Skip to main content
Log in

Conversion of dibenzothiophene by the mushrooms Agrocybe aegerita and Coprinellus radians and their extracellular peroxygenases

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The conversion of the heterocycle dibenzothiophene (DBT) by the agaric basidiomycetes Agrocybe aegerita and Coprinellus radians was studied in vivo and in vitro with whole cells and with purified extracellular peroxygenases, respectively. A. aegerita oxidized DBT (110 μM) by 100% within 16 days into eight different metabolites. Among the latter were mainly S-oxidation products (DBT sulfoxide, DBT sulfone) and in lower amounts, ring-hydroxylation compounds (e.g., 2-hydroxy-DBT). C. radians converted about 60% of DBT into DBT sulfoxide and DBT sulfone as the sole metabolites. In vitro tests with purified peroxygenases were performed to compare the product pattern with the metabolites formed in vivo. Using ascorbic acid as radical scavenger, a total of 19 and seven oxygenation products were detected after DBT conversion by the peroxygenases of A. aegerita (AaP) and C. radians (CrP), respectively. Whereas ring hydroxylation was favored over S-oxidation by AaP (again 2-hydroxy-DBT was identified), CrP formed DBT sulfoxide as major product. This finding suggests that fungal peroxygenases can considerably differ in their catalytic properties. Using H2 18O2, the origin of oxygen was proved to be the peroxide. Based on these results, we propose that extracellular peroxygenases may be involved in the oxidation of heterocycles by fungi also under natural conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersson JT, Hegazi AH, Roberz B (2006) Polycyclic aromatic sulfur heterocycles as information carriers in environmental studies. Anal Bioanal Chem 386:891–905

    Article  CAS  PubMed  Google Scholar 

  • Anh DH, Ullrich R, Benndorf D, Svatos A, Muck A, Hofrichter M (2007) The coprophilous mushroom Coprinus radians secretes a haloperoxidase that catalyzes aromatic peroxygenation. Appl Environ Microbiol 73:5477–5485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bezalel L, Hadar Y, Fu PP, Freeman JP, Cerniglia CE (1996) Initial oxidation products in the metabolism of pyrene, anthracene, fluorene, and dibenzothiophene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62:2554–2559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boersma MG, Primus JL, Koerts J, Rietjens IMCM (2000) Heme-(hydro)peroxide mediated O- and N-dealkylation. Eur J Biochem 267:6673–6678

    Article  CAS  PubMed  Google Scholar 

  • Bressler DC, Fedorack P, Pickard MA (2000) Oxidation of carbazole, N-ethylcarbazole, fluorene, and dibenzothiophene by the laccase of Coriolopsis gallica. Biotechnol Lett 22:1119–1125

    Article  CAS  Google Scholar 

  • Bumpus JA (1989) Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 55:154–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford DL, Gupta RK (1990) Oxidation of dibenzothiophene by Cunninghamella elegans. Curr Microbiol 21:229–231

    Article  CAS  Google Scholar 

  • Davin L, Wang H, Crowell A, Bedgar D, Martin D, Sarkanen S, Lewis N (1997) Stereoselective bimolecular phenoxy radical coupling by an auxiliary (Dirigent) protein without an active center. Science 275:362–367

    Article  CAS  PubMed  Google Scholar 

  • Eggert C, Temp U, Dean JFD, Eriksson K-EL (1995) Laccase-mediated formation of the phenoxazinone derivative, cinnabarinic acid. FEBS Lett 376:202–206

    Article  CAS  PubMed  Google Scholar 

  • Eibes G, Cajthaml T, Moreira MT, Feijoo G, Lema JM (2006) Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone. Chemosphere 64:408–414

    Article  CAS  PubMed  Google Scholar 

  • Gai Z, Yu B, Li L, Wang Y, Ma C, Feng J, Deng Z, Xu P (2007) Cometabolic degradation of dibenzofuran and dibenzothiophene by a newly isolated carbazole-degrading Sphingomonas sp. strain. Appl Environ Microbiol 73:2832–2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofrichter M, Ullrich R (2006) Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance. Appl Microbiol Biotechnol 71:276–288

    Article  CAS  PubMed  Google Scholar 

  • Horn A, Ullrich R, Scheibner K, Kragl U (2007) Enantioselective sulfoxidation catalyzed by the novel haloperoxidase from Agrocybe aegerita. Proceedings of the 8th International Conference on Biocatalysis & Biotranformations (BIOTRANS), Oviedo (Spain), p 63

  • Ichinose H, Nakamizo M, Wariishi H, Tanaka H (2002) Metabolic response against sulfur-containing heterocyclic compounds by the lignin-degrading basidiomycete Coriolus versicolor. Appl Microbiol Biotechnol 58:517–526

    Article  CAS  PubMed  Google Scholar 

  • Jean LS (1996) Microbial attack on sulphur-containing hydrocarbons: implications for the biodesulphurisation of oils and coals. J Chem Tech Biotechnol 67:109–123

    Article  Google Scholar 

  • Kim D, Kwak E, Choi HT (2006) Increase of yeast survival under oxidative stress by the expression of the laccase gene from Coprinellus congregatus. J Microbiol 44:617–621

    CAS  PubMed  Google Scholar 

  • Kinne M, Ullrich R, Hammel KE, Scheibner K, Hofrichter M (2008) Regioselective preparation of (R)-2-(4-Hydroxyphenoxy)propionic acid with a fungal peroxygenase. Tetrahedron Lett 49:5950–5953

    Article  CAS  Google Scholar 

  • Kluge MG, Ullrich R, Scheibner K, Hofrichter M (2007) Spectrophotometric assay for detection of aromatic hydroxylation catalyzed by fungal haloperoxidase-peroxygenase. Appl Microbiol Biotechnol 75:1473–1478

    Article  CAS  PubMed  Google Scholar 

  • Kluge M, Ullrich R, Dolge C, Scheibner K, Hofrichter M (2008) Hydroxylation of naphthalene by aromatic peroxygenase from Agrocybe aegerita proceeds via oxygen transfer from H2O2 and intermediary epoxidation. Appl Microbiol Biotechnol. doi:https://doi.org/10.1007/s00253-008-1704-y

    Article  PubMed  Google Scholar 

  • Odier E, Mozuch MD, Kalyanaraman B, Kirk TK (1988) Ligninase-mediated phenoxy radical formation and polymerization unaffected by cellobiose: quinone oxidoreductase. Biochimie 70:847–852

    Article  CAS  PubMed  Google Scholar 

  • Okada H, Nomura N, Nakahara T, Maruhashi K (2002) Analysis of dibenzothiophene metabolic pathway in Mycobacterium strain G3. J Biosci Bioeng 93:491–497

    Article  CAS  PubMed  Google Scholar 

  • Oldfield C, Wood NT, Gilbert SC, Murray FD, Faure FR (1998) Desulphurisation of benzothiophene and dibenzothiophene by actinomycete organisms belonging to the genus Rhodococcus, and related taxa. Antonie Van Leeuwenhoek 74:119–132

    Article  CAS  PubMed  Google Scholar 

  • Osman AM, Koerts J, Boersma MG, Boeren S, Veeger C, Rietjens IM (1996) Microperoxidase/H2O2-catalyzed aromatic hydroxylation proceeds by a cytochrome-P-450-type oxygen-transfer reaction mechanism. Eur J Biochem 240:232–238

    Article  CAS  PubMed  Google Scholar 

  • Schlenk D, Bevers RJ, Vertino AM, Cerniglia CE (1994) P450 catalysed S-oxidation of dibenzothiophene by Cunninghamella elegans. Xenobiotica 24:1077–1083

    Article  CAS  PubMed  Google Scholar 

  • Seo J-S, Keum Y-S, Cho IK, Li QX (2006) Degradation of dibenzothiophene and carbazole by Arthrobacter sp. P1-1. Inter Biodeter Biodegrad 58:36–43

    Article  CAS  Google Scholar 

  • Silva Madeira L, Ferreira-Leitão VS, da Silva Bon EP (2008) Dibenzothiophene oxidation by horseradish peroxidase in organic media: effect of the DBT:H2O2 molar ratio and H2O2 addition mode. Chemosphere 71:189–194

    Article  PubMed  Google Scholar 

  • Steffen KT, Hatakka A, Hofrichter M (2002) Removal and mineralization of polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 60:212–217

    Article  CAS  PubMed  Google Scholar 

  • Tien M, Kirk TK, Bull C, Fee JA (1986) Steady-state and transient-state kinetic studies on the oxidation of 3,4-dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerocheate chrysosporium Burds. J Biol Chem 261:1687–1693

    CAS  PubMed  Google Scholar 

  • Ullrich R, Hofrichter M (2005) The haloperoxidase of the agaric fungus Agrocybe aegerita hydroxylates toluene and naphthalene. FEBS Lett 579:6247–6250

    Article  CAS  PubMed  Google Scholar 

  • Ullrich R, Hofrichter M (2007) Enzymatic hydroxylation of aromatic compounds. Cell Mol Life Sci 64:271–293

    Article  CAS  PubMed  Google Scholar 

  • Ullrich R, Nüske J, Scheibner K, Spantzel J, Hofrichter M (2004) Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Appl Environ Microbiol 70:4575–4581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullrich R, Dolge C, Kluge M, Hofrichter M (2008) Pyridine as novel substrate for regioselective oxygenation with aromatic peroxygenase from Agrocybe aegerita. FEBS Lett, in press

  • Valentín L, Lu-Chau TA, López C, Feijoo G, Moreira MT, Lema JM (2007) Biodegradation of dibenzothiophene, fluoranthene, pyrene and chrysene in a soil slurry reactor by the white-rot fungus Bjerkandera sp. BOS55. Process Biochem 42:641–648

    Article  Google Scholar 

  • Van Hamme JD, Wong ET, Dettman H, Gray MR, Pickard MA (2003) Dibenzyl sulfide metabolism by white rot fungi. Appl Environ Microbiol 69:1320–1324

    Article  PubMed  PubMed Central  Google Scholar 

  • Vazquez-Duhalt R (1999) Cytochrome c as a biocatalyst. J Mol Catal Part B: Enzym 7:241–249

    Article  CAS  Google Scholar 

  • Vazquez-Duhalt R, Westlake DW, Fedorak PM (1994) Lignin peroxidase oxidation of aromatic compounds in systems containing organic solvents. Appl Environ Microbiol 60:459–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villaseñor F, Loera O, Campero A, Viniegra-González G (2004) Oxidation of dibenzothiophene by laccase or hydrogen peroxide and deep desulfurization of diesel fuel by the later. Fuel Process Tech 86:49–59

    Article  Google Scholar 

  • Vogel E, Klärner F (1968) 1,2-Naphthalene oxide. Angew Chem Internat Edit 7:374–375

    Article  CAS  Google Scholar 

  • Xu P, Yu B, Li FL, Cai XF, Ma CQ (2006) Microbial degradation of sulfur, nitrogen and oxygen heterocycles. Trends Microbiol 14:398–405

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support by the Spanish Ministry of Foreign Affairs and Cooperation (Agencia Española de Cooperación Internacional y Desarrollo, MAEC-AECID; grant for E.A.), the European Union (integrated project BIORENEW), the “Deutsches Bundesministerium für Bildung, Wissenschaft und Forschung” (BMBF; project 0313433D), and the “Deutsche Bundesstiftung Umwelt” (DBU; project 13225-32) is gratefully acknowledged. We thank U. Schneider and M. Brandt for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabet Aranda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aranda, E., Kinne, M., Kluge, M. et al. Conversion of dibenzothiophene by the mushrooms Agrocybe aegerita and Coprinellus radians and their extracellular peroxygenases. Appl Microbiol Biotechnol 82, 1057–1066 (2009). https://doi.org/10.1007/s00253-008-1778-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1778-6

Keywords

Navigation