Skip to main content

Advertisement

Log in

Novel peroxidases of Marasmius scorodonius degrade β-carotene

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Two extracellular enzymes (MsP1 and MsP2) capable of efficient β-carotene degradation were purified from culture supernatants of the basidiomycete Marasmius scorodonius (garlic mushroom). Under native conditions, the enzymes exhibited molecular masses of ~150 and ~120 kDa, respectively. SDS-PAGE and mass spectrometric data suggested a composition of two identical subunits for both enzymes. Biochemical characterisation of the purified proteins showed isoelectric points of 3.7 and 3.5, and the presence of heme groups in the active enzymes. Partial amino acid sequences were derived from N-terminal Edman degradation and from mass spectrometric ab initio sequencing of internal peptides. cDNAs of 1,604 to 1,923 bp, containing open reading frames (ORF) of 508 to 513 amino acids, respectively, were cloned from a cDNA library of M. scorodonius. These data suggest glycosylation degrees of ~23% for MsP1 and 8% for MsP2. Databank homology searches revealed sequence homologies of MsP1 and MsP2 to unusual peroxidases of the fungi Thanatephorus cucumeris (DyP) and Termitomyces albuminosus (TAP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ainsworth GC, Sparrow FK, Sussman AS (1973) A taxonomic review with keys: basidiomycetes and lower fungi.. In: Ainsworth GC, Sparrow FK, Sussman AS (eds) The fungi, an advanced treatise, vol. 4B. Academic, Orlando

    Google Scholar 

  • Ben Aziz A, Grossman S, Ascarelli I, Budowski P (1971) Carotene-bleaching activities of lipoxygenase and heme proteins as studied by a direct spectrophotometric method. Phytochemistry 10:1445–1452

    Article  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  Google Scholar 

  • Blodig W, Doyle WA, Smith AT, Winterhalter K, Choinowski TH, Piontek K (1998) Autocatalytic formation of hydroxy group at Cß of Trp 171 in lignin Peroxidase. Biochemistry 37:8832–8838

    Article  CAS  Google Scholar 

  • Choinowski TH, Blodig W, Winterhalter K, Piontek K (1999) The crystal structure of lignin peroxidase at 1,7 Å resolution reveals a hydroxyl group on the Cß of tryptophan 171: a novel radical site formed during redox cycle. J Mol Biol 286:809–827

    Article  CAS  Google Scholar 

  • Conesa A, van den Hondel CAMJJ, Punt PJ (2000) Studies on the production of fungal peroxidases in Aspergillus niger. Appl Environ Microbiol 66:3016–3023

    Article  CAS  Google Scholar 

  • Faraco V, Piscitelli A, Sannia G, Giardina P (2007) Identification of a new member of the dye-decolorizing peroxidase family from Pleurotus ostreatus. World J Microbiol Biotechnol 23:889–893

    Article  CAS  Google Scholar 

  • Henne KR, Kunze KL, Zheng Y-M, Christmas P, Soberman RJ, Rettie AE (2001) Covalent linkage of prosthetic heme to CYP4 family P450 enzymes. Biochemistry 40:12925–12931

    Article  CAS  Google Scholar 

  • Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  Google Scholar 

  • Hoegger PJ, Majcherczyk A, Dwivedi RC, Svobodová K, Kilaru S, Kües U (2007) Enzymes in wood degradation. In: Kües U (ed) Wood production, wood technology and biotechnological impacts, Universitätsverlag Göttingen, Göttingen (in press)

  • Johansson T, Nyman PO (1996) A cluster of genes encoding major isoenzymes of lignin peroxidase and manganese peroxidase from the white-rot fungus Trametes versicolor. Gene 170:31–38

    Article  CAS  Google Scholar 

  • Johjima T, Ohkuma M, Kudo T (2003) Isolation and cDNA cloning of novel hydrogen peroxidase-dependent phenol oxidase from the basidiomycete Termitomyces albuminosus. Appl Microbiol Biotechnol 61:220–225

    Article  CAS  Google Scholar 

  • Julenius K, Molgaard A, Gupta R, Brunak S (2005) Prediction, conservation analysis, and structural characterization of mammalian mucin-type-O-glycosylation sites. Glycobiology 15:153–164

    Article  CAS  Google Scholar 

  • Kang S-O, Shin K-S, Han Y-H, Youn H-D, Hah YC (1993) Purification and characterisation of an extracellular peroxidase from white-rot fungus Pleurotus ostreatus. Biochim Biophys Acta 1163:158–164

    Article  CAS  Google Scholar 

  • Kim SJ, Shoda M (1999) Purification and characterization of a novel peroxidase from Geotrichum candidum Dec 1 involved in decolorization of dyes. Appl Environ Microbiol 65:1029–1035

    Article  CAS  Google Scholar 

  • Kishi K, Kusters-van Someren M, Mayfield MB, Sun J, Loehr TM, Gold MH (1996) Characterization of manganese(II) binding site mutants of manganese peroxidase. Biochemistry 35:8986–8994

    Article  CAS  Google Scholar 

  • Kupfer DM, Drabenstot SD, Buchanan KL, Lai H, Zhu H, Dyer DW, Roe BA, Murphy JW (2004) Introns and splicing elements of five diverse fungi. Eukaryot Cell 3:1088–1100

    Article  Google Scholar 

  • Laemmli UK (1979) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  Google Scholar 

  • Lis H, Sharon N (1993) Protein glycosylation. Structural and functional aspects. Eur J Biochem 218:1–27

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Marasco EK, Vay K, Schmidt-Dannert C (2006) Identification of carotenoid cleavage dioxygenases from Nostoc spp. PCC 7120 with different cleavage activities. J Biol Chem 281:31583–31593

    Article  CAS  Google Scholar 

  • Martínez AT (2002) Molecular biology and structure-function of lignin-degrading peroxidases. Enzyme Microb Technol 30:425–444

    Article  Google Scholar 

  • Nie G, Reading NS, Aust SD (1999) Relative stability of recombinant versus native peroxidases from Phanerochaete chrysosporium. Arch Biochem Biophys 365:328–334

    Article  CAS  Google Scholar 

  • Rehm H (2002) Der Experimentator: Proteinbiochemie/Proteomics. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Rodríguez-Bustamante E, Maldonado-Robledo G, Ortiz MA, Diaz-Avalos C, Sánchez S (2005) Bioconversion of lutein using a microbial mixture—maximizing the production of tobacco aroma compounds by manipulation of culture medium. Appl Microbiol Biotechnol 68:174–182

    Article  Google Scholar 

  • Rodríguez-Bustamante E, Sánchez S (2007) Microbial production of C13-norisoprenoids and other aroma compounds via carotenoid cleavage. Crit Rev Microbiol 33:211–230

    Article  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana, Totowa, pp 365–386

    Google Scholar 

  • Ruíz Dueñas FJ, Martínez MJ, Martínez AT (1999) Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol Microbiol 31:223–235

    Article  Google Scholar 

  • Sato T, Hara S, Matsui T, Sazaki G, Sajio S, Ganbe T, Tanaka N, Sugano Y, Shoda M (2004) A unique dye-decolorizing peroxidase, DyP, from Thanatephorus cucumeris Dec1: heterologous expression, crystallization and preliminary X-ray analysis. Acta Crystallogr Sect D Biol Crystallogr 60:149–152

    Article  Google Scholar 

  • Schwartz SH, Cai Tan B, Gage DA, Zeevaart JAD, McCarty DR (1997) Science 276:1872–1874

    Article  CAS  Google Scholar 

  • Sugano Y, Nakano R, Sasaki K, Shoda M (2000) Efficient heterologous expression in Aspergillus oryzae of a unique dye-decolorizing peroxidase, Dyp, of Geotrichum candidum Dec 1. Appl Environ Microbiol 66:1754–1758

    Article  CAS  Google Scholar 

  • Sugano Y, Sasaki K, Shoda M (1999) cDNA cloning and genetic analysis of a novel decolorizing enzyme, peroxidase gene dyp from Geotrichum candidum Dec 1. J Biosci Bioeng 87:411–417

    Article  CAS  Google Scholar 

  • Sugano Y, Ishii Y, Shoda M (2004) Role of H164 in a unique dye -decolorizing heme peroxidase DyP. Biochem Biophys Res Commun 322:126–132

    Article  CAS  Google Scholar 

  • Sundaramoorthy M, Kishi K, Gold MH, Poulos TL (1997) Crystal structures of substrate binding site mutants of manganese peroxidase. J Biol Chem 272:17574–7580

    Article  CAS  Google Scholar 

  • Thomas PE, Ryan D, Levin W (1976) An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Anal Biochem 75:168–176

    Article  CAS  Google Scholar 

  • Wache Y, Bosser-DeRatuld A, Lhuguenot J-C, Belin J-M (2003) Effect of cis/trans isomerism of β-carotene on the ratios of volatile compounds produced during oxidative degradation. J Agric Food Chem 51:1984–1987

    Article  CAS  Google Scholar 

  • Welinder KG (1992) Superfamily of plant, fungal, and bacterial peroxidases. Curr Opin Struct Biol 2:388–393

    Article  CAS  Google Scholar 

  • Whitwam RE, Brown KR, Musick M, Natan MJ, Tien M (1997) Mutagenesis of Mn2 + -binding site of manganese peroxidase affects oxidation of Mn2 + by both compound I and compound II. Biochemistry 36:9766–9773

    Article  CAS  Google Scholar 

  • Winterhalter P, Rouseff RL (2002) Carotenoid-derived aroma compounds: an introduction. In: Winterhalter P, Rouseff RL (eds) Carotenoid-derived aroma compounds. American Chemical Society, Washington, p 1

    Google Scholar 

  • Zorn H, Langhoff S, Scheibner M, Nimtz M, Berger RG (2003a) A peroxidase of L. irina cleaves β,β-carotene to flavour compounds. Biol Chem 384:1049–1056

    CAS  PubMed  Google Scholar 

  • Zorn H, Langhoff S, Scheibner M, Berger RG (2003b) Cleavage of β,β-carotene to flavor compounds by fungi. Appl Microbiol Biotechnol 62:331–336

    Article  CAS  Google Scholar 

  • Zorn H, Peters T, Nimtz M, Berger RG (2005) The secretome of Pleurotus sapidus. Proteomics 5:4832–4838

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Support of the work by the “Deutsche Forschungsgemeinschaft” (ZO 122/1–2) is gratefully acknowledged. The authors thank O. Scheibner (HKI Jena, Germany) for the MALDI–TOF analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Zorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheibner, M., Hülsdau, B., Zelena, K. et al. Novel peroxidases of Marasmius scorodonius degrade β-carotene. Appl Microbiol Biotechnol 77, 1241–1250 (2008). https://doi.org/10.1007/s00253-007-1261-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1261-9

Keywords

Navigation