholar 

  139. Balahura, R.J., A. Sorokin, J. Bernadou, and B. Meunier (1997). Origin of the oxygen atom in C-H bond oxidations catalyzed by a water-soluble metalloporphyrin. Inorg. Chem. 36, 3488–3492.

    PubMed  CAS  Google Scholar 

  140. Czernuszewicz, R.S., Y.O. Su, M.K. Stern, K.A. Macor, D. Kim, J.T. Groves, and T.G. Spiro (1988). Oxomanganese(IV) porphyrins identified by resonance raman and infrared spectroscopy: Weak bonds and the stability of the half-filled T2g subshell. J. Am. Chem. Soc. 110, 4158–4165.

    CAS  Google Scholar 

  141. Arasasingham, R.D., G.X. He, and T.C. Bruice (1993). Mechanism of manganese porphyrincatalyzed oxidation of alkenes. Role of manganese(IV)-oxo species. J. Am. Chem. Soc. 115, 7985–7991.

    CAS  Google Scholar 

  142. Yeh, H.C., C.H. Yu, J.S. Wang, S.T. Chen, Y.O. Su, and W.Y. Lin (2002). Stopped-flow kinetic study of the peroxidase reactions of mangano-microperoxidase-8. J. Biol. Inorg. Chem. 7, 113–119.

    PubMed  CAS  Google Scholar 

  143. Yeh, H.C., J.S. Wang, Y.O. Su, and W.Y. Lin (2001). Stopped-flow kinetic study of the h2o2 oxidation of substrates catalyzed by microperoxidase-8. J. Biol. Inorg. Chem. 6, 770–777.

    PubMed  CAS  Google Scholar 

  144. Meunier, B. and J. Bernadou (2000). Active ironoxo, and iron-peroxo species in cytochrome P450 and peroxidases; oxo-hydroxo tautomerism with water-soluble porphyrins. In B. Meunier and Waldemar Adam (ed.). Metal-Oxo and Metal-Peroxo Species in Catalytic Oxidations, Vol. 97. Springer-Verlag, Berlin, pp. 1–35.

    Google Scholar 

  145. Jin, N., J.L. Bourassa, S.C. Tizio, and J.T. Groves (2000). Rapid, reversible oxygen atom transfer between an oxomanganese(V) porphyrin and bromide. A haloperoxidase mimic with enzymatic rates. Angew. Chem. Int. Edit. 39, 3849–3851.

    CAS  Google Scholar 

  146. Groves, J.T., J. Lee, and S.S. Marla (1997). Detection and characterization of an oxomanganese(V) porphyrin complex by rapid-mixing stopped-flow spectrophotometry. J. Am. Chem. Soc. 119, 6269–6273.

    CAS  Google Scholar 

  147. Nam, W., I. Kim, M.H. Lim, H.J. Choi, J.S. Lee, and H.G. Jang (2002). Isolation of an oxomanganese(V) porphyrin intermediate in the reaction of a manganese(III) porphyrin complex and H2O2 in aqueous solution. Chem. Eur. J. 8, 2067–2071.

    CAS  Google Scholar 

  148. Nam, W., H.J. Lee, S.Y. Oh, C. Kim, and H.G. Jang (2000). First success of catalytic epoxidation of olefins by an electron-rich iron(III) porphyrin complex and H2O2: Imidazole effect on the activation of H2O2 by iron porphyrin complexes in aprotic solvent. J. Inorg. Biochem. 80, 219–225.

    PubMed  CAS  Google Scholar 

  149. Beckman, J.S. and W.H. Koppenol (1996). Nitric oxide, superoxide and peroxynitrite: The good, the bad and the ugly. Am. J. Physiol. 271, C1424–C1437.

    PubMed  CAS  Google Scholar 

  150. Marla, S.S., J. Lee, and J.T. Groves (1997). Peroxynitrite rapidly permeates phospholipid membranes. Proc. Natl. Acad. Sci. USA 94, 14243–14248.

    PubMed  CAS  Google Scholar 

  151. Lee, J., J.A. Hunt, and J.T. Groves (1997). Rapid decomposition of peroxynitrite by manganese porphyrin-antioxidant redox couples. Bioorg. Med. Chem. Lett. 7, 2913–2918.

    CAS  Google Scholar 

  152. Groves, J.T. (1999). Peroxynitrite: Reactive, invasive and enigmatic. Curr. Opin. Chem. Biol. 3, 226–235.

    PubMed  CAS  Google Scholar 

  153. Lee, J., J.A. Hunt, and J.T. Groves (1998). Manganese porphyrins as redox-coupled peroxynitrite reductases. J. Am. Chem. Soc. 120, 6053–6061.

    CAS  Google Scholar 

  154. Hunt, J.A., J. Lee, and J.T. Groves (1997). Amphiphilic peroxynitrite decomposition catalysts in liposomal assemblies. Chem. Biol. 4, 845–858.

    PubMed  CAS  Google Scholar 

  155. Stern, M.K., M.P. Jensen, and K. Kramer (1996). Peroxynitrite decomposition catalysts. J. Am. Chem. Soc. 118, 8735–8736.

    CAS  Google Scholar 

  156. Lee, J., J.A. Hunt, and J.T. Groves (1998). Mechanisms of iron porphyrin reactions with peroxynitrite. J. Am. Chem. Soc. 120, 7493–7501.

    CAS  Google Scholar 

  157. Shimanovich, R. and J.T. Groves (2001). Mechanisms of peroxynitrite decomposition catalyzed by fetmps, a bioactive sulfonated iron porphyrin. Arch. Biochem. Biophys. 387, 307–317.

    PubMed  CAS  Google Scholar 

  158. Szabo, C., J.G. Mabley, S.M. Moeller, R. Shimanovich, P. Pacher, L. Virag et al. (2002). Pathogenic role of peroxynitrite in the development of diabetes and diabetic vascular complications: Studies with FP15, a novel, potent peroxynitrite decomposition catalyst. Mol. Med. 8, 571–580.

    PubMed  CAS  Google Scholar 

  159. Collman, J.P., X. Zhang, V.J. Lee, E.S. Uffelman, and J.I. Brauman (1993). Regioselective and enantioselective epoxidation catalyzed by metalloporphyrins. Science 261, 1404–1411.

    PubMed  CAS  Google Scholar 

  160. Rose, E., A. Lecas, M. Quelquejeu, A. Kossanyi, and B. Boitrel (1998). Synthesis of biomimetic heme precursors. Coord. Chem. Rev. 178–180, 1407–1431.

    Google Scholar 

  161. Tani, F., M. Matsu-ura, S. Nakayama, and Y. Naruta (2002). Synthetic models for the active site of cytochrome P450. Coord. Chem. Rev. 226, 219–226.

    CAS  Google Scholar 

  162. Fokin, A.A. and P.R. Schreiner (2002). Selective alkane transformations via radicals and radical cations: Insights into the activation step from experiment and theory. Chem. Rev. 102, 1551–1593.

    PubMed  CAS  Google Scholar 

  163. Breslow, R., Y. Huang, and X.J. Zhang (1997). An artificial cytochrome P450 that hydroxylates unactivated carbons with regio-and stereoselectivity and useful catalytic turnovers. Proc. Natl. Acad. Sci. 94, 11156–11158.

    PubMed  CAS  Google Scholar 

  164. (a) Breslow, R., X. Zhang, and Y. Huang (1997). Selective catalytic hydroxylation of a steroid by an artificial cytochrome P-450 enzyme. J. Am. Chem. Soc. 119, 4535–4536; (b) Breslow, R., Y. Huang, and X.J. Zhang (1997). An artificial cytochrome P450 that hydroxylates unactivated carbons with regio-and stereoselectivity and useful catalytic turnovers, Proc. Natl. Acad. Sci. 94, 11156–11158.

    CAS  Google Scholar 

  165. Groves, J.T. (1997). Artificial enzymes—the importance of being selective. Nature 389, 329.

    PubMed  CAS  Google Scholar 

  166. Collman, J.P., X. Zhang, R.T. Hembre, and J.I. Brauman (1990). Shape-selective olefin epoxidation catalyzed by manganese picnic basket porphyrins. J. Am. Chem. Soc. 112, 5356–5357.

    CAS  Google Scholar 

  167. Collman, J.P., Z.W.A. Straumanis, M. Quelquejeu, and E. Rose (1999). An efficient catalyst for asymmetric epoxidation of terminal olefins. J. Am. Chem. Soc. 121, 460–461.

    CAS  Google Scholar 

  168. Groves, J.T. and R.S. Myers (1983). Catalytic asymmetric epoxidation with chiral iron porphyrins. J. Am. Chem. Soc. 105, 5791–5796.

    CAS  Google Scholar 

  169. Groves, J.T. and P. Viski (1989). Asymmetric hydroxylation by a chiral iron porphyrin. J. Am. Chem. Soc. 111, 8537–8538.

    CAS  Google Scholar 

  170. Groves, J.T. and P. Viski (1990). Asymmetric hydroxylation, epoxidation and sulfoxidation catalyzed by vaulted binaphthyl metalloporphyrins. J. Org. Chem. 55, 3628–3634.

    CAS  Google Scholar 

  171. Groves, J.T. and K.V. Shalyaev (1998). Paramagnetic 1H-NMR relaxation probes of stereoselectivity in metalloporphyrin catalyzed olefin epoxidation. Chirality 10, 106–119.

    PubMed  CAS  Google Scholar 

  172. Nakayama, S., F. Tani, M. Matsu-ura, and Y. Naruta (2002). Cobalt “single-coronet” porphyrin bearing hydroxyl groups in its O-2 binding site as a new model for myoglobin and hemoglobin: Observation of unusually low frequency of V(O-O) in resonance raman spectrum. Chem. Lett. 496–497.

    Google Scholar 

  173. Matsui, E., Y. Naruta, F. Tani, and Y. Shimazaki (2003). An active-site model of prostaglandin H synthase: An iron “twin-coronet” porphyrin with an aryloxyl radical overhang and its catalytic oxygenation of 1,4-diene. Angew. Chem. Int. Edit. 42, 2744–2747.

    CAS  Google Scholar 

  174. Shilov, A.E. and G.B. Shul’pin (1997). Activation of C–H bonds by metal complexes. Chem. Rev. 97, 2897–2932.

    Google Scholar 

  175. Groves, J.T. and R. Quinn (1984). Models of oxidized heme proteins. Preparation and characterization of a trans-dioxoruthenium (VI) porphyrin complex. Inorg. Chem. 23, 3844–3846.

    CAS  Google Scholar 

  176. Groves, J.T. and R. Quinn (1985). Aerobic epoxidation of olefins with ruthenium porphyrin catalysts. J. Am. Chem. Soc. 107, 5790–5792.

    CAS  Google Scholar 

  177. Paeng, I.R. and K. Nakamoto (1990). Resonance raman spectra of reaction intermediates in oxidation process of ruthenium(II) and iron(II) porphyrins. J. Am. Chem. Soc. 112, 3289.

    CAS  Google Scholar 

  178. Pronievich, L.M., I.R. Paeng, W. Lewandowski, and K. Nakamoto (1990). Vibrational spectra of dioxygen adducts and oxo complexes of ruthenium tetraphenylporphyrine (RuTPP) J. Mol. Struct. 219, 335–339.

    Google Scholar 

  179. Han, Y.-Z. (1991). PhD Thesis, Department of Chemistry, Princeton University.

    Google Scholar 

  180. Dubourdeaux, P., M. Tavarès, A. Grand, R. Ramasseul, and J.-C. Marchon (1995). Preparation and crystal structure of trans-dihydroxo-[tetrakis(2,6-dichlorophenyl)porphinato]rutheniu m(IV) 2toluene. Inorg. Chem. Acta 240, 657–660.

    CAS  Google Scholar 

  181. Ho, C., W.-H. Leung, and C.-M. Che (1991). Kinetics of C-H bond and alkene oxidation by trans-dioxoruthenium(VI) porphyrins. J. Chem. Soc. Dalton. Trans. 11, 2933–2939.

    Google Scholar 

  182. (a) Lindsay-Smith, J.R. and P.R. Sleath (1982). Model systems for cytochrome P450 dependent monooxygenases 1. Oxidation of alkenes and aromatic compounds by tetraphenylporphinatoiron(III), Trans. II. J. Chem. Soc. 1009; (b) Prado-Manso, C.M.C., E.A. Vidoto, F.S. Vinhado, H.C. Sacco, K.J. Ciuffi, P.R. Martins et al. (1999). Characterization and catalytic activity of iron (III) mono (4-N-methyl pyridyl)-tris (halophenyl) porphyrins in homogeneous and heterogeneous systems. J. Mol. Catal. A-Chem. 150, 251–266.

    Google Scholar 

  183. Bortolini, O. and B. Meunier (1984). Enhanced selectivity by an open-well effect in a metalloporphyrin-catalyzed oxygenation reaction. Perkin Trans. II, J. Chem. Soc. 1967–1970.

    Google Scholar 

  184. Murahashi, S.-I., T. Naota, and N. Komiya (1995). Metalloporphyrin-catalyzed oxidations of alkanes with molecular oxygen in the presence of acetaldehyde. Tetrahedron Lett. 36, 8059–8062.

    CAS  Google Scholar 

  185. Murahashi, S.-I. and N. Komiya (1998). New types of catalytic oxidations in organic synthesis. Catal. Today 41, 339–349.

    CAS  Google Scholar 

  186. Ohkatsu, Y. and T. Osa (1977). Liquid-phase oxidation of aldehydes with metal tetra(paratolyl)porphyrins. Bull. Chem. Soc. Jpn. 50, 2945.

    CAS  Google Scholar 

  187. Birnbaum, E.R., J.A. Labinger, J.E. Bercaw, and H.B. Gray (1998). Catalysis of aerobic olefic oxidation by a ruthenium perhaloporphyrin complex. Inorg. Chim. Acta 270, 433–439.

    CAS  Google Scholar 

  188. Birnbaum, E.R., M.W. Grinstaff, J.A. Labinger, J.E. Bercaw, and H.B. Gray (1995). On the mechanism of catalytic alkene oxidation by molecular oxygen and halogenated iron porphyrins. J. Mol. Catal. A: Chemical 104, L119–L122.

    Google Scholar 

  189. Grinstaff, M.W., M.G. Hill, J.A. Labinger, and H.B. Gray (1994). Mechanism of catalytic oxygenation of alkanes by halogenated iron porphyrins. Science 264, 1311.

    PubMed  CAS  Google Scholar 

  190. Groves, J.T. and J.S. Roman (1995). Nitrous oxide activation by a ruthenium porphyrin. J. Am. Chem. Soc. 117, 5594–5595.

    CAS  Google Scholar 

  191. Banks, R.G.S., R.J. Henderson, and J.M. Pratt (1968). Reactions of gases in solution, 3. Some reactions of nitrous oxide with transition metal complexes. J. Chem. Soc. (A) 2886–2889.

    Google Scholar 

  192. (a) Bottomley, F., I.J. Lin, and M. Mukaida (1980). Reactions of dinitrogen oxide (nitrous oxide) with dicyclopentadienyltitanium complexes including a reaction in which carbon monoxide is oxidized. J. Am. Chem. Soc. 102, 5238–5242; (b) Yamada, T., K. Hashimoto, Y. Kitaichi, K. Suzuki, and T. Ikeno (2001). Nitrous oxide oxidation of olefins catalyzed by ruthenium porphyrin complexes. Chem. Lett. 3, 268–269.

    CAS  Google Scholar 

  193. Higuchi, T., H. Ohtake, and M. Hirobe (1989). Highly efficient epoxidation of olefins with pyridine N-oxides catalyzed by ruthenium porphyrins. Tetrahedron Lett. 30, 6545–6548.

    CAS  Google Scholar 

  194. Higuchi, T., H. Ohtake, and M. Hirobe (1991). Highly efficient oxygen transfer reactions from various heteroaromatic N-oxides to olefins, alcohols and sulfides catalyzed by ruthenium porphyrins. Tetrahedron Lett. 32, 7435–7438.

    CAS  Google Scholar 

  195. Ohtake, H., T. Higuchi, and M. Hirobe (1992). Highly efficient oxidation of alkanes and alkyl alcohols with heteroaromatic N-oxides catalyzed by ruthenium porphyrins. J. Am. Chem. Soc. 114, 10660–10662.

    CAS  Google Scholar 

  196. Ohtake, H., T. Higuchi, and M. Hirobe (1995). The highly efficient oxidation of olefins, alcohols, sulfides and alkanes with heteroaromatic N-oxides catalyzed by ruthenium porphyrins. Heterocycles 40, 867–903.

    CAS  Google Scholar 

  197. Nakagawa, H., T. Higuchi, K. Kikuchi, Y. Urano, and T. Nagano (1998). Selective deoxygenation of heteroaromatic N-oxides with olefins catalyzed by ruthenium porphyrin. Chem. Pharm. Bull. 46, 1656–1657.

    CAS  Google Scholar 

  198. Ohtake, H., T. Higuchi, and M. Hirobe (1992). The selectivities and the mechanism of highly efficient epoxidation of olefins with 2,6-disubstituted pyridine N-oxides catalyzed by ruthenium porphyrin. Tetrahedron Lett. 33, 2521–2524.

    CAS  Google Scholar 

  199. Higuchi, T. and M. Hirobe (1996). Four recent studies in cytochrome P450 modelings: A stable iron porphyrin coordinated by a thiolate ligand; a robust ruthenium porphyrin-pyridine N-oxide derivatives system; polypeptide-bound iron porphyrin; application to drug metabolism studies. J. Mol. Catal. A: Chem. 113, 403–422.

    CAS  Google Scholar 

  200. Shingaki, T., K. Miura, T. Higuchi, M. Hirobe, and T. Nagano (1997). Regio-and stereo-selective oxidation of steroids using 2, 6-dichloropyridine N-oxide catalyzed by ruthenium porphyrins. J. Chem. Soc., Chem. Commun. 861–862.

    Google Scholar 

  201. Groves, J.T., M. Bonchio, T. Carofiglio, and K. Shalyaev (1996). Rapid catalytic oxygenation of hydrocarbons by ruthenium pentafluorophenylporphyrin complexes: Evidence for the involvement of a Ru(III) intermediate. J. Am. Chem. Soc. 118, 8961–8962.

    CAS  Google Scholar 

  202. Groves, J.T., K.V. Shalyaev, M. Bonchio, and T. Carofiglio (1997). Rapid catalytic oxygenation of hydrocarbons with polyhalogenated ruthenium porphyrin complexes. Stud. Surf. Sci. Catal. 110, 865–872.

    CAS  Google Scholar 

  203. James, B.R. (1986). Transition metal catalyzed oxidations. In A.E. Shilov (ed.), Funda-mentals of Research in Homogeneous Catalysis. Gordon Breach, New York, pp. 309–324.

    Google Scholar 

  204. Barley, M.H., D. Dolphin, and B.R. James (1984). Reversible intramolecular electron transfer within a ruthenium(III) porphyrin-ruthenium(II) porphyrin radical system induced by changes in axial ligation. J. Chem. Soc., Chem. Commun. 1499–1500.

    Google Scholar 

  205. Ojima, I. (ed.) (1993). Catalytic Asymmetric Synthesis, VCH, New York.

    Google Scholar 

  206. (a) Moro-oka, Y. and M. Akita (1998). Bio-inorganic approach to hydrocarbon oxidation. Catalysis Today 41, 327–338; (b) Zhang, R., W.Y. Yu, H.Z. Sun, W.S. Liu, and C.M. Che (2002). Stereo-and enantioselective alkene epoxidations: A comparative study of D-4-and D-2-symmetric homochiral trans-dioxoruthenium (VI) porphyrins. Chem. Eur. J. 8, 2495–2507; (c) Simonneaux, G., and P. Le Maux (2002). Optically active ruthenium porphyrins: Chiral recognition and asymmetric catalysis. Coord. Chem. Rev. 228, 43–60; (d) Funyu, S., T. Isobe, S. Takagi, D.A. Tryk, and H. Inoue (2003). Highly efficient and selective epoxidation of alkenes by photochemical oxygenation sensitized by a ruthenium (II) porphyrin with water as both electron and oxygen donor. J. Am. Chem. Soc. 125, 5734–5740.

    CAS  Google Scholar 

  207. Mansuy, D. (1993). Activation of alkanes, the biomimetic approach. Coord. Chem. Rev. 125, 129–141.

    CAS  Google Scholar 

  208. Gross, Z., S. Ini, M. Kapon, and S. Cohen (1996). First utilization of a homochiral ruthenium porphyrin as enantioselective epoxidation catalyst. Tetrahedron Lett. 37, 7325–7328.

    CAS  Google Scholar 

  209. Lai, T.S., R. Zhang, K.K. Cheung, H.L. Kwong, and C.M. Che. Stoichiometric enantioselective alkene epoxidation with a chiral dioxoruthenium(VI) D-4-porphyrinato complex. J. Chem. Soc., Dalton Trans. 21, 3559–3564.

    Google Scholar 

  210. Lai, T.S., H.L. Kwong, R. Zhang, and C.M. Che (1998). Aerobic enantioselective alkene epoxidation by a chiral trans-dioxo(D-4-porphyrinato) ruthenium(VI) complex. J. Chem. Soc. Chem. Commun. 15, 1583–1584.

    Google Scholar 

  211. Berkessel, A. and M. Frauenkron (1997). Catalytic asymmetric epoxidation with a chiral ruthenium porphyrin and N-oxides. J. Chem. Soc., Perkin Trans. 16(1), 2265–2266.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Groves, J.T. (2005). Models and Mechanisms of Cytochrome P450 Action. In: Ortiz de Montellano, P.R. (eds) Cytochrome P450. Springer, Boston, MA. https://doi.org/10.1007/0-387-27447-2_1

Download citation

  • DOI: https://doi.org/10.1007/0-387-27447-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48324-0

  • Online ISBN: 978-0-387-27447-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics