Dunn-Coleman N, Wang H. Agrobacterium T-DNA: a silver bullet for filamentous fungi? Nat Biotechnol. 1998;16:817–8.
CAS
PubMed
Article
Google Scholar
Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJJ. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 1995;14:3206–14.
CAS
PubMed
PubMed Central
Google Scholar
Piers KL, Heath JD, Liang X, Stephens KM, Nester EW. Agrobacterium tumefaciens-mediated transformation of yeast. Proc Natl Acad Sci USA. 1996;93:1613–8.
CAS
PubMed
PubMed Central
Article
Google Scholar
de Groot MJA, Bundock P, Hooykaas PJJ, Beijersbergen AGM. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol. 1998;16:839–42.
PubMed
Article
Google Scholar
Michielse CB, Hooykaas PJJ, van den Hondel CAMJJ, Ram AFJ. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet. 2005;48:1–17.
CAS
PubMed
Article
Google Scholar
Frandsen RJN. A guide to binary vectors and strategies for targeted genome modification in fungi using Agrobacterium tumefaciens-mediated transformation. J Microbiol Methods. 2011;87:247–62.
CAS
PubMed
Article
Google Scholar
Bourras S, Rouxel T, Meyer M. Agrobacterium tumefaciens gene transfer: how a plant pathogen hacks the nuclei of plant and nonplant organisms. Phytopathology. 2015;105:1288–301.
CAS
PubMed
Article
Google Scholar
Lacroix B, Citovsky V. The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation. Int J Dev Biol. 2013;57:467–81.
CAS
PubMed
Article
Google Scholar
Kyndt T, Quispe D, Zhai H, Jarret R, Ghislain M, Liu Q, Gheysen G, Kreuze JF. The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. Proc Natl Acad Sci USA. 2015;112:5844–9.
CAS
PubMed
PubMed Central
Article
Google Scholar
Young JM, Kuykendall LD, Martínez-Romero E, Kerr A, Sawada HA, et al. A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol. 2001;51:89–103.
CAS
PubMed
Article
Google Scholar
Lacroix B, Citovsky V. Transfer of DNA from bacteria to eukaryotes. mBio. 2016;7:e00863-00816.
Article
Google Scholar
Knight CJ, Bailey AM, Foster GD. Investigating Agrobacterium-mediated transformation of Verticillium albo-atrum on plant surfaces. PLoS ONE. 2010;5:e13684.
PubMed
PubMed Central
Article
CAS
Google Scholar
Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K, Arima T, Akita O, Kashiwagi Y, et al. Genome sequencing and analysis of Aspergillus oryzae. Nature. 2005;438:1157–61.
PubMed
Article
Google Scholar
Kilaru S, Steinberg G. Yeast recombination-based cloning as an efficient way of constructing vectors for Zymoseptoria tritici. Fungal Genet Biol. 2015;79:76–83.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lu J, Cao H, Zhang L, Huang P, Lin F. Systematic analysis of Zn2Cys6 transcription factors required for development and pathogenicity by high-throughput gene knockout in the rice blast fungus. PLoS Pathog. 2014;10:e1004432.
PubMed
PubMed Central
Article
CAS
Google Scholar
Ianiri G, Boyce KJ, Idnurm A. Isolation of conditional mutations in genes essential for viability of Cryptococcus neoformans. Curr Genet. 2017;63:519–30.
CAS
PubMed
Article
Google Scholar
Sidhu YS, Chaudhari YK, Usher J, Cairns TC, Csukai M, Haynes K. A suite of Gateway® compatible ternary expression vectors for functional analysis in Zymoseptoria tritici. Fungal Genet Biol. 2015;79:180–5.
CAS
PubMed
Article
Google Scholar
Engler C, Youles M, Gruetzner R, Ehnert T-M, Werner S, Jones JDG, Patron NJ, Marillonnet S. A Golden Gate modular cloning toolbox for plants. ACS Synth Biol. 2014;3:839–43.
CAS
PubMed
Article
Google Scholar
Takken FLW, van Wijk R, Michielse CB, Houterman PM, Ram AFJ, Cornelissen BJC. A one-step method to convert vectors into binary vectors suited for Agrobacterium-mediated transformation. Curr Genet. 2004;45:242–8.
CAS
PubMed
Article
Google Scholar
Ali S, Bakkeren G. Introduction of large DNA inserts into the barley pathogenic fungus, Ustilago hordei, via recombined binary BAC vectors and Agrobacterium-mediated transformation. Curr Genet. 2011;57:63–73.
CAS
PubMed
Article
Google Scholar
van den Berg MA, Maruthachalam K. Genetic transformation systems in fungi, vol. I & II. Switzerland: Springer; 2015.
Google Scholar
Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983;153:163–8.
CAS
PubMed
PubMed Central
Google Scholar
Kunik T, Tzfira T, Kapulnik Y, Gafni Y, Dingwall C, Citovsky V. Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci USA. 2001;98:1871–6.
CAS
PubMed
PubMed Central
Article
Google Scholar
Vijn I, Govers F. Agrobacterium tumefaciens mediated transformation of the oomycete plant pathogen Phytophthora infestans. Mol Plant Pathol. 2003;4:459–68.
CAS
PubMed
Article
Google Scholar
Khrunyk Y, Münch K, Schipper K, Lupas AN, Kahmann R. The use of FLP-mediated recombination for the functional analysis of an effector gene family in the biotrophic smut fungus Ustilago maydis. New Phytol. 2010;187:957–68.
CAS
PubMed
Article
Google Scholar
Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F, et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 2014;42:D699–704.
CAS
PubMed
Article
Google Scholar
Gamboa-Meléndez H, Judelson HS. Development of a bipartite ecdysone-responsive gene switch for the oomycete Phytophthora infestans and its use to manipulate transcription during axenic culture and plant infection. Mol Plant Pathol. 2015;16:83–91.
PubMed
Article
CAS
Google Scholar
Arazoe T, Miyoshi K, Yamato T, Ogawa T, Ohsato S, Arie T, Kuwata S. Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol Bioeng. 2015;112:2543–9.
CAS
PubMed
Article
Google Scholar
Cairns TC, Studholme DJ, Talbot NJ, Haynes K. New and improved techniques for the study of pathogenic fungi. Trends Microbiol. 2016;24:35–50.
CAS
PubMed
Article
Google Scholar
Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, et al. The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 2012;13:414–30.
PubMed
Article
Google Scholar
Klaubauf S, Tharreau D, Fournier E, Groenewald JZ, Crous PW, de Vries RP, Lebrun M-H. Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae). Stud Mycol. 2014;79:85–120.
CAS
PubMed
PubMed Central
Article
Google Scholar
Zeigler RS, Leong SA, Teng PS. Rice blast disease. Wallingford: C.A.B. International, International Rice Research Institute; 1994.
Google Scholar
Talbot NJ. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol. 2003;57:177–202.
CAS
PubMed
Article
Google Scholar
Martin-Urdiroz M, Oses-Ruiz M, Ryder LS, Talbot NJ. Investigating the biology of plant infection by the rice blast fungus Magnaporthe oryzae. Fungal Genet Biol. 2016;90:61–8.
CAS
PubMed
Article
Google Scholar
Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu J-R, Pan H, et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature. 2005;434:980–6.
CAS
PubMed
Article
Google Scholar
Sweigard JA, Carroll AM, Farrall L, Chumley FG, Valent B. Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol Plant Microbe Interact. 1998;11:404–12.
CAS
PubMed
Article
Google Scholar
Hamer L, Adachi K, Montenegro-Chamorro MV, Tanzer MM, Mahanty SK, Lo C, Tarpey RW, Skalchunes AR, Heiniger RW, Frank SA, et al. Gene discovery and gene function assignment in filamentous fungi. Proc Natl Acad Sci USA. 2001;98:5110–5.
CAS
PubMed
PubMed Central
Article
Google Scholar
Jeon J, Park S-Y, Chi M-H, Choi J, Park J, Rho H-S, Kim S, Goh J, Yoo S, Choi J, et al. Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nat Genet. 2007;39:561–5.
CAS
PubMed
Article
Google Scholar
Betts MF, Tucker SL, Galadima N, Meng Y, Patel G, Li L, Donofrio N, Floyd A, Nolin S, Brown D, et al. Development of a high throughput transformation system for insertional mutagenesis in Magnaporthe oryzae. Fungal Genet Biol. 2007;44:1035–49.
CAS
PubMed
Article
Google Scholar
Choi J, Park J, Jeon J, Chi M-H, Goh J, Yoo S-Y, Park J, Jung K, Kim H, Park S-Y, et al. Genome-wide analysis of T-DNA integration into the chromosomes of Magnaporthe oryzae. Mol Microbiol. 2007;66:371–82.
CAS
PubMed
PubMed Central
Article
Google Scholar
Li G, Zhou Z, Liu G, Zheng F, He C. Characterization of T-DNA insertion patterns in the genome of rice blast fungus Magnaporthe oryzae. Curr Genet. 2007;51:233–43.
CAS
PubMed
Article
Google Scholar
Meng Y, Patel G, Heist M, Betts MF, Tucker SL, Galadima N, Donofrio NM, Brown D, Mitchell TK, Li L, et al. A systematic analysis of T-DNA insertion events in Magnaporthe oryzae. Fungal Genet Biol. 2007;44:1050–64.
CAS
PubMed
Article
Google Scholar
Foster AJ, Jenkinson JM, Talbot NJ. Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. EMBO J. 2003;22:225–35.
CAS
PubMed
PubMed Central
Article
Google Scholar
Chi MH, Park SY, Kim S, Lee YH. A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host. PLoS Pathog. 2009;5:e1000401.
PubMed
PubMed Central
Article
CAS
Google Scholar
Fones H, Gurr S. The impact of Septoria tritici Blotch disease on wheat: An EU perspective. Fungal Genet Biol. 2015;79:3–7.
PubMed
PubMed Central
Article
Google Scholar
Torriani SFF, Melichar JPE, Mills C, Pain N, Sierotzki H, Courbot M. Zymoseptoria tritici: a major threat to wheat production, integrated approaches to control. Fungal Genet Biol. 2015;79:8–12.
PubMed
Article
Google Scholar
Payne AC, Grosjean-Cournoyer M-C, Hollomon DW. Transformation of the phytopathogen Mycosphaerella graminicola to carbendazim and hygromycin B resistance. Curr Genet. 1998;34:100–4.
CAS
PubMed
Article
Google Scholar
Szewczyk E, Nayak T, Oakley CE, Edgerton H, Xiong Y, Taheri-Talesh N, Osmani SA, Oakley BR. Fusion PCR and gene targeting in Aspergillus nidulans. Nat Protoc. 2006;1:3111–20.
CAS
PubMed
Article
Google Scholar
Adachi K, Nelson GH, Peoples KA, Frank SA, Montenegro-Chamorro MV, DeZwaan TM, Ramamurthy L, Shuster JR, Hamer L, Tanzer MM. Efficient gene identification and targeted gene disruption in the wheat blotch fungus Mycosphaerella graminicola using TAGKO. Curr Genet. 2002;42:123–7.
CAS
PubMed
Article
Google Scholar
Skinner W, Bailey A, Renwick A, Keon J, Gurr S, Hargreaves J. A single amino-acid substitution in the iron-sulphur protein subunit of succinate dehydrogenase determines resistance to carboxin in Mycosphaerella graminicola. Curr Genet. 1998;34:393–8.
CAS
PubMed
Article
Google Scholar
Talbot NJ. Taming a wild beast: developing molecular tools and new methods to understand the biology of Zymoseptoria tritici. Fungal Genet Biol. 2015;79:193–5.
CAS
PubMed
PubMed Central
Article
Google Scholar
Motteram J, Lovegrove A, Pirie E, Marsh J, Devonshire J, van de Meene A, Hammond-Kosack K, Rudd JJ. Aberrant protein N-glycosylation impacts upon infection-related growth transitions of the haploid plant-pathogenic fungus Mycosphaerella graminicola. Mol Microbiol. 2011;81:415–33.
CAS
PubMed
Article
Google Scholar
Cousin A, Mehrabi R, Guilleroux M, Dufresne M, van der Lee T, Waalwijk C, Langin T, Kema GHJ. The MAP kinase-encoding gene MgFus3 of the non-appressorium phytopathogen Mycosphaerella graminicola is required for penetration and in vitro pycnidia formation. Mol Plant Pathol. 2006;7:269–78.
CAS
PubMed
Article
Google Scholar
Mehrabi R, van der Lee T, Waalwijk C, Kema GHJ. MgSlt2, a cellular integrity MAP kinase gene of the fungal wheat pathogen Mycosphaerella graminicola, is dispensable for penetration but essential for invasive growth. Mol Plant Microbe Interact. 2006;19:389–98.
CAS
PubMed
Article
Google Scholar
Michielse CB, Rep M. Pathogen profile update: Fusarium oxysporum. Mol Plant Pathol. 2009;10:311–24.
CAS
PubMed
Article
Google Scholar
O’Donnell K, Rooney AP, Proctor RH, Brown DW, McCormick SP, Ward TJ, Frandsen RJN, Lysøe E, Rehner SA, Aoki T, et al. Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Genet Biol. 2013;52:20–31.
PubMed
Article
CAS
Google Scholar
Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J, Di Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B, et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature. 2010;464:367–73.
CAS
PubMed
PubMed Central
Article
Google Scholar
Ortoneda M, Guarro J, Madrid MP, Caracuel Z, Roncero MIG, Mayayo E, Di Pietro A. Fusarium oxysporum as a multihost model for the genetic dissection of fungal virulence in plants and mammals. Infect Immun. 2004;72:1760–6.
CAS
PubMed
PubMed Central
Article
Google Scholar
Kistler HC, Benny UK. Genetic transformation of the fungal plant wilt pathogen, Fusarium oxysporum. Curr Genet. 1988;13:145–9.
CAS
Article
Google Scholar
Diolez A, Langin T, Gerlinger C, Brygoo Y, Daboussi M-J. The nia gene of Fusarium oxysporum: isolation, sequence and development of a homologous transformation system. Gene. 1993;131:61–7.
CAS
PubMed
Article
Google Scholar
Proctor RH, Hohn TM, McCormick SP. Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant-Microbe Interact. 1995;8:593–601.
CAS
PubMed
Article
Google Scholar
Mullins ED, Kang S. Transformation: a tool for studying fungal pathogens of plants. Cell Mol Life Sci. 2001;58:2043–52.
CAS
PubMed
Article
Google Scholar
Covert SF, Kapoor P, Lee M-H, Briley A, Nairn CJ. Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum. Mycol Res. 2001;105:259–64.
CAS
Article
Google Scholar
Mullins ED, Chen X, Romaine P, Raina R, Geiser DM, Kang S. Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology. 2001;91:173–80.
CAS
PubMed
Article
Google Scholar
Malz S, Grell MN, Thrane C, Maier FJ, Rosager P, Felk A, Albertsen KS, Salomon S, Bohn L, Schäfer W, et al. Identification of a gene cluster responsible for the biosynthesis of aurofusarin in the Fusarium graminearum species complex. Fungal Genet Biol. 2005;42:420–33.
CAS
PubMed
Article
Google Scholar
Visentin I, Montis V, Döll K, Alabouvette C, Tamietti G, Karlovsky P, Cardinale F. Transcription of genes in the biosynthetic pathway for fumonisin mycotoxins is epigenetically and differentially regulated in the fungal maize pathogen Fusarium verticillioides. Eukaryot Cell. 2012;11:252–9.
CAS
PubMed
PubMed Central
Article
Google Scholar
Pudake RN, Swaminathan S, Sahu BB, Leandro LF, Bhattacharyya MK. Investigation of the Fusarium virguliforme fvtox1 mutants revealed that the FvTox1 toxin is involved in foliar sudden death syndrome development in soybean. Curr Genet. 2013;59:107–17.
CAS
PubMed
Article
Google Scholar
Sørensen LQ, Lysøe E, Larsen JE, Khorsand-Jamal P, Nielsen KF, Frandsen RJN. Genetic transformation of Fusarium avenaceum by Agrobacterium tumefaciens mediated transformation and the development of a USER-Brick vector construction system. BMC Mol Biol. 2014;15:15.
PubMed
PubMed Central
Article
CAS
Google Scholar
Frandsen RJN, Frandsen M, Giese H. Targeted gene replacement in fungal pathogens via Agrobacterium tumefaciens-mediated transformation. Methods Mol Biol. 2012;835:17–45.
CAS
PubMed
Article
Google Scholar
Urban M, King R, Hassani-Pak K, Hammond-Kosack KE. Whole-genome analysis of Fusarium graminearum insertional mutants identifies virulence associated genes and unmasks untagged chromosomal deletions. BMC Genom. 2015;16:261.
Article
CAS
Google Scholar
Namiki F, Matsunaga M, Okuda M, Inoue I, Nishi K, Fujita Y, Tsuge T. Mutation of an arginine biosynthesis gene causes reduced pathogenicity in Fusarium oxysporum f. sp. melonis. Mol Plant-Microbe Interact. 2001;14:580–4.
CAS
PubMed
Article
Google Scholar
Morita K, Kimura S, Saito M, Shinoyama H, Usami T, Amemiya Y, Shishido M. Generation and characterization of reduced virulence Fusarium oxysporum f. sp. lycopersici mutants through plasmid-vector insertion. Mycopathologia. 2005;160:67–73.
CAS
PubMed
Article
Google Scholar
López-Berges MS, Di PA, Daboussi M-J, Wahab HA, Vasnier C, Roncero MIG, Dufresne M, Hera C. Identification of virulence genes in Fusarium oxysporum f. sp. lycopersici by large-scale transposon tagging. Mol. Plant Pathol. 2009;10:95–107.
Article
Google Scholar
Dufresne M, van der Lee T, Ben M’Barek S, Xu X, Zhang X, Liu T, Waalwijk C, Zhang W, Kema GHJ, Daboussi M-J. Transposon-tagging identifies novel pathogenicity genes in Fusarium graminearum. Fungal Genet Biol. 2008;45:1552–61.
CAS
PubMed
Article
Google Scholar
Michielse CB, van Wijk R, Reijnen L, Cornelissen BJC, Rep M. Insight into the molecular requirements for pathogenicity of Fusarium oxysporum f. sp. lycopersici through large-scale insertional mutagenesis. Genome Biol. 2009;10:R4.
PubMed
PubMed Central
Article
CAS
Google Scholar
Li M-H, Xie X-L, Lin X-F, Shi J-X, Ding Z-J, Ling J-F, Xi P-G, Zhou J-N, Leng Y, Zhong S, et al. Functional characterization of the gene FoOCH1 encoding a putative α-1,6-mannosyltransferase in Fusarium oxysporum f. sp. cubense. Fungal Genet Biol. 2014;65:1–13.
CAS
PubMed
Article
Google Scholar
Münch S, Lingner U, Floss DS, Ludwig N, Sauer N, Deising HB. The hemibiotrophic lifestyle of Colletotrichum species. J Plant Physiol. 2008;165:41–51.
PubMed
Article
CAS
Google Scholar
De Silva DD, Crous PW, Ades PK, Hyde KD, Taylor PWJ. Life styles of Colletotrichum species and implications for plant biosecurity. Fungal Biol Rev. 2017;31:155–68.
Article
Google Scholar
Amnuaykanjanasin A, Epstein L. A class V chitin synthase gene, chsA is essential for conidial and hyphal wall strength in the fungus Colletotrichum graminicola (Glomerella graminicola). Fungal Genet Biol. 2003;38:272–85.
CAS
PubMed
Article
Google Scholar
Dufresne M, Bailey JA, Dron M, Langin T. clk1, a serine/threonine protein kinase-encoding gene, is involved in pathogenicity of Colletotrichum lindemuthianum on common bean. Mol Plant-Microbe Interact. 1998;11:99–108.
CAS
PubMed
Article
Google Scholar
Gu Q, Chen M, Huang J, Wei YD, Hsiang T, Zheng L. Multifaceted roles of the Ras guanine-nucleotide exchange factor ChRgf in development, pathogenesis, and stress responses of Colletotrichum higginsianum. Phytopathology. 2017;107:433–43.
PubMed
Article
Google Scholar
Korn M, Schmidpeter J, Dahl M, Müller S, Voll LM, Koch C. A genetic screen for pathogenicity genes in the hemibiotrophic fungus Colletotrichum higginsianum identifies the plasma membrane proton pump Pma2 required for host penetration. PLoS ONE. 2015;10:e0125960.
PubMed
PubMed Central
Article
CAS
Google Scholar
Liu L, Zhao D, Zheng L, Hsiang T, Wei Y, Fu Y, Huang J. Identification of virulence genes in the crucifer anthracnose fungus Colletotrichum higginsianum by insertional mutagenesis. Microb Pathog. 2013;64:6–17.
CAS
PubMed
Article
Google Scholar
Huser A, Takahara H, Schmalenbach W, O’Connell R. Discovery of pathogenicity genes in the crucifer anthracnose fungus Colletotrichum higginsianum, using random insertional mutagenesis. Mol Plant-Microbe Interact. 2009;22:143–56.
CAS
PubMed
Article
Google Scholar
Wu J, Ji Z, Wang N, Chi F, Xu C, Zhou Z, Zhang J. Identification of conidiogenesis-associated genes in Colletotrichum gloeosporioides by Agrobacterium tumefaciens-mediated transformation. Curr Microbiol. 2016;73:802–10.
CAS
PubMed
Article
Google Scholar
Cai Z, Li G, Lin C, Shi T, Zhai L, Chen Y, Huang G. Identifying pathogenicity genes in the rubber tree anthracnose fungus Colletotrichum gloeosporioides through random insertional mutagenesis. Microbiol Res. 2013;168:340–50.
CAS
PubMed
Article
Google Scholar
Schmidpeter J, Dahl M, Hofmann J, Koch C. ChMob2 binds to ChCbk1 and promotes virulence and conidiation of the fungal pathogen Colletotrichum higginsianum. BMC Microbiol. 2017;17:22.
PubMed
PubMed Central
Article
Google Scholar
Kodama S, Ishizuka J, Miyashita I, Ishii T, Nishiuchi T, Miyoshi H, Kubo Y. The morphogenesis-related NDR kinase pathway of Colletotrichum orbiculare is required for translating plant surface signals into infection-related morphogenesis and pathogenesis. PLoS Pathog. 2017;13:e1006189.
PubMed
PubMed Central
Article
CAS
Google Scholar
Walton FJ, Heitman J, Idnurm A. Conserved elements of the RAM signaling pathway establish cell polarity in the basidiomycete Cryptococcus neoformans in a divergent fashion from other fungi. Mol Biol Cell. 2006;17:3768–80.
CAS
PubMed
PubMed Central
Article
Google Scholar
West JS, Kharbanda PD, Barbetti MJ, Fitt BDL. Epidemiology and management of Leptosphaeria maculans (phoma stem canker) on oilseed rape in Australia, Canada and Europe. Plant Pathol. 2001;50:10–27.
Article
Google Scholar
Farman ML, Oliver RP. The transformation of protoplasts of Leptosphaeria maculans to hygromycin B resistance. Curr Genet. 1988;13:327–30.
CAS
Article
Google Scholar
Idnurm A, Howlett BJ. Analysis of loss of pathogenicity mutants reveals that repeat-induced point mutations can occur in the Dothideomycete Leptosphaeria maculans. Fungal Genet Biol. 2003;39:31–7.
CAS
PubMed
Article
Google Scholar
Idnurm A, Taylor JL, Pedras MSC, Howlett BJ. Small scale functional genomics of the blackleg fungus, Leptosphaeria maculans: analysis of a 38 kb region. Australas Plant Pathol. 2003;32:511–9.
CAS
Article
Google Scholar
Gardiner DM, Howlett BJ. Negative selection using thymidine kinase increases the efficiency of recovery of transformants with targeted genes in the filamentous fungus Leptosphaeria maculans. Curr Genet. 2004;45:249–55.
CAS
PubMed
Article
Google Scholar
Elliott CE, Howlett BJ. Overexpression of a 3-ketoacyl-CoA thiolase in Leptosphaeria maculans causes reduced pathogenicity on Brassica napus. Mol Plant Microbe Interact. 2006;19:588–96.
CAS
PubMed
Article
Google Scholar
Van de Wouw AP, Pettolino FA, Howlett BJ, Elliott CE. Mutations to LmIFRD affect cell wall integrity, development and pathogenicity of the ascomycete Leptosphaeria maculans. Fungal Genet Biol. 2009;46:695–706.
PubMed
Article
CAS
Google Scholar
Elliott CE, Fox EM, Jarvis RS, Howlett BJ. The cross-pathway control system regulates production of the secondary metabolite toxin, sirodesmin PL, in the ascomycete, Leptosphaeria maculans. BMC Microbiol. 2011;11:169.
CAS
PubMed
PubMed Central
Article
Google Scholar
Blaise F, Rémy E, Meyer M, Zhou L, Narcy J-P, Roux J, Balesdent M-H, Rouxel T. A critical assessment of Agrobacterium tumefaciens-mediated transformation as a tool for pathogenicity gene discovery in the phytopathogenic fungus Leptosphaeria maculans. Fungal Genet Biol. 2007;44:123–38.
CAS
PubMed
Article
Google Scholar
Bourras S, Meyer M, Grandaubert J, Lapalu N, Fudal I, Linglin J, Ollivier B, Blaise F, Balesdent M-H, Rouxel T. Incidence of genome structure, DNA asymmetry, and cell physiology on T-DNA integration in chromosomes of the phytopathogenic fungus Leptosphaeria maculans. G3. 2012;2:891–904.
CAS
PubMed
PubMed Central
Article
Google Scholar
Chambers K, Lowe RGT, Howlett BJ, Zander M, Batley J, Van de Wouw AP, Elliott CE. Next-generation genome sequencing can be used to rapidly characterise sequences flanking T-DNA insertions in random insertional mutants of Leptosphaeria maculans. Fungal Biol Biotechnol. 2014;1:10.
Article
PubMed Central
Google Scholar
Lowe RGT, Cassin A, Grandaubert J, Clark BL, Van de Wouw AP, Rouxel T, Howlett BJ. Genomes and transcriptomes of partners in plant–fungal-interactions between canola (Brassica napus) and two Leptosphaeria species. PLoS ONE. 2014;9:e103098.
PubMed
PubMed Central
Article
CAS
Google Scholar
Plissonneau C, Daverdin G, Ollivier B, Blaise F, Degrave A, Fudal I, Rouxel T, Balesdent M-H. A game of hide and seek between avirulence genes AvrLm4-7 and AvrLm3 in Leptosphaeria maculans. New Phytol. 2016;209:1613–24.
CAS
PubMed
Article
Google Scholar
Assi MA, Sandid MS, Baddour LM, Roberts GD, Walker RC. Systemic histoplasmosis: a 15-year retrospective institutional review of 111 patients. Medicine (Baltimore). 2007;86:162–9.
Article
Google Scholar
Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci Transl Med. 2012;4:165rv113.
Article
CAS
Google Scholar
Magrini V, Goldman WE. Molecular mycology: a genetic toolbox for Histoplasma capsulatum. Trends Microbiol. 2001;9:541–6.
CAS
PubMed
Article
Google Scholar
Woods JP, Heinecke EL, Goldman WE. Electrotransformation and expression of bacterial genes encoding hygromycin phosphotransferase and β-galactosidase in the pathogenic fungus Histoplasma capsulatum. Infect Immun. 1998;66:1697–707.
CAS
PubMed
PubMed Central
Google Scholar
Sullivan TD, Rooney PJ, Klein BS. Agrobacterium tumefaciens integrates transfer DNA into single chromosomal sites of dimorphic fungi and yields homokaryotic progeny from multinucleate yeast. Eukaryot Cell. 2002;1:895–905.
CAS
PubMed
PubMed Central
Article
Google Scholar
Sil A, Andrianopoulos A. Thermally dimorphic human fungal pathogens–polyphyletic pathogens with a convergent pathogenicity trait. Cold Spring Harb Perspect Med. 2015;5:a019794.
PubMed Central
Article
Google Scholar
Kemski MM, Stevens B, Rappleye CA. Spectrum of T-DNA integrations for insertional mutagenesis of Histoplasma capsulatum. Fungal Biol. 2013;117:41–51.
CAS
PubMed
Article
Google Scholar
Marion CL, Rappleye CA, Engle JT, Goldman WE. An α-(1,4)-amylase is essential for α-(1,3)-glucan production and virulence in Histoplasma capsulatum. Mol Microbiol. 2006;62:970–83.
CAS
PubMed
Article
Google Scholar
Nguyen VQ, Sil A. Temperature-induced switch to the pathogenic yeast form of Histoplasma capsulatum requires Ryp1, a conserved transcriptional regulator. Proc Natl Acad Sci USA. 2008;105:4880–5.
CAS
PubMed
PubMed Central
Article
Google Scholar
Webster RH, Sil A. Conserved factors Ryp2 and Ryp3 control cell morphology and infectious spore formation in the fungal pathogen Histoplasma capsulatum. Proc Natl Acad Sci USA. 2008;105:14573–8.
CAS
PubMed
PubMed Central
Article
Google Scholar
Beyhan S, Gutierrez M, Voorhies M, Sil A. A temperature-responsive network links cell shape and virulence traits in a primary fungal pathogen. PLoS Biol. 2013;11:e1001614.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hilty J, Smulian AG, Newman SL. The Histoplasma capsulatum vacuolar ATPase is required for iron homeostasis, intracellular replication in macrophages and virulence in a murine model of histoplasmosis. Mol Microbiol. 2008;70:127–39.
CAS
PubMed
PubMed Central
Article
Google Scholar
Edwards JA, Zemska O, Rappleye CA. Discovery of a role for Hsp82 in Histoplasma virulence through a quantitative screen for macrophage lethality. Infect Immun. 2011;79:3348–57.
CAS
PubMed
PubMed Central
Article
Google Scholar
Sebghati TS, Engle JT, Goldman WE. Intracellular parasitism by Histoplasma capsulatum: fungal virulence and calcium dependence. Science. 2000;290:1368–72.
CAS
PubMed
Article
Google Scholar
Youseff BH, Dougherty JA, Rappleye CA. Reverse genetics through random mutagenesis in Histoplasma capsulatum. BMC Microbiol. 2009;9:236.
PubMed
PubMed Central
Article
CAS
Google Scholar
Fang W, Pei Y, Bidochka MJ. Transformation of Metarhizium anisopliae mediated by Agrobacterium tumefaciens. Can J Microbiol. 2006;52:623–6.
CAS
PubMed
Article
Google Scholar
Leclerque A, Wan H, Abschütz A, Chen S, Mitina GV, Zimmermann G, Schairer HU. Agrobacterium-mediated insertional mutagenesis (AIM) of the entomopathogenic fungus Beauveria bassiana. Curr Genet. 2004;45:111–9.
CAS
PubMed
Article
Google Scholar
Zhang Y-J, Zhao J-J, Xie M, Peng D-L. Agrobacterium tumefaciens-mediated transformation in the entomopathogenic fungus Lecanicillium lecanii and development of benzimidazole fungicide resistant strains. J Microbiol Methods. 2014;105:168–73.
CAS
PubMed
Article
Google Scholar
Fan Y, Zhang S, Kruer N, Keyhani NO. High-throughput insertion mutagenesis and functional screening in the entomopathogenic fungus Beauveria bassiana. J Invertebr Pathol. 2011;106:274–9.
CAS
PubMed
Article
Google Scholar
Moon Y-S, Donzelli BGG, Krasnoff SB, McLane H, Griggs MH, Cooke P, Vandenberg JD, Gibson DM, Churchill ACL. Agrobacterium-mediated disruption of a nonribosomal peptide synthetase gene in the invertebrate pathogen Metarhizium anisopliae reveals a peptide spore factor. Appl Environ Microbiol. 2008;74:4366–80.
CAS
PubMed
PubMed Central
Article
Google Scholar
Xu C, Zhang X, Qian Y, Chen X, Liu R, Zeng G, Zhao H, Fang W. A high-throughput gene disruption methodology for the entomopathogenic fungus Metarhizium robertsii. PLoS ONE. 2014;9:e107657.
PubMed
PubMed Central
Article
CAS
Google Scholar
Li M, Gong X, Zheng J, Jiang D, Fu Y, Hou M. Transformation of Coniothyrium minitans, a parasite of Sclerotinia sclerotiorum, with Agrobacterium tumefaciens. FEMS Microbiol Lett. 2005;243:323–9.
CAS
PubMed
Article
Google Scholar
Amey RC, Mills PR, Bailey A, Foster GD. Investigating the role of a Verticillium fungicola β-1,6-glucanase during infection of Agaricus bisporus using targeted gene disruption. Fungal Genet Biol. 2003;39:264–75.
CAS
PubMed
Article
Google Scholar
Collopy PD, Amey RC, Sergeant MJ, Challen MP, Mills PR, Foster GD, Bailey AM. The pmk1-like mitogen-activated protein kinase from Lecanicillium (Verticillium) fungicola is not required for virulence on Agaricus bisporus. Microbiology. 2010;156:1439–47.
CAS
PubMed
Article
Google Scholar
Chen X, Stone M, Schlagnhaufer C, Romaine CP. A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl Environ Microbiol. 2000;66:4510–3.
CAS
PubMed
PubMed Central
Article
Google Scholar
Baumgartner K, Fujiyoshi P, Foster GD, Bailey AM. Agrobacterium tumefaciens-mediated transformation for investigation of somatic recombination in the fungal pathogen Armillaria mellea. Appl Environ Microbiol. 2010;76:7990–6.
CAS
PubMed
PubMed Central
Article
Google Scholar
Ford KL, Baumgartner K, Henricot B, Bailey AM, Foster GD. A reliable in vitro fruiting system for Armillaria mellea for evaluation of Agrobacterium tumefaciens transformation vectors. Fungal Biol. 2015;119:859–69.
CAS
PubMed
Article
Google Scholar
Burns C, Gregory KE, Kirby M, Cheung MK, Riquelme M, Elliott TJ, Challen MP, Bailey A, Foster GD. Efficient GFP expression in the mushrooms Agaricus bisporus and Coprinus cinereus requires introns. Fungal Genet Biol. 2005;42:191–9.
CAS
PubMed
Article
Google Scholar
Kilaru S, Collins CM, Hartley AJ, Burns C, Foster GD, Bailey AM. Investigating dominant selection markers for Coprinopsis cinerea: a carboxin resistance system and re-evaluation of hygromycin and phleomycin resistance vectors. Curr Genet. 2009;55:543–50.
CAS
PubMed
Article
Google Scholar
Burns C, Leach KM, Elliott TJ, Challen MP, Foster GD, Bailey A. Evaluation of Agrobacterium-mediated transformation of Agaricus bisporus using a range of promoters linked to hygromycin resistance. Mol Biotechnol. 2006;32:129–38.
CAS
PubMed
Article
Google Scholar
Zhang JJ, Shi L, Chen H, Sun YQ, Zhao MW, Ren A, Chen MJ, Wang H, Feng ZY. An efficient Agrobacterium-mediated transformation method for the edible mushroom Hypsizygus marmoreus. Microbiol Res. 2014;169:741–8.
CAS
PubMed
Article
Google Scholar
Ford KL, Baumgartner K, Henricot B, Bailey AM, Foster GD. A native promoter and inclusion of an intron is necessary for efficient expression of GFP or mRFP in Armillaria mellea. Sci Rep. 2016;6:29226.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hatoh K, Izumitsu K, Morita A, Shimizu K, Ohta A, Kawai M, Yamanaka T, Neda H, Ota Y, Tanaka C. Transformation of the mushroom species Hypsizigus marmoreus, Flammulina velutipes, and Grifola frondosa by an Agrobacterium-mediated method using a universal transformation plasmid. Mycoscience. 2013;54:8–12.
CAS
Article
Google Scholar
Janbon G, Ormerod KL, Paulet D, Byrnes EJ 3rd, Yadav V, Chatterjee G, Mullapudi N, Hon C-C, Billmyre RB, Brunel F, et al. Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation. PLoS Genet. 2014;10:e1004261.
PubMed
PubMed Central
Article
CAS
Google Scholar
Stephan BI, Alvarez Crespo MC, Kemppainen MJ, Pardo AG. Agrobacterium-mediated insertional mutagenesis in the mycorrhizal fungus Laccaria bicolor. Curr Genet. 2017;63:215–27.
CAS
PubMed
Article
Google Scholar
Wang J, Guo L, Zhang K, Wu Q, Lin J. Highly efficient Agrobacterium-mediated transformation of Volvariella volvacea. Bioresour Technol. 2008;99:8524–7.
CAS
PubMed
Article
Google Scholar
Xu J-W, Xu Y-N, Zhong J-J. Enhancement of ganoderic acid accumulation by overexpression of an N-terminally truncated 3-hydroxy-3-methylglutaryl coenzyme A reductase gene in the basidiomycete Ganoderma lucidum. Appl Environ Microbiol. 2012;78:7968–76.
CAS
PubMed
PubMed Central
Article
Google Scholar
Godio RP, Fouces R, Martín JF. A squalene epoxidase is involved in biosynthesis of both the antitumor compound clavaric acid and sterols in the basidiomycete H. sublateritium. Chem Biol. 2007;14:1334–46.
CAS
PubMed
Article
Google Scholar
Lin Y-L, Lee Y-R, Tsao N-W, Wang S-Y, Shaw J-F, Chu F-H. Characterization of the 2,3-oxidosqualene cyclase gene from Antrodia cinnamomea and enhancement of cytotoxic triterpenoid compound production. J Nat Prod. 2015;78:1556–62.
CAS
PubMed
Article
Google Scholar
Kemppainen MJ, Pardo AG. Gene knockdown by ihpRNA-triggering in the ectomycorrhizal basidiomycete fungus Laccaria bicolor. Bioeng Bugs. 2010;1:354–8.
PubMed
PubMed Central
Article
Google Scholar
Kemppainen MJ, Pardo AG. pHg/pSILBAgamma vector system for efficient gene silencing in homobasidiomycetes: optimization of ihpRNA—triggering in the mycorrhizal fungus Laccaria bicolor. Microb Biotechnol. 2010;3:178–200.
PubMed
PubMed Central
Article
CAS
Google Scholar
Costa ASMB, Thomas DJI, Eastwood D, Cutler SB, Bailey AM, Foster GD, Mills PR, Challen MP. Quantifiable downregulation of endogenous genes in Agaricus bisporus mediated by expression of RNA hairpins. J Microbiol Biotechnol. 2009;19:271–6.
CAS
PubMed
Google Scholar
Heneghan MN, Burns C, Costa AMSB, Burton KS, Challen MP, Bailey AM, Foster GD. Functional analysis of Agaricus bisporus serine proteinase 1 reveals roles in utilization of humic rich substrates and adaptation to the leaf-litter ecological niche. Environ Microbiol. 2016;18:4687–96.
CAS
PubMed
PubMed Central
Article
Google Scholar
Nakazawa T, Ando Y, Kitaaki K, Nakahori K, Kamada T. Efficient gene targeting in ΔCc.ku70 or ΔCc.lig4 mutants of the agaricomycete Coprinopsis cinerea. Fungal Genet Biol. 2011;48:939–46.
CAS
PubMed
Article
Google Scholar
Waltz E. Gene-edited CRISPR mushroom escapes US regulation. Nature. 2016;532:293.
CAS
PubMed
Article
Google Scholar
Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, Falk R, Parnmen S, Lumbsch HT, Boekhout T. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol. 2015;78:16–48.
CAS
PubMed
Article
Google Scholar
Heitman J, Kozel TR, Kwon-Chung KJ, Perfect JR, Casadevall A, editors. Cryptococcus: from human pathogen to model yeast. Washington: American Society for Microbiology Press; 2011.
Google Scholar
Idnurm A, Bahn Y-S, Nielsen K, Lin X, Fraser JA, Heitman J. Deciphering the model pathogenic fungus Cryptococcus neoformans. Nat Rev Microbiol. 2005;3:753–64.
CAS
PubMed
Article
Google Scholar
Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, Denning DW, Loyse A, Boulware DR. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis. 2017;17:873–81.
PubMed
Article
Google Scholar
Zhang N, Park Y-D, Williamson PR. New technology and resources for cryptococcal research. Fungal Genet Biol. 2015;78:99–107.
CAS
PubMed
Article
Google Scholar
Edman JC, Kwon-Chung KJ. Isolation of the URA5 gene from Cryptococcus neoformans var. neoformans and its use as a selective marker for transformation. Mol Cell Biol. 1990;10:4538–44.
CAS
PubMed
PubMed Central
Article
Google Scholar
Toffaletti DL, Rude TH, Johnston SA, Durack DT, Perfect JR. Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA. J Bacteriol. 1993;175:1405–11.
CAS
PubMed
PubMed Central
Article
Google Scholar
Kraus PR, Nichols CB, Heitman J. Calcium and calcineurin-independent roles for calmodulin in Cryptococcus neoformans morphogenesis and high-temperature growth. Eukaryot Cell. 2005;4:1079–87.
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhu X, Williamson PR. A CLC-type chloride channel gene is required for laccase activity and virulence in Cryptococcus neoformans. Mol Microbiol. 2003;50:1271–82.
CAS
PubMed
Article
Google Scholar
Idnurm A, Reedy JL, Nussbaum JC, Heitman J. Cryptococcus neoformans virulence gene discovery through insertional mutagenesis. Eukaryot Cell. 2004;3:420–9.
CAS
PubMed
PubMed Central
Article
Google Scholar
McClelland CM, Chang YC, Kwon-Chung KJ. High frequency transformation of Cryptococcus neoformans and Cryptococcus gattii by Agrobacterium tumefaciens. Fungal Genet Biol. 2005;42:904–13.
CAS
PubMed
Article
Google Scholar
Walton FJ, Idnurm A, Heitman J. Novel gene functions required for melanization of the human pathogen Cryptococcus neoformans. Mol Microbiol. 2005;57:1381–96.
CAS
PubMed
Article
Google Scholar
Idnurm A, Walton FJ, Floyd A, Reedy JL, Heitman J. Identification of ENA1 as a virulence gene of the human pathogenic fungus Cryptococcus neoformans through signature-tagged insertional mutagenesis. Eukaryot Cell. 2009;8:315–26.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hu G, Caza M, Cadieux B, Chan V, Liu V, Kronstad J. Cryptococcus neoformans requires the ESCRT protein Vps23 for iron acquisition from heme, for capsule formation, and for virulence. Infect Immun. 2013;81:292–302.
CAS
PubMed
PubMed Central
Article
Google Scholar
Idnurm A, Heitman J. Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol. 2005;3:615–26.
CAS
Article
Google Scholar
Yeh Y-L, Lin Y-S, Su B-J, Shen W-C. A screening for suppressor mutants reveals components involved in the blue light-inhibited sexual filamentation in Cryptococcus neoformans. Fungal Genet Biol. 2009;46:42–54.
CAS
PubMed
Article
Google Scholar
Feretzaki M, Heitman J. Genetic circuits that govern bisexual and unisexual reproduction in Cryptococcus neoformans. PLoS Genet. 2013;9:e1003688.
CAS
PubMed
PubMed Central
Article
Google Scholar
Verma S, Idnurm A. Uve1 endonuclease is regulated by White collar to protect Cryptococcus neoformans from UV damage. PLoS Genet. 2013;9:e1003769.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lin X, Jackson JC, Feretzaki M, Xue C, Heitman J. Transcription factors Mat2 and Znf2 operate cellular circuits orchestrating opposite- and same-sex mating in Cryptococcus neoformans. PLoS Genet. 2010;6:e1000953.
PubMed
PubMed Central
Article
CAS
Google Scholar
Chacko N, Zhao Y, Yang E, Wang L, Cai JJ, Lin X. The lncRNA RZE1 controls cryptococcal morphological transition. PLoS Genet. 2015;11:e1005692.
PubMed
PubMed Central
Article
CAS
Google Scholar
Gyawali R, Zhao Y, Lin J, Fan Y, Xu X, Upadhyay S, Lin X. Pheromone independent unisexual development in Cryptococcus neoformans. PLoS Genet. 2017;13:e1006772.
PubMed
PubMed Central
Article
CAS
Google Scholar
Fu J, Mares C, Lizcano A, Liu Y, Wickes BL. Insertional mutagenesis combined with an inducible filamentation phenotype reveals a conserved STE50 homologue in Cryptococcus neoformans that is required for monokaryotic fruiting and sexual reproduction. Mol Microbiol. 2011;79:990–1007.
CAS
PubMed
Article
Google Scholar
Ianiri G, Idnurm A. Essential gene discovery in the basidiomycete Cryptococcus neoformans for antifungal drug target prioritization. mBio. 2015;6:e02334-02314.
Article
CAS
Google Scholar
Chun CD, Madhani HD. Ctr2 links copper homeostasis to polysaccharide capsule formation and phagocytosis inhibition in the human fungal pathogen Cryptococcus neoformans. PLoS ONE. 2010;5:e12503.
PubMed
PubMed Central
Article
CAS
Google Scholar
Chang YC, Lamichhane AK, Garraffo HM, Walter PJ, Leerkes M, Kwon-Chung KJ. Molecular mechanisms of hypoxic responses via unique roles of Ras1, Cdc24 and Ptp3 in a human fungal pathogen Cryptococcus neoformans. PLoS Genet. 2014;10:e1004292.
PubMed
PubMed Central
Article
CAS
Google Scholar
Ost KS, O’Meara TR, Huda N, Esher SK, Alspaugh JA. The Cryptococcus neoformans alkaline response pathway: identification of a novel rim pathway activator. PLoS Genet. 2015;11:e1005159.
PubMed
PubMed Central
Article
CAS
Google Scholar
Aime MC, Matheny PB, Henk DA, Frieders EM, Nilsson RH, Piepenbring M, McLaughlin DJ, Szabo LJ, Begerow D, Sampaio JP, et al. An overview of the higher level classification of Pucciniomycotina based on combined analyses of nuclear large and small subunit rDNA sequences. Mycologia. 2006;98:896–905.
CAS
PubMed
Article
Google Scholar
Webb CA, Szabo LJ, Bakkeren G, Garry C, Staples RC, Eversmeyer M, Fellers JP. Transient expression and insertional mutagenesis of Puccinia triticina using biolistics. Funct Integr Genomics. 2006;6:250–60.
CAS
PubMed
Article
Google Scholar
Lawrence GJ, Dodds PN, Ellis JG. Transformation of the flax rust fungus, Melampsora lini: selection via silencing of an avirulence gene. Plant J. 2010;61:364–9.
CAS
PubMed
Article
Google Scholar
Toh SS, Perlin MH. Resurgence of less-studied smut fungi as models of phytopathogenesis in the omics age. Phytopathology. 2016;106:1244–54.
PubMed
Article
Google Scholar
Hood ME. Dimorphic mating-type chromosomes in the fungus Microbotryum violaceum. Genetics. 2002;160:457–61.
CAS
PubMed
PubMed Central
Google Scholar
Bej AK, Perlin MH. A high efficiency transformation system for the basidiomycete Ustilago violacea employing hygromycin resistance and lithium-acetate treatment. Gene. 1989;80:171–6.
CAS
PubMed
Article
Google Scholar
Perlin MH, Bej AK, Will OH 3rd, Jacob RJ. Introduction and maintenance of prokaryotic DNA in Ustilago violacea. J Ind Microbiol. 1990;5:355–63.
CAS
PubMed
Article
Google Scholar
Toh SS, Treves DS, Barati MT, Perlin MH. Reliable transformation system for Microbotryum lychnidis-dioicae informed by genome and transcriptome project. Arch Microbiol. 2016;198:813–25.
CAS
PubMed
Article
Google Scholar
Perlin MH, Amselem J, Fontanillas E, Toh SS, Chen Z, Goldberg J, Duplessis S, Henrissat B, Young S, Zeng Q, et al. Sex and parasites: genomic and transcriptomic analysis of Microbotryum lychnidis-dioicae, the biotrophic and plant-castrating anther smut fungus. BMC Genom. 2015;16:461.
Article
CAS
Google Scholar
Wang Q-M, Yurkov AM, Göker M, Lumbsch HT, Leavitt SD, Groenewald M, Theelen B, Liu X-Z, Boekhout T, Bai F-Y. Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud Mycol. 2015;81:149–89.
PubMed
Article
Google Scholar
Johnson EA. Biotechnology of non-Saccharomyces yeasts-the basidiomycetes. Appl Microbiol Biotechnol. 2013;97:7563–77.
CAS
PubMed
Article
Google Scholar
Tully M, Gilbert HJ. Transformation of Rhodosporidium toruloides. Gene. 1985;36:235–40.
CAS
PubMed
Article
Google Scholar
Ianiri G, Wright SAI, Castoria R, Idnurm A. Development of resources for the analysis of gene function in Pucciniomycotina red yeasts. Fungal Genet Biol. 2011;48:685–95.
CAS
PubMed
Article
Google Scholar
Abbott EP, Ianiri G, Castoria R, Idnurm A. Overcoming recalcitrant transformation and gene manipulation in Pucciniomycotina yeasts. Appl Microbiol Biotechnol. 2013;97:283–95.
CAS
PubMed
Article
Google Scholar
Liu Y, Koh CMJ, Sun L, Hlaing MM, Du M, Peng N, Ji L. Characterization of glyceraldehyde-3-phosphate dehydrogenase gene RtGPD1 and development of genetic transformation method by dominant selection in oleaginous yeast Rhodosporidium toruloides. Appl Microbiol Biotechnol. 2013;97:719–29.
CAS
PubMed
Article
Google Scholar
Lin X, Wang Y, Zhang S, Zhu Z, Zhou YJ, Yang F, Sun W, Wang X, Zhao ZK. Functional integration of multiple genes into the genome of the oleaginous yeast Rhodosporidium toruloides. FEMS Yeast Res. 2014;14:547–55.
CAS
PubMed
Article
Google Scholar
Wang Y, Lin X, Zhang S, Sun W, Ma S, Zhao ZK. Cloning and evaluation of different constitutive promoters in the oleaginous yeast Rhodosporidium toruloides. Yeast. 2016;33:99–106.
CAS
PubMed
Article
Google Scholar
Ianiri G, Idnurm A, Wright SAI, Durán-Patrón R, Mannina L, Ferracane R, Ritieni A, Castoria R. Searching for genes responsible for patulin degradation in a biocontrol yeast provides insight into the basis for resistance to this mycotoxin. Appl Environ Microbiol. 2013;79:3101–15.
CAS
PubMed
PubMed Central
Article
Google Scholar
Ianiri G, Idnurm A, Castoria R. Transcriptomic responses of the basidiomycete yeast Sporobolomyces sp. to the mycotoxin patulin. BMC Genom. 2016;17:210.
Article
CAS
Google Scholar
Ianiri G, Abhyankar R, Kihara A, Idnurm A. Phs1 and the synthesis of very long chain fatty acids are required for ballistospore formation. PLoS ONE. 2014;9:e105147.
PubMed
PubMed Central
Article
CAS
Google Scholar
Zhang S, Skerker JM, Rutter CD, Maurer MJ, Arkin AP, Rao CV. Engineering Rhodosporidium toruloides for increased lipid production. Biotechnol Bioeng. 2016;113:1056–66.
CAS
PubMed
Article
Google Scholar
Koh CMJ, Liu Y, Du Moehninsi M, Ji L. Molecular characterization of KU70 and KU80 homologues and exploitation of a KU70-deficient mutant for improving gene deletion frequency in Rhodosporidium toruloides. BMC Microbiol. 2014;14:50.
PubMed
PubMed Central
Article
CAS
Google Scholar
Liu Y, Koh CMJ, Ngoh ST, Ji L. Engineering an efficient and tight D-amino acid-inducible gene expression system in Rhodosporidium/Rhodotorula species. Microb Cell Fact. 2015;14:170.
PubMed
PubMed Central
Article
CAS
Google Scholar
Liu Y, Yap SA, Kohn CMJ, Ji L. Developing a set of strong intronic promoters for robust metabolic engineering in oleaginous Rhodotorula (Rhodosporidium) yeast species. Microb Cell Fact. 2016;15:200.
PubMed
PubMed Central
Article
Google Scholar
Ji L, Jiang Z-D, Liu Y, Koh CM, Zhang L-H. A simplified and efficient method for transformation and gene tagging of Ustilago maydis using frozen cells. Fungal Genet Biol. 2010;47:279–87.
CAS
PubMed
Article
Google Scholar
Marchand G, Fortier E, Neveu B, Bolduc S, Belzile F, Bélanger RR. Alternative methods for genetic transformation of Pseudozyma antarctica, a basidiomycetous yeast-like fungus. J Microbiol Methods. 2007;70:519–27.
CAS
PubMed
Article
Google Scholar
Ianiri G, Averette AF, Kingsbury JM, Heitman J, Idnurm A. Gene function analysis in the ubiquitous human commensal and pathogen Malassezia genus. mBio. 2016;7:e01853-01816.
Article
Google Scholar
Celis AM, Vos AM, Triana S, Medina CA, Escobar N, Restrepo S, Wösten HAB, de Cock H. Highly efficient transformation system for Malassezia furfur and Malassezia pachydermatis using Agrobacterium tumefaciens-mediated transformation. J Microbiol Methods. 2017;134:1–6.
CAS
PubMed
Article
Google Scholar
Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, Schoenfeld D, Nomicos E, Park M, Program NIHISCCS, et al. Topographic diversity of fungal and bacterial communities in human skin. Nature. 2013;498:367–70.
CAS
PubMed
PubMed Central
Article
Google Scholar
Wu G, Zhao H, Li C, Rajapakse MP, Wong WC, Xu J, Saunders CW, Reeder NL, Reilman RA, Scheynius A, et al. Genus-wide comparative genomics of Malassezia delineates its phylogeny, physiology, and niche adaptation on human skin. PLoS Genet. 2015;11:e1005614.
PubMed
PubMed Central
Article
CAS
Google Scholar
Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia. 2016;108:1028–46.
PubMed
Article
Google Scholar
Michielse CB, Salim K, Ragas P, Ram AFJ, Kudla B, Jarry B, Punt PJ, van den Hondel CAMJJ. Development of a system for integrative and stable transformation of the zygomycete Rhizopus oryzae by Agrobacterium-mediated DNA transfer. Mol Genet Genomics. 2004;271:499–510.
CAS
PubMed
Article
Google Scholar
Nyilasi I, Papp T, Csernetics A, Vágvölgyi C. Agrobacterium tumefaciens-mediated transformation of the zygomycete fungus Backusella lamprospora. J Basic Microbiol. 2008;48:59–64.
CAS
PubMed
Article
Google Scholar
Nyilasi I, Ács K, Papp T, Nagy E, Vágvölgyi C. Agrobacterium tumefaciens-mediated transformation of Mucor circinelloides. Folia Microbiol. 2005;50:415–20.
CAS
Article
Google Scholar
Papp T, Csernetics A, Nagy G, Bencsik O, Iturriaga EA, Eslava AP, Vágvölgyi C. Canthaxanthin production with modified Mucor circinelloides strains. Appl Microbiol Biotechnol. 2013;97:4937–50.
CAS
PubMed
Article
Google Scholar
Monfort A, Cordero L, Maicas S, Polaina J. Transformation of Mucor miehei results in plasmid deletion and phenotypic instability. FEMS Microbiol Lett. 2003;224:101–6.
CAS
PubMed
Article
Google Scholar
Wei D-S, Zhang Y-H, Xing L-J, Li M-C. Agrobacterium rhizogenes-mediated transformation of a high oil-producing filamentous fungus Umbelopsis isabellina. J Appl Genet. 2010;51:225–32.
PubMed
Article
Google Scholar
Ando A, Sumida Y, Negoro H, Suroto DA, Ogawa J, Sakuradani E, Shimizu S. Establishment of Agrobacterium tumefaciens-mediated transformation of an oleaginous fungus, Mortierella alpina 1S-4, and its application for eicosapentaenoic acid producer breeding. Appl Environ Microbiol. 2009;75:5529–35.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hao G, Chen H, Wang L, Gu Z, Song Y, Zhang H, Chen W, Chen YQ. Role of malic enzyme during fatty acid synthesis in the oleaginous fungus Mortierella alpina. Appl Environ Microbiol. 2014;80:2672–8.
PubMed
PubMed Central
Article
CAS
Google Scholar
Shi H, Chen H, Gu Z, Zhang H, Chen W, Chen YQ. Application of a delta-6 desaturase with α-linolenic acid preference on eicosapentaenoic acid production in Mortierella alpina. Microb Cell Fact. 2016;15:117.
PubMed
PubMed Central
Article
Google Scholar
Hao G, Chen H, Gu Z, Zhang H, Chen W, Chen YQ. Metabolic engineering of Mortierella alpina for enhanced arachidonic acid production through the NADPH-supplying strategy. Appl Environ Microbiol. 2016;82:3280–8.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hao G, Chen H, Du K, Huang X, Song Y, Gu Z, Wang L, Zhang H, Chen W, Chen YQ. Increased fatty acid unsaturation and production of arachidonic acid by homologous over-expression of the mitochondrial malic enzyme in Mortierella alpina. Biotechnol Lett. 2014;36:1827–34.
CAS
PubMed
PubMed Central
Article
Google Scholar
Vieira ALG, Camilo CM. Agrobacterium tumefasciens [sic]-mediated transformation of the aquatic fungus Blastocladiella emersonii. Fungal Genet Biol. 2011;48:806–11.
CAS
PubMed
Article
Google Scholar
Helber N, Requena N. Expression of the fluorescence markers DsRed and GFP fused to a nuclear localization signal in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol. 2008;177:537–48.
CAS
PubMed
Google Scholar
Gietz RD, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007;2:31–4.
CAS
PubMed
Article
Google Scholar
Catlett NL, Lee B-N, Yoder OC, Turgeon BG. Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genet Newsl. 2003;50:9–11.
Article
Google Scholar
Cairns TC, Sidhu YS, Chaudhari YK, Talbot NJ, Studholme DJ, Haynes K. Construction and high-throughput phenotypic screening of Zymoseptoria tritici over-expression strains. Fungal Genet Biol. 2015;79:110–7.
CAS
PubMed
PubMed Central
Article
Google Scholar
Kojic M, Holloman WK. Shuttle vectors for genetic manipulations in Ustilago maydis. Can J Microbiol. 2000;46:333–8.
CAS
PubMed
Article
Google Scholar
Aleksenko A, Clutterbuck AJ. Autonomous plasmid replication in Aspergillus nidulans: AMA1 and MATE elements. Fungal Genet Biol. 1997;21:373–87.
CAS
PubMed
Article
Google Scholar
Zhu Y, Nam J, Humara JM, Mysore KS, Lee LY, Cao H, Valentine L, Li J, Kaiser AD, Kopecky AL, et al. Identification of Arabidopsis rat mutants. Plant Physiol. 2003;132:494–505.
CAS
PubMed
PubMed Central
Article
Google Scholar
Luo Y, Chen Z, Zhu D, Tu H, Pan SQ. Yeast actin-related protein ARP6 negatively regulates Agrobacterium-mediated transformation of yeast cell. Biomed Res Int. 2015;2015:275092.
PubMed
PubMed Central
Google Scholar
Ohmine Y, Satoh Y, Kiyokawa K, Yamamoto S, Moriguchi K, Suzuki K. DNA repair genes RAD52 and SRS2, a cell wall synthesis regulator gene SMI1, and the membrane sterol synthesis scaffold gene ERG28 are important in efficient Agrobacterium-mediated yeast transformation with chromosomal T-DNA. BMC Microbiol. 2016;16:58.
PubMed
PubMed Central
Article
CAS
Google Scholar
van Attikum H, Bundock P, Hooykaas PJJ. Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration. EMBO J. 2001;20:6550–8.
PubMed
PubMed Central
Article
Google Scholar
van Attikum H, Hooykaas PJJ. Genetic requirements for the targeted integration of Agrobacterium T-DNA in Saccharomyces cerevisiae. Nucleic Acids Res. 2003;31:826–32.
PubMed
PubMed Central
Article
CAS
Google Scholar
Rolloos M, Dohmen MHC, Hooykaas PJJ, van der Zaal BJ. Involvement of Rad52 in T-DNA circle formation during Agrobacterium tumefaciens-mediated transformation of Saccharomyces cerevisiae. Mol Microbiol. 2014;91:1240–51.
CAS
PubMed
Article
Google Scholar
Soltani J, van Heusden GPH, Hooykaas PJJ. Deletion of host histone acetyltransferases and deacetylases strongly affects Agrobacterium-mediated transformation of Saccharomyces cerevisiae. FEMS Microbiol Lett. 2009;298:228–33.
CAS
PubMed
Article
Google Scholar
Roberts RL, Metz M, Monks DE, Mullaney ML, Hall T, Nester EW. Purine synthesis and increased Agrobacterium tumefaciens transformation of yeast and plants. Proc Natl Acad Sci USA. 2003;100:6634–9.
CAS
PubMed
PubMed Central
Article
Google Scholar
Darwin C. On the origin of species by means of natural selection. London: John Murray; 1859.
Google Scholar
Esher SK, Granek JA, Alspaugh JA. Rapid mapping of insertional mutations to probe cell wall regulation in Cryptococcus neoformans. Fungal Genet Biol. 2015;82:9–21.
CAS
PubMed
PubMed Central
Article
Google Scholar
Shine AM, Shakya VPS, Idnurm A. Phytochelatin synthase is required for tolerating metal toxicity in a basidiomycete yeast and is a conserved factor involved in metal homeostasis in fungi. Fungal Biol Biotechnol. 2015;2:3.
PubMed
PubMed Central
Article
Google Scholar
McCluskey K, Boundy-Mills K, Dye G, Ehmke E, Gunnell GF, Kiaris H, Polihronakis Richmond M, Yoder AD, Zeigler DR, Zehr S, et al. The challenges faced by living stock collections in the USA. eLife. 2017;6:e24611.
PubMed
PubMed Central
Article
Google Scholar
Daley M, Knauf VC, Summerfelt KR, Turner JC. Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Rep. 1998;17:489–96.
CAS
Article
Google Scholar
Padilla-Guerrero IE, Bidochka MJ. Agrobacterium-mediated co-transformation of multiple genes in Metarhizium robertsii. Mycobiology. 2017;45:84–9.
PubMed
PubMed Central
Article
Google Scholar
de Boer P, Bronkhof J, Dukik K, Kerkman R, Touw H, van den Berg M, Offringa R. Efficient gene targeting in Penicillium chrysogenum using novel Agrobacterium-mediated transformation approaches. Fungal Genet Biol. 2013;61:9–14.
PubMed
Article
CAS
Google Scholar
Wang Y, DiGuistini S, Wang T-CT, Bohlmann J, Breuil C. Agrobacterium-meditated gene disruption using split-marker in Grosmannia clavigera, a mountain pine beetle associated pathogen. Curr Genet. 2010;56:297–307.
PubMed
Article
CAS
Google Scholar
Krenek P, Samajova O, Luptovciak I, Doskocilova A, Komis G, Samaj J. Transient plant transformation mediated by Agrobacterium tumefaciens: principles, methods and applications. Biotechnol Adv. 2015;33:1024–42.
CAS
PubMed
Article
Google Scholar
Nødvig CS, Nielsen JB, Kogle ME, Mortensen UH. A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS ONE. 2015;10:e0133085.
PubMed
PubMed Central
Article
CAS
Google Scholar
Pohl C, Kiel JAKW, Driessen AJM, Bovenberg RAL, Nygård Y. CRISPR/Cas9 based genome editing of Penicillium chrysogenum. ACS Synth Biol. 2016;5:754–64.
CAS
PubMed
Article
Google Scholar
Schuster M, Schweizer G, Reissmann S, Kahmann R. Genome editing in Ustilago maydis using the CRISPR-Cas system. Fungal Genet Biol. 2016;89:3–9.
CAS
PubMed
Article
Google Scholar
Prieto M, Wedin M. Dating the diversification of the major lineages of Ascomycota (Fungi). PLoS ONE. 2013;8:e65576.
CAS
PubMed
PubMed Central
Article
Google Scholar
Giesbert S, Schumacher J, Kupas V, Espino J, Segmüller N, Haeuser-Hahn I, Schreier PH, Tudzynski P. Identification of pathogenesis-associated genes by T-DNA-mediated insertional mutagenesis in Botrytis cinerea: a type 2A phosphoprotein phosphatase and an SPT3 transcription factor have significant impact on virulence. Mol Plant Microbe Interact. 2012;25:481–95.
CAS
PubMed
Article
Google Scholar
Yemelin A, Brauchler A, Jacob S, Laufer J, Heck L, Foster AJ, Antelo L, Andresen K, Thines E. Identification of factors involved in dimorphism and pathogenicity of Zymoseptoria tritici. PLoS ONE. 2017;12:e0183065.
PubMed
PubMed Central
Article
Google Scholar