Skip to main content

Advertisement

Log in

Biotechnology of non-Saccharomyces yeasts—the basidiomycetes

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Yeasts are the major producer of biotechnology products worldwide, exceeding production in capacity and economic revenues of other groups of industrial microorganisms. Yeasts have wide-ranging fundamental and industrial importance in scientific, food, medical, and agricultural disciplines (Fig. 1). Saccharomyces is the most important genus of yeast from fundamental and applied perspectives and has been expansively studied. Non-Saccharomyces yeasts (non-conventional yeasts) including members of the Ascomycetes and Basidiomycetes also have substantial current utility and potential applicability in biotechnology. In an earlier mini-review, “Biotechnology of non-Saccharomyces yeasts—the ascomycetes” (Johnson Appl Microb Biotechnol 97: 503–517, 2013), the extensive biotechnological utility and potential of ascomycetous yeasts are described. Ascomycetous yeasts are particularly important in food and ethanol formation, production of single-cell protein, feeds and fodder, heterologous production of proteins and enzymes, and as model and fundamental organisms for the delineation of genes and their function in mammalian and human metabolism and disease processes. In contrast, the roles of basidiomycetous yeasts in biotechnology have mainly been evaluated only in the past few decades and compared to the ascomycetous yeasts and currently have limited industrial utility. From a biotechnology perspective, the basidiomycetous yeasts are known mainly for the production of enzymes used in pharmaceutical and chemical synthesis, for production of certain classes of primary and secondary metabolites such as terpenoids and carotenoids, for aerobic catabolism of complex carbon sources, and for bioremediation of environmental pollutants and xenotoxicants. Notwithstanding, the basidiomycetous yeasts appear to have considerable potential in biotechnology owing to their catabolic utilities, formation of enzymes acting on recalcitrant substrates, and through the production of unique primary and secondary metabolites. This and the earlier mini-review (Johnson Appl Microb Biotechnol 97:503–517, 2013) were motivated during the preparation and publication of the landmark three-volume set of “The yeasts: a taxonomic study, 5th edition” (Kurtzman et al. 2011a, b).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbott EP, Inairi G, Castoria R, Idnurm A (2013) Overcoming recalcitrant transformation and gene manipulation in Pucciniomycotina yeasts. Appl Microbiol Biotechnol 97:283–295

    Article  PubMed  CAS  Google Scholar 

  • Aehle W (ed) (2004) Enzymes in industry. Production and applications, 2nd edn. Wiley, Weinheim

    Google Scholar 

  • Ageitos JM, Vallejo JA, Viega-Crespo P, Villa TG (2011) Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol 90:1219–1227

    Article  PubMed  CAS  Google Scholar 

  • Aguedo MH, Ly I, Belo JA, Teixeira J-M, Belin, Waché (2004) The use of enzymes and microorganisms for the production of aroma compounds from lipids. Food Technol Biotechnol 42:327–336

    CAS  Google Scholar 

  • Aki T;Yamasaki T, Nanko TM, Shionsaki M, Kawawato S, Ono K (2007) Xanthophylls and polyunsaturated acids produced by matine thraustochytrids. In: Hou CT, Shaw J-F (eds) Biocatalysis and biotechnology for functional foods and industrial products. CRC, Boca Raton, pp 187–198

    Google Scholar 

  • Álvarez V, Rodriguez-Sáiz M, de la Fuente JL, Gudiña EJ, Godio RP, Martín JF, Barredo JL (2007) The crtS gene of Xanthophyllomyces dendrorhous encodes a novel cytochrome-P450 hydroxylase involved in the conversion of beta-carotene into astaxanthin and other xanthophylls. Fungal Genet Biol 43:261–272

    Article  CAS  Google Scholar 

  • Amaretti A, Raimondi SM, Roncaglia L, De Lucia M, Leonardi A, Rossi M (2010) Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialiis DBVPG 4785. Microb Cell Fact 9:73

    PubMed  Google Scholar 

  • An GH, Schuman D, Johnson EA (1989) Isolation of Phaffia rhodozyma mutants with increased astaxanthin content. Appl Environ Microbiol 55:116–124

    PubMed  CAS  Google Scholar 

  • An GH, Bielich J, Auerbach R, Johnson EA (1991) Isolation and characterization of carotenoid hyperproducing mutants of yeast by flow-cytometry and cell sorting. Bio-Technol 9:70–73

    Article  CAS  Google Scholar 

  • An GH, Suh OS, Kwon HC, Kim K, Johnson EA (2000) Quantification of carotenoids in cells of Phaffia rhodozyma by autofluorescence. Bioechnol Lett 22:1031–1034

    Article  CAS  Google Scholar 

  • Anesio AM, Hodson AJ, Fritz A, Psenner R, Sattler B (2009) High microbial activity on glaciers: importance to the global carbon cycle. Global Change Biol 15:955–960

    Article  Google Scholar 

  • Arutchiva J, Doble M (2011) Mannosylerythritol lipids: microbial production and their applications. Biosurfactants: from genes to applications. Microbiol Monographs 20:147–177

    Google Scholar 

  • Avis TJ, Cheng YL, Zhao YY, Bolduc S, Neveu B, Anguenot LC, Belzile F, Bélanger RR (2005) The potential of Pseudozyma yeast-like epiphytes for the production of heterologous recombinant proteins. Appl Microbiol Biotechnol 69:304–311

    Article  PubMed  CAS  Google Scholar 

  • Bae M, Lee TH, Yokoyama H, Boettger HG, Chichester CO (1971) The occurrence of plectaniaxanthin in Cryptococcus laurentii. Phytochem 10:625–629

    Article  CAS  Google Scholar 

  • Baeza M, Bravo N, Sanhueza M, Flores O, Villarreal, Cifuentes V (2012) Molecular characterizaion of totiviruses in Xanthophyllomyces dendrorhous. Virol J 9:140

    Article  PubMed  CAS  Google Scholar 

  • Bai J, Wu XL, Fan FL, Tian W, Yin XJ, Zhao L, Fan FY, Li Z, Tian LL, Qin Z, Guo JS (2012) Biosorption of uranium by magnetically modified Rhodotorula glutinis. Enzyme Microb Technol 51:382–387

    Article  PubMed  CAS  Google Scholar 

  • Baldauf SL, Palmer JD (1993) Animals and fungi are other's closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci U S A 93:7749–7754

    Article  Google Scholar 

  • Bandanranayake W (1998) Mycosporines: are they nature's sunscreens? Nat Prod Rep 15:159–172

    Article  Google Scholar 

  • Banno I (1963) Preliminary report on cell conjugation and mycelial stage in Rhodotorula yeasts. J Gen Appl Microbiol 9:249

    Article  Google Scholar 

  • Banno I (1967) Studies on the sexuality of Rhodotorula. J Gen Appl Microbiol 13:167–196

    Article  Google Scholar 

  • Bennett JW, Phaff HJ (1995) Early biotechnology: the Delft connection. ASM News 59:401–404

    Google Scholar 

  • Bergauer P, Fonteyne PA, Nolard N, Schinner F, Margesin R (2005) Biodegradation of phenol and phenol-related compounds by psychrophilic and cold-tolerant alpine yeasts. Chemosphere 59:909–918

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt R (2006) Cytochromes P450 as versatile biocatalysts. J Biotechnol 124:128–145

    Article  PubMed  CAS  Google Scholar 

  • Bertram JS, Vine AL (2005) Cancer prevention by retinoids and carotenoids: independent action on a common target. Biochim Biophys Acta 1740:170–178

    Article  PubMed  CAS  Google Scholar 

  • Bhosale P, Bernstein PS (2005) Microbial xanthophylls. Appl Microbiol Biotechnol 68:445–455

    Article  PubMed  CAS  Google Scholar 

  • Blaser H-U (2003) Enantioselective catalysis in fine chemicals production. Chem Commun 3:293–296

    Article  CAS  Google Scholar 

  • Boekhout T, Robert V (eds) (2003) Yeasts in foods. Beneficial and detrimental aspects. Behr's, Hamburg

    Google Scholar 

  • Boekhout T, Theelen B, Houbraken J, Robert V, Scorzetti G, Gafni A, Gerson U, Sztejnaberg A (2003) Novel anamorphic mite-associated fungi belonging to the Ustilaginomycetes: Meira geulakonigii gen. nov. sp. Nov., Meira argovae sp. nov. and Acaryomyces ingoldii gen. nov. Int J Syst Evol Microbiol 53:1655–1664

    Article  PubMed  CAS  Google Scholar 

  • Boekhout T, Gueho Kellermann E, Mayser P, Velegraki A (eds) (2010) Mallessezia and the skin: science and clinical practice. Springer, New York

    Google Scholar 

  • Boekhout T, Fonseca A, Sampaio JP, Bandoni RJ, Fell JW, Kwon-Chung KJ (2011) Discussion of teleomorphic and anamorphic basidiomycetous yeasts. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, vol 3, 5th edn. Elsevier, Amsterdam, pp 1339–1372

    Chapter  Google Scholar 

  • Botes AL, Lotter J, Rhode OH, Botha A (2005) Interspecies differences in the enantioselectivity of eposide hydrolases in Cryptococcus (Kufferath) C. E. Skinner and Cryptococcus podzolicus (Ba b`jeva & Reshetova) Golubev. Syst Appl Microbiol 28:27–33

    Article  PubMed  CAS  Google Scholar 

  • Brizzio S, Turchetti B, de Garcia V, Libkind D, Buzzini P, van Broock M (2007) Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Can J Microbiol 53:519–525

    Article  PubMed  CAS  Google Scholar 

  • Buck JW (2002) In vitro antagonism of Botrytis cinerea by phylloplane yeasts. Can J Bot 80:885–891

    Article  Google Scholar 

  • Buzzini P, Romano SB, Turchetti A, Vaughan UM, Pagnoni, Davoli P (2005) Production of volatile organic sulfur compounds (VOSCs) by basidiomycetous yeasts. FEMS Yeast Res 5:379–385

    Article  PubMed  CAS  Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microb Ecol 82:217–241

    Article  CAS  Google Scholar 

  • Cameotra SS, Makkar RS (2004) Recent application of biosurfactants as biological and immunological molecules. Curr Opin Microbiol 7:262–266

    Article  PubMed  CAS  Google Scholar 

  • Castoria R, De Curtis F, Lima G, De Cicco V (1997) Beta-1, 3 glucanase activity of two saprophytic yeasts and possible mode of action involved as biocontrol agents against postharvest disease. Post-harvest Biol Technol 12:293–300

    Article  CAS  Google Scholar 

  • Castoria R, Morena V, Caputo L, Panfili G, De Cicco V (2005) Effect of the yeast Rhodotorula glutinis strain LS11 on patulin accumulation in stored apples. Phytopathol 95:1271–1278

    Article  CAS  Google Scholar 

  • Chang KJL, Dunstan GA, Abell GCJ, Clementson LA, Blackburn SI, Nichols PD, Koutoulis A (2012) Biodiscovery of Australian thraustochytrids for production of biodiesel and long-chain omega-3 oils. Appl Microbiol Biotechnol 93:2215–2231

    Article  CAS  Google Scholar 

  • Cooper CR Jr (2011) Yeasts pathogenic to humans. In: Kurtzamn CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, vol 1, 5th edn. Elsevier, Amsterdam, pp 9–19

    Chapter  Google Scholar 

  • Crenar B, Petric S (2011) Cytochrome P450 enzymes in the fungal kingdom. Biochim Biophys Acta 1814:29–35

    Article  CAS  Google Scholar 

  • Crozier-Reabe K, Moran GR (2012) Form follows function: structural and catalytic variation in class A flavoprotein monooxygenases. Int J Mol Sci 13:15601–15639

    Article  PubMed  CAS  Google Scholar 

  • Csutak O, Stoica I, Vassu T (2012) Evaluation of production, stability and activity of biosurfactants from yeasts with application of bioremediation of oil-polluted environment. Rev Chim 63:973–977

    CAS  Google Scholar 

  • Davies RJ (1988) Yeast oil from chese whey: process development. In: Moreton RS (ed) Single cell oil. Longman Scientific & Technical, Harlow, pp 99–145

    Google Scholar 

  • Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energy Conversion Manag 50:14034

    Google Scholar 

  • Deng H, Han Y, Liu Y, Jia W, Zhou Z (2012) Identification of a newly isolated erythritol-producing yeast and cloning of its erythritol reductase genes. J Ind Microbiol Biotechnol 39:1663–1672

    Article  PubMed  CAS  Google Scholar 

  • Diaz MR, Fell JW (2004) High-throughput detection of pathogenic yeasts of the genus Trichosporon. J Clin Microbiol 42:3696–3706

    Article  PubMed  CAS  Google Scholar 

  • Edwards A, Douglas B, Anesio AM, Rassner SM, Irvine-Flynn TDL, Sattler B, Griffith GW (2013) A distinctive fungal community inhabiting cryconite holes on glaciers in Switzerland. Fungal Ecol 6:1680176

    Article  Google Scholar 

  • El-Batal AI (2002) Continuous production of l-phenylalanine by Rhodotorula glutinis immobilized cells using a column reactor. Acta Microbiol Pol 51:153–169

    PubMed  CAS  Google Scholar 

  • Elinov NP, Ananeva EP, Yaskovich GA (1999) Activity of exoglycans as sorbents of ions and heavy metals. Appl Biochem Microbiol 35:168–171

    Google Scholar 

  • Fassett RG, Coombes JS (2012) Astaxanthin in cardiovascular health and disease. Molecules 17:2030–2048

    Article  PubMed  CAS  Google Scholar 

  • Fell JW (1976) Yeasts in oceanic regions. In: Jones EBG (ed) Recent advances in aquatic mycology. Elek Science, London, pp 93–124

    Google Scholar 

  • Fell JW, Johnson EA (2011) Phaffia M. W. Miller, Yoneyama & Soneda (1976). In: Kurtzman CP, Fell JW, Boekhour T (eds) The yeasts. A taxonomic study, 5th edn. Elsevier, Amsterdam, pp 1853–1855

    Chapter  Google Scholar 

  • Fell JW, Statzell AC, Hunter IL, Phaff HJ (1969) Leucosporidium gen n, heterobasidiomycetous stage of several yeasts of genus Candida. Ant J Leeuwen J Microbiol Serol 35:433

    Article  CAS  Google Scholar 

  • Fell JW, Hunter IL, Tallman AS (1973) Marine basidiomycetous yeasts (Rhodosporidium ss.n.) with tetrapolar and multiple allelic bipolar mating systems. Can J Microbiol 19:643–657

    Article  PubMed  CAS  Google Scholar 

  • Fell JW, Johnson EA, Scorzetti G (2011) Xanthophyllomyces Golubev (1995). In: Kurtzman CP, Fell JW, Boekhour T (eds) The yeasts. A taxonomic study, 5th edn. Elsevier, Amsterdam, pp 1595–1599

    Chapter  Google Scholar 

  • Fernandez-Arroyo LD, Marin AG, De Segura D, Linde M, Alcalde P, Gutierrez-Alonso I, Ghazi FJ, Plou M, Fernandez-Lobato M, Ballesteros A (2007) Tranformation of maltose into prebiotic isomaltooligosaccharides by a novel alpha-glucosidase from Xanthophyllomyces dendrorhous. Process Biochem 42:1530–1536

    Article  CAS  Google Scholar 

  • Frengova GI, Beshkova DM (2009) Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. J Indust Microbiol Biotechnol 36:163–180

    Article  CAS  Google Scholar 

  • Frengova G, Simova E, Pavlova K, Beshkova D, Grigorva D (1994) Formation of carotenoids by Rhodotorula glutinis in whey ultrafiltrate. Biotechnol Bioeng 44:888–894

    Article  PubMed  CAS  Google Scholar 

  • Frengova G, Simova E, Pavlova K, Beshkova D, Grigorva D (2006) Beta-carotene-rich carotenoid protein preparation and exopolysaccharide production by Rhodotorula rubra GED8 grown with a yogurt starter culture. Zeitschr Naturforsch- A J Biosci 61:571–577

    CAS  Google Scholar 

  • Fromentin Y, Grellier P, Wansi JD, Lallemand MC, Buisson D (2012) Yeast-mediated xanthone synthesis through oxidative intramolecular cyclization. Org Lett 14(19):5054–5057

    Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals, and radionuclides by fungi, bioweathering and bioremediation. Mycol Rec 111:3–49

    Article  CAS  Google Scholar 

  • Gadd GM, Raven JA (2010) Geomicrobiology of eurkaryotic microorganisms. Geomicrobiol J 26:491–519

    Article  CAS  Google Scholar 

  • Galagan JE, Henn MR, Ma L-J, Cuomo CA, Birren B (2008) Genomics of the fungal kingdom: insights into eukaryotic biology. Genome Res 15:1620–1631

    Article  CAS  Google Scholar 

  • García-Hernández, Rodríguez Z, Brandãao LR, Rosa CA, Nicoli JR, Iglesias AE, Peréz-Sancez T, Salabarría RB, Halihel N (2012) Identification and in vitro screening of avian yeasts for use as a probiotic. Res Vet Sci 93:798–802

    Article  PubMed  CAS  Google Scholar 

  • Gerson U, Paz Z, Kushnir L, Sztejnberg A (2005) New fungi to control phytophagous mites and phytopathogenic fungi. Org Biol Control IOBC/WPRS Bull 28:103–106

    Google Scholar 

  • Godjevargova T, Ivanova D, Alexieva Z, Dimova N (2003) Biodegradation of toxic organic components from industrial phenol production waste waters by free and immobilized Trichosporon cutaneum. Proc Biochem 38:9150920

    Article  Google Scholar 

  • Golubev VI, Golubev NV (2002) Selenium tolerance of yeasts. Microbiology 71(4):386–390

    Google Scholar 

  • Gonzalez-Garcia Y, Hernandez R, Zhang G, Esclante FME, Holmes W, French WT (2013) Lipids accumulation in Rhodotorula glutinis and Cryptococcus curvatus growing on distillery wastewater as culture medium. Environ Prog Sustainable Energy 32:69–74

    Article  CAS  Google Scholar 

  • Goretti M, Ponzoni C, Caselli E, Marchigani E, Cramarossa MR, Turchetti B, Buzzini P, Forti L (2009) Biotransformation of electron-poor alkenes by yeasts: asymmetric reduction of (4s)-(+)-carvone by yeast enoate reductases. Enzyme Microb Technol 45:463–468

    Article  CAS  Google Scholar 

  • Goswami G, Chaudhuri S, Dutta D (2010) The present perspective of astaxanthin with reference to biosynthesis and pharmacological importance. World J Microbiol Biotechnol 26:1925–1939

    Article  CAS  Google Scholar 

  • Hagedorn S, Kaphammer B (1994) Microbial biocatalysis in the generation of fragrance chemicals. Annu Rev Microbiol 48:773–800

    Article  PubMed  CAS  Google Scholar 

  • Hainal AR, Caparu AM, Voif I, Popa VI (2012) Lignin as a carbon source for the cultivation of some Rhodotorula species. Cellulose Chem Technol 46:87–96

    CAS  Google Scholar 

  • Hamada S, Seike Y, Tanimori S, Sakamoto T, Kishida M (2010) Characterization of d-galacturonate reductase purified from the psychrophilic yeast species Cryptococcus diffluens. J Biosci Bioeng 111:518–521

    Article  CAS  Google Scholar 

  • Hanif NQ, Muhammed G, Muhammed K, Tahira I, Raja GK (2012) Reduction of ochratoxin A in broiler serum and tissues by Trichosporon mycotoxinivorans. Res Veterinary Sci 93:795–797

    Article  CAS  Google Scholar 

  • Heitman J, Kozel TR, Kwon Chung KJ, Perfect JR, Casadevall A (eds) (2011) Cryptococcus: from human pathogen to model yeast. ASM, Washington, DC

    Google Scholar 

  • Hoshino T, Ojima K, Setoguchi Y (2000) Astaxanthin synthase. Hoffmann-LaRoche, European patent no. 1035206-A3

  • Houde A, Kademi AD, Leblanc D (2004) Lipases and their industrial applications—an overview. Appl Biochem Biotechnol 118:155–170

    Article  PubMed  CAS  Google Scholar 

  • Huang C, Wu H, Smith TJ, Liu Z-J, Lou W-Y, Zong M-H (2012a) In vivo detoxification of furfural during lipid production by the oleaginous yeast Trichosporon fermentans. Biotechnol Lett 34:1637–1642

    Article  PubMed  CAS  Google Scholar 

  • Huang C, Wu H, Smith TJ, Liu ZJ, Lou WY, Zong MH (2012b) In vivo detoxification of furfural during lipid production by the oleaginous yeast Trichosporon fermentans. Biotechnol Lett 34:1637–1642

    Article  PubMed  CAS  Google Scholar 

  • Huang C, Wu H, Liu L-P, Lou W-Y, Zong M-H (2012c) Effects of alcohol compounds on growth and lipid accumulation of oleaginous yeast Trichosporon fermentans. PLoS One 7:e46975

    Article  PubMed  CAS  Google Scholar 

  • Hussein G, Sankawa U, Goto H, Matsumoto K, Watanabe H (2006) Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod 69:443–449

    Article  PubMed  CAS  Google Scholar 

  • Johnson EA (2003) Phaffia rhodozyma: a colorful odyssey. Int Microbiol 6:169–174

    Article  PubMed  CAS  Google Scholar 

  • Johnson EA (2013) Biotechnology of non-Saccharomyces yeasts—the ascomycetes. Appl Microb Biotechnol 97:503–517

    Article  CAS  Google Scholar 

  • Johnson EA, An GH (1991) Astaxanthin from microbial sources. Crit Rev Biotechnol 11:297–326

    Article  CAS  Google Scholar 

  • Johnson EA, Lewis MJ (1980) Astaxanthin formation by the yeast Phaffia rhodozyma. J Gen Microbiol 115:173–183

    Google Scholar 

  • Johnson EA, Schroeder (1995) Microbial carotenoids. Adv Biochem Eng/Biotech 53:119–178

    Article  Google Scholar 

  • Johnson EA, Conklin DE, Lewis MJ (1977) The yeast Phaffia rhodozyma as a dietary pigment source in salmonids and crustaceans. J Fish Res Board Can 34:2417–2421

    Article  CAS  Google Scholar 

  • Kamp AF, La Rivière JWM, Verhoeven W (1959) Albert Jan Kluyver: his life and work. Interscience, New York, p 20

    Google Scholar 

  • Kaneko H, Hosohara M, Tanaka M, Itoh T (1976) Lipid composition of 30 species of yeast. Lipids 11:837–844

    Article  PubMed  CAS  Google Scholar 

  • Kanofsky JR, Sima P (1995) Singlet oxygen generation from the reactions of ozone with plant leaves. J Biol Chem 270:7850–7852

    Article  PubMed  CAS  Google Scholar 

  • Karakaya A, Laieli T, Takac S (2012) Development of process conditions for biodegradation of raw olive mill wastewater by Rhodotorula glutinis. Int J Biodeteriation Biodegradation 75:75–82

    Article  CAS  Google Scholar 

  • Kaur CG, Singh B (2011) Production and characterization of microbial carotenoids as an alternative to synthetic colors: a review. Int J Food Prop 147:503–513

    Google Scholar 

  • Hazen KC, Howell SA (2007) Candida, Cryptococcus, and other yeasts of medical importance. In: Murray PR, Barron JO, Jorgensen JH, Landry ML, Pfaller MA (eds) Manual of clinical microbiology, vol 2, 9th edn. ASM, Washington, DC, p 1762

    Google Scholar 

  • Kita K, Fukura T, Nakase K-I, Okamoto K, Yanase K, Shimizu S (1999) Cloning, overexpression, and mutagenesis of the Sporobolomyces salmonicolor AKU4429 gene encoding a new aldehyde reductase, which catalyzes the stereoselective reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (S)-4-chloro-3-hydroxybutanoate. Appl Environ Microbiol 65:5207–5211

    PubMed  CAS  Google Scholar 

  • Kitamoto D, Morita T, Fukukoa T, Konishi M, Imura T (2009) Self-assembling properties of glycolipid biosurfactants and their potential applications. Curr Opin Colloid Interface Sci 14:315–328

    Article  CAS  Google Scholar 

  • Kluyver AJ, Donker HJL (1926) Die Einheit der Biochemie. Chem Zelle Gewebe 13:134–190

    CAS  Google Scholar 

  • Kojeh T, Gostincar C, Volkmann M, Gorbushina A, Gunde-Cimeran N (2006) Mycosporines in extremophilic fungi—novel complementary osmolytes? Environ Chem 3:105–110

    Article  Google Scholar 

  • Konishi M, Morita T, Fukuoka R, Imura T, Kakugawa K, Kitamoto D (2008) Efficient production of mannosylerythritol lipids with high hydrophilicity by Pseudozyma hubeiensis KM-59. Appl Microbiol Biotechnol 78:37–46

    Article  PubMed  CAS  Google Scholar 

  • Krallish I, Gonta S, Savenkova L, Bergauer P, Margesin R (2006) Phenol degradation by immobilized cold-adapted yeast strains of Cryptooccus terreus and Rhodotorula creatinivora. Extremophiles 10:441–449

    Article  PubMed  CAS  Google Scholar 

  • Krastonof A, Alexieva Z, Yemendzhiev H (2013) Microbial degradation of phenol and phenolic derivatives. Eng Life Sci 13:76–87

    Article  CAS  Google Scholar 

  • Kritzinger SM, Kilian SG, Potgieter MA, du Preez JC (2003) The effect of production parameters on the synthesis of the prebiotic trisaccharide, neokestose, by Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Enz Microb Technol 32:728–737

    Article  CAS  Google Scholar 

  • Kurtz AM, Crow SA (1997) Transformation of chlororesorcinol by the hydrocarbonoclastic yeasts Candida maltosa, Candida tropicalis, and Trichosporon olivide. Curr Microbiol 35:165–168

    Article  PubMed  CAS  Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T (eds) (2011a) The yeasts: a taxonomic study, vol 1–3, 5th edn. Amsterdam, Elsevier

    Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout (2011b) Definition classification and nomenclature of the yeasts. In: Kurtzman CP, Fell JW, Boekhout (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam, p 5

    Google Scholar 

  • Kutty SN, Philp R (2008) Marine yeasts—a review. Yeast 25:465–483

    Article  PubMed  CAS  Google Scholar 

  • Kwon-Chung KJ (1975) A new genus, Filobasidella, the perfect state of Cryptococcus neoformans. Mycologia 67:1197–1200

    Article  PubMed  CAS  Google Scholar 

  • Lachance MA (2003) The Phaff school of yeast ecology. Int Microbiol 6:163–167

    Article  PubMed  Google Scholar 

  • Lange N, Steinbüchel A (2011) Beta-Carotene production by Saccharomyces cerevisiae with regard to plasmid stability and culture media. Appl Microbiol Biotechnol 91(6):1611–1622

    Google Scholar 

  • Legras HL, Merdinoglu D, Cornuet JM, Karst F (2007) Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol Ecol 16:2091–2102

    Article  PubMed  CAS  Google Scholar 

  • Leman J (1997) Oleagionous microorganisms: an assessment of the potential. Adv Appl Microbiol 43:195–243

    Article  PubMed  CAS  Google Scholar 

  • Levinson WE, Kurtzman CP, Kuo TM (2006) Production of itaconic acid by Pseudozyma antarctica NRRL Y-7808 under nitrogen-limited conditions. Enzyme Microb Technol 39:824–827

    Article  CAS  Google Scholar 

  • Lewis DFV (2001) Guide to cytochromes P450: structure and function. Taylor and Francis, London

    Book  Google Scholar 

  • Libkind D, Brizzio S, van Broock MR (2004a) Rhodotorula mucilaginosa, a carotenoid producing yeast from a Patagonian high altitude lake. Folia Microbiol 49:19–25

    Article  CAS  Google Scholar 

  • Libkind D, Pérez P, Sommaruga R, Diéguez MC, Ferraro M, Brizzio S, Hl Z, van Broock MR (2004b) Constitutive and UV-inducible synthesis of photoprotective compounds (carotenoids and mucosporines) by freshwater yeasts. Photchem Photobiol Sci 3:281–286

    Article  CAS  Google Scholar 

  • Libkind D, Moline M, van Broock M (2010) Production of the UVB-absorbing compound mycosporine–glutaminol–glucoside by Xanthphyllomyces dendrorhous (Phaffia rhodozyma). FEMS Yeast Res 11:52–59

    Article  PubMed  CAS  Google Scholar 

  • Linde D, Rodriguez-Colinas B, Estevez M, Poveda A, Piou FJ, Lobata MF (2012) Analysis of neofructooligosaccharides production mediated by the extracellular beta-fructofuranosidase from Xanthophyllomyces dendrorhous. Bioresource Technol 109:123–130

    Article  CAS  Google Scholar 

  • Louhasakul Y, Cheirslip B (2013) Industrial waste utilization for low-cost production of raw material oil through microbial fermentation. Appl Microbiol Biotechnol 169:1101–1122

    Google Scholar 

  • MacGillivray AR, Shiaris MP (1993) Biotransformation of polycyclic aromatic hydrocarbons by yeasts isolated from coastal sediments. Appl Environ Microbiol 59:1613–1618

    PubMed  CAS  Google Scholar 

  • Madhour A, Anke H, Mucci A, Daboli P, Weber RWS (2005) Biosynthesis of the xanthophyll plectaniaxanthin as a stress response in the red yeast Dioszegia (Tremellales, Heterobasidiomycetes, Fungi). Phytochem 66:(22)2617–2626

  • Magliani W, Conti S, Gerloni M, Bertolotti PL (1997) Yeast killer systems. Clin Microbiol Rev 10:369–400

    PubMed  CAS  Google Scholar 

  • Mao D-B, Feng Y-Q, Bai Y-H, Xu C-P (2012) Novel biotransformation to produce betulone by Rhodotorula mucilaginosa. J Taiwan Inst Chem Eng 43:825–829

    Article  CAS  Google Scholar 

  • Marchand G, Remus W, Chain F, Jammanmi W, Belzile F, Belanger RR (2009) Identification of genes potentially involved in the biocontrol activity of Pseudozyma flocculosa. Phytopathol 99:1142–1149

    Article  CAS  Google Scholar 

  • Marcoleta A, Niklitschek M, Wozniak A, Lozano C, Alcáino BM, Cifuentes V (2011) Glucose and ethanol-dependent transcriptional regulation of the astaxanthin biosynthesis pathway in Xanthophyllomyces dendrorhous. BMC Microbiol 11:190

    Article  PubMed  CAS  Google Scholar 

  • Margesin R (2007) Alpine microorganisms: useful tools for low-temperature bioremediation. J Microbiol 45:281–285

    PubMed  CAS  Google Scholar 

  • Margesin R, Fell JW (2008) Mrakiella cryoconiti gen. nove., sp nov., a psychrophilic, anamorphic, basidiomycetous yeast from alpine and arctic habitats. Evol Microbiol Microbiol 58:2977–2982

    CAS  Google Scholar 

  • Masaki K, Kamini NR, Ikeda H, Iefuji (2005) Cutinase-like enzyme from the yeast Cryptococcus sp strain S-2 hydrolyzes polylactic and other biodegradable plastics. Appl Environ Microbiol 71:7548–7550

    Article  PubMed  CAS  Google Scholar 

  • Matsui T, Otsuka K-Y, Sato (2012) Microbial oil production from carbohydrates using Sporobolomyces carnicolor strain O33. Ann Microbiol 62:861–864

    Article  CAS  Google Scholar 

  • Mayne ST (1996) Beta-carotene, carotenoids, and disease prevention in humans. FASEB J 10:690–701

    PubMed  CAS  Google Scholar 

  • Meesters PAEP, Huijbert GNM, Eggink G (1996) High cell density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl Microbiol Biotechnol 45(5):575–579

    Google Scholar 

  • Melillo E, Mentendam R, Quax RJ, Kayser O (2012) Heterologous expression of pentalenene synthase (PSS) from Streptomyces UC5319 in Xanthophyllomyces dendrorhous. J Biotechnol 161:302–307

    Article  PubMed  CAS  Google Scholar 

  • Melillo E, Setroikromo QWJ, Kayser O (2013) Production of alpha-cuprene in Xanthophyllomyces dendrorhous: a step closer to a potent terpene biofactory. Microbial Cell Factories 12:13

    Article  PubMed  CAS  Google Scholar 

  • Mendes AA, Oliveira PC, Velez AM, Giordano RC, Giordano Rde L, de Castro HF (2012) Evaluation of immobilized lipases on poly-hydroxybutyrate beads to catalyze biodiesel synthesis. Int J Biol Macromol 50(3):503–511

    Google Scholar 

  • Middelhoven WJ (2006) Polysaccharides and phenolic compounds as substrates for yeasts isolated from rotten wood and description of Cryptococcus fagi sp. nov. Ant Leeuwen Int J Gen Mol Microbiol 90:57–67

    Article  CAS  Google Scholar 

  • Middelhoven WJ, Dejong IM, Dewinter M (1991) Arxula adeninivorans, a yeast assimilating many nitrogenous and aromatic compounds. Ant Leeuw Int J Gen Mol Microbiol 59:129–137

    Article  CAS  Google Scholar 

  • Middlehoven WJ (1993) Catabolism of benzen compounds by ascomycetous and basidiomycetous yeasts and yeast-like fungi—a literature review and an an experimental approach. Ant Leeuw Int J Gen Appl Mol Microbiol 63:125–144

    Article  Google Scholar 

  • Middlehoven WJ, Hoogkamer TE, Niet MC, Krieger van Rij NJW (1984) Trichosporon adeninovorans sp. nov., a yeast species utilizing adenine, xanthine, uric acid, putrescine, and primary n-alkylamines as sole source of carbon. Antonie Van Leeuwenhoek 50:369–378

    Article  Google Scholar 

  • Middlehoven WJ, Scorzetti G, Fell JW (2004) Systematics of the anamorphic basidiomycetous yeast genus Trichosporon Behrend with the description of five novel species: Trichosporon vadense, T. smithiae, T. dehoogii, T. scarabaeorum, and T. gamsii. Int J Syst Evol Biol 54:975–986

    Article  CAS  Google Scholar 

  • Miki W (1991) Biological functions and activities of animal carotenoids. Pure Appl Chem 63:141–146

    Article  CAS  Google Scholar 

  • Mimee B, Labbe B, Pelletier R, Belanger RR (2005) Antifungal activity of flocculosin, a novel glycolipid isolated from Pseudozyma flocculosa. Antimicrob Agents Chemother 49:1597–1599

    Article  PubMed  CAS  Google Scholar 

  • Moliné M, Flores R, Libkind D, Dieguez MC, Farías ME, van Broock M (2010) Photoprotection by carotenoid pigments in the yeast Rhodotorula mucilaginosa: the role of torularhodin. Photochem Photobiol Sci 9:1145–1151

    Article  PubMed  CAS  Google Scholar 

  • Molnar O, Schatzmayr G, Fuchs E, Prillinger H (2004) Trichosporon mycotoxinivorans sp. nov., a new yeast species useful in biological detoxification of various mycotoxins. Syst Appl Microbiol 27:661–671

    Article  PubMed  CAS  Google Scholar 

  • Monod J, Jacob F (1961) General conclusions: teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb Symp Quant Biol 26:389–401

    Article  PubMed  CAS  Google Scholar 

  • Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2007) Physiological differences in the formation of the glycolipid biosurfactants, mannosylerythritol lipids, between Pseudozyma antactica and Pseudozyma aphidis. Appl Microbiol Biotechnol 74:307–315

    Article  PubMed  CAS  Google Scholar 

  • Morita T, Fukuoka T, Imura T, Kitamoto D (2012) Formation of two novel glycolipid biosurfactants, mannosylribitol lipid and amannosylarabitol lipid, by Pseudomyma parantarctica JCM 11752(T). Appl Microbiol Biotechnol 96:931–938

    Article  PubMed  CAS  Google Scholar 

  • Morita T, Kolke H, Koyama Y, Hagiwara J, Ito E, Fukuoka T, Imura T, Machida M, Kitamoto D (2013) Genome sequence of the basidiomycetous yeast Pseudozyma antarctica T-34, a producer of the glycolipid biosurfactants mannosylerythritiol lipids. Genome Annnounc 1(2):e00064-13. doi:10.1128/genomeA00064-13

    Article  Google Scholar 

  • Muñoz AJ, Ruiz E, Abriouel H, Gálvez A, Ezzouhri L, Lairini K, Espínola F (2012) Heavy metal tolerance of microorganisms isolated from wastewaters: Identification and evaluation of its potential for biosorption. Chem Eng J 210:325–332

    Google Scholar 

  • Nakagawa T, Nagaoka T, Taniguchi S, Miyaji T, Tomizuka N (2004) Isolation and charaterization of psychrophilic yeast producing cold-adapted enzymes. Lett Appl Microbiol 38:383–387

    Article  PubMed  CAS  Google Scholar 

  • Ojima K, Breitenbach J, Visser H, Setoguchi Y, Tabata K, Hoshino T, van den Berg J, Sandmann G (2006) Cloning of the astaxanthin synthase gene from Xanthophyllomyces dendrorhous (Phaffia rhodozyma) and its assignment as a beta-carotene 3-hydroxylase/4-ketolase. Mol Genet Genom 275:148–158

    Article  CAS  Google Scholar 

  • Orndorff SA, Constantino N, Stewart D, Durham DR (1988) Strain improvement of Rhodotorula graminis for production of a novel l-phenylalanine ammonia lyase. Appl Environ Microbiol 54:996–1002

    PubMed  CAS  Google Scholar 

  • Patel RN (2004) Biocatalytic synthesis of chiral pharmaceutical intermediates. Food Technol Biotechnol 42:305–325

    CAS  Google Scholar 

  • Patel RN (2007) Biocatalysis: synthesis of chiral intermediates for pharmaceuticals. In: Hou CT, Shaw J-F (eds) Biocatalysis and biotechnology for functional goods and industrial products. CRC, Boca Raton, pp 283–322

    Google Scholar 

  • Pavlova K, Ziatanov M, Antova G, Angelova-Romova M, Georgina K (2012) Biosynthesis and characterization of exopolysaccharides and lipids from Antarctic yeasts. Biotechnol Biotechnol Equip 26:3223–3228

    Google Scholar 

  • Perera CO, Yen GM (2007) Functional properties of carotenoids in human health. Int J Food Prop 10:201–230

    Article  CAS  Google Scholar 

  • Péteri Z, Téren J, Vágvölgyi C, Varga J (2007) Ochratoxin degradation and adsorption by astaxanthin-producing yeasts. Food Microbiol 24:205–210

    Article  PubMed  CAS  Google Scholar 

  • Petrescu I, Lamotte-Braaseur J, Chessa JP, Ntarima P, Claeyssens M, Devreese B, Marino G, Gerday C (2000) Xylanase from psychriphilic yeast Cryptococcus adeliae. Extremophiles 4:137–144

    Article  PubMed  CAS  Google Scholar 

  • Phaff HJ (1990) Isolation of yeasts from natural sources. In: Labeda DP (ed) Isolation of biotechnological organisms from nature. McGraw-Hill, New York, pp 53–79

    Google Scholar 

  • Phaff HJ, Miller MW, Mrak EM (1978) The life of yeasts, 2nd edn. Harvard University Press, Cambridge

    Google Scholar 

  • Pohl CH, Smit MS, Albertyn J (2011) Rhodotorula bloemfonteinensis sp. Nov., Rhodotorula eucalyptica sp. nov., Rhodotorula orientis sp. nov. and Rhodotorula pini sp. nov., yeasts isolated from monoterpene-rich environments. Int J Syst Evol Microbiol 61:23202327

    Article  Google Scholar 

  • Poli A, Anzelmo G, Tommonaro G, Pavlova K, Casburi A, Nicolaus B (2010) Production and chemical characterization of an expolysaccharide synthesized by psychrophilic yeast strain Sporobolomyces salmonicolor AL(1) isolated from Livingston Island, Antarctica. Foli Microbiol 55:576–581

    Article  CAS  Google Scholar 

  • Pollegoni L, Molia G, Sacchi S, Rosini E, Verga R, Pilone MS (2008) Properties and applications of microbial d-amino oxidases: current state and perspectives. Appl Microbiol Biotechnol 78:1–16

    Article  CAS  Google Scholar 

  • Polo A, Linde D, Estevez M, Fernandez-Lobato M, Sanz-Aparicio J (2010) Crystallization and preliminary X-ray diffraction analysis of the fructofuranosidase from Xanthophyllomyces dendrorhous. Acta Crystal Section F—Struct Biol Crystal Commun 66:1441–1444

    Article  CAS  Google Scholar 

  • Pompon D, Truan G, Urban P (2008) Cytochrome P450 engineering. Biofutur 288:34–38

    Google Scholar 

  • Priest ND (2001) Toxicity of depleted uranium. Lancet 357:244–246

    Article  PubMed  CAS  Google Scholar 

  • Pscheidt B, Glieder A (2008) Yeast cell factories for fine chemical and API production. Microb Cell Factores 7:25

    Article  CAS  Google Scholar 

  • Querol A, Fleet G (eds) (2006) Yeasts in foods and beverages. Springer, Berlin

    Google Scholar 

  • Quinn AJ, Pickup MJ, D'Cunha GB (2011) Enzyme activity evaluation of organic solvent-treated phenylalanine ammonia lyase. Biotechnol Progr 27:1554–1560

    Article  CAS  Google Scholar 

  • Rajasingh H, Vage DI, Pavey SA, Omholt SW (2007) Why are salmonids pink? Can J Fish Aquat Sci 64:1614–1627

    Article  Google Scholar 

  • Rensburg V, Moleleki N, van der Walt JP, Botes P, van Dyk MS (1997) Biotransformation of (+) limonene and (−) piperitine by yeasts and yeast like fungi. Biotechnol Lett 19:779–782

    Article  Google Scholar 

  • Ribeiro IA, Bronze MR, Castro MF, Ribeiro MHL (2012) Design of selective production of sophorolipids by Rhodotorula bogoreinsis through nutritional requirements. J Molec Recog 25:630–640

    Article  CAS  Google Scholar 

  • Robertson LA (2003) The Delft School of Microbiology, the nineteenth to the twenty-first century. Adv Appl Microbiol 52:357–388

    Article  PubMed  Google Scholar 

  • Romero-Guido C, Belo I, Ta TMN, Cao-Hoang L, Alchihab M, Gomes N, Thonart P, Texeira JA, Destain J, Wache Y (2011) Biochemistry of lactone formation in yeast and fungi and its utilisation for the production of flavour and fragrance compounds. Appl Microbiol Biotechnol 89:535–547

    Article  PubMed  CAS  Google Scholar 

  • Rustoy EM, Cerruti P, Galvagno MA, Baldessari A (2008) An efficient biotransformation of dialkyl esters of 2-oxoglutaric acid by Rhodotorula minuta whole cells. Biocatal Biotransform 26:204–209

    Article  CAS  Google Scholar 

  • Sacchi S, Caidnelli, Cappelletti P, Pollegoni L, Molia G (2012) Structure–function relationships in human d-amino acid oxidase. Amino Acids 43:1833–1850

    Article  PubMed  CAS  Google Scholar 

  • Sampaio JP (1999) Utilization of low molecular weight aromatic compounds by heterobasidomycetous yeasts: taxonomic implications. Can J Microbiol 45:491–512

    Article  PubMed  CAS  Google Scholar 

  • Sandoval G (ed) (2012) Lipases and phospholipases. Methods and protocols. Humana, New York

    Google Scholar 

  • Schmidt I, Schewe H, Gassel S, Jin C, Buckingham J, Hümbelin M, Sandmann G, Schrader J (2011) Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol 89:555–571

    Article  PubMed  CAS  Google Scholar 

  • Schmitt MJ, Breinig F (2006) Yeast viral killer toxins: lethality and self-protection. Nat Rev Microbiol 4:212–221

    Article  PubMed  CAS  Google Scholar 

  • Schuler MA, Werck-Reichart D (2003) Functional genomics of P450s. Annu Rev Plant Biol 54:629–667

    Article  PubMed  CAS  Google Scholar 

  • Scorzetti G, Fell JW, Fonseca A, Statzell-Tallman A (2002) Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA. FEMS Yeast Res 2:495–517

    PubMed  CAS  Google Scholar 

  • Seo H, Um H-J, Min J, Rhee S-K, Cho TJ, Kim Y-H, Lee J (2007) Pseudozyma jejuensis sp. nov., a novel cutinolytic yeast species that is able to degrade plastic waste. FEMS Yeast Res 7:1035–1045

    Article  PubMed  CAS  Google Scholar 

  • Seok-Keun C, Kim J-H, Park Y-S, Kim Y-J, Chang H-H (2007) An efficient method for the extraction of astaxanthin from the red yeast Xanthophyllomyces dendrorhous. J Microbiol Biotechnol 17:847–852

    Google Scholar 

  • Shinozaki Y, Morita T, Cao XH, Yoshida S, Koitabashi M, Watanabe T, Suzuki K, Sameshima-Yamashita Y, Nakajima-Kambe T, Fujii T, Kitamoto HK (2013a) Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: cloning, sequencing, and characterization. Appl Microbiol Biotechnol 97(7):2951–2959

    Google Scholar 

  • Shinozaki Y, Watanabe T, Nakajima-Kambe T, Kitamoto HK (2013b) Rapid and simple colorimetric assay for detecting the enzymatic degradation of biodegradable plastic films. J Biosci Bioeng 115:111–114

    Google Scholar 

  • Siminszky B, Corbin FT, Ward ER, Fleischmann TJ, Dewey RE (1999) Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. Proc Natl Acad Sci USA 96(4): 1750–1755

    Google Scholar 

  • Singh P, Singh SM (2012) Characterization of yeasts and filamentous fungi isolated from cryconite holes of Svalbard. Polar Biol 35:575–583

    Article  Google Scholar 

  • Singh P, Tsuji M, Singh SM, Roy U, Hoshino T (2013) Taxonomic characterization, adaptation strategies and biotechnological potential of cryophilic yeasts from ice cores of Midere Lovénbreen glacier, Swalbard, Arctic. Cryobiology 66:167–175

    Article  PubMed  CAS  Google Scholar 

  • Sollai FA, Zycca P, Rescigno A, Dumitriu E, Sanjust E (2012) Sporobolomyces salmonicolor as a tool for nitrate removal from wastewaters. Environ Eng Manag J 11:1455–1460

    CAS  Google Scholar 

  • Spath SB (1999) C. B. Van Niel and the culture of microbiology, 1920–1965. Ph.D. thesis, University of California, Berkeley

  • Stewart JD (2006) Genomes as resources for biocatalysis. Adv Appl Microbiol 59:31–52

    Article  PubMed  CAS  Google Scholar 

  • Takuji T, Shimizu M, Moriwaki H (2012) Cancer chemoprevention by carotenoids. Molecules 17:2030–2048

    Article  CAS  Google Scholar 

  • Tani A, Kawahara T, Yamamoto Y, Kimbara K, Kawai F (2010) Genes involved in novel adaptive aluminum resistance in Rhodotrula glutinis. J Biosci Bioeng 109:453–458

    Article  PubMed  CAS  Google Scholar 

  • Taskin M (2013) Co-production of tannase and pectinase by free and immobilized cells of the yeast Rhodotorula glutinis MP-10 isolated from tannin-rich persimmon (Diospyros kaki L.) fruits. Bioprocess Biosyst Eng 36:165–172

    Article  PubMed  CAS  Google Scholar 

  • Tefft RE, Goodwin TW, Simpson KL (1970) Aspects of the stereochemistry of torularhodin biosynthesis. Biochem J 117:921

    PubMed  CAS  Google Scholar 

  • Teichmann B, Labbe C, Lefebvre F, Bolker M, Linne BRR (2011) Identification of a biosynthesis gene cluster for flocculosin a cellobiose lipid produced by the biocontrol agent Pseudozyma flocculosa. Mol Microbiol 79:148301495

    Article  CAS  Google Scholar 

  • Thanh VN, Smit MS, Moleleki N, Fell JW (2004) Rhodotorula cycloclastica sp. nov., Rhodotorula retinophila sp. nov. and Rhodotorula terpenoidalis sp. nov., three limonene-utilizing yeasts isolated from soil. FEMS Yeast Res 4:857–863

    Article  CAS  Google Scholar 

  • Theunissen B (1996) The beginnings of the Delft tradition revisited: Beijerinck and the genetics of microorganisms. J Hist Biol 29:197–228

    Article  PubMed  CAS  Google Scholar 

  • Tibor D (ed) (2008) Handbook of food spoilage yeasts, 2nd edn. Boca Raton, CRC

    Google Scholar 

  • Torres DPM, Goncalves MP, Texiera JA, Rodrigues LR (2010) Galacto-oligosaccharides: production, properties, and significance as prebiotics. Comprehen Rev Food Sci Food Safety 9:438–454

    Article  CAS  Google Scholar 

  • Turner NJ (2011) Ammonia lyases and aminomutases as biocatalysts for the synthesis of alpha-amino acids. Curr Opin Chem Biol 15:234–240

    Article  PubMed  CAS  Google Scholar 

  • Ulber R, Soyez K (2004) From wine to penicillin—5000 years of biotechnology Chemi in Unserer Zeit 38: 172–180

  • Urlacher VB, Girhard M (2011) Cytochrome P450 monooxygenases: an updated on perspectives for synthetic applications. Trends Biotechnol 30:26–35

    Article  PubMed  CAS  Google Scholar 

  • van Niel CB (1949) The “Delft School” and the rise of general microbiology. Bacteriol Rev 13:161–174

    PubMed  Google Scholar 

  • Van Niel CB, Kluyver AJ (1927) Sporobolomyces—ein Basidiomyzet? Ann Mycol Notitiam Sci Mycol Univ 25:389

    Google Scholar 

  • Waché Y, Husson G, Feron GJ, Belin J-M (2006) Yeast as an efficient biocatalyst for the production of lipid-derived flavours and fragrances. Antonie van Leeuwenhoek 89:405–416

    Article  PubMed  Google Scholar 

  • Wegner GH (1983) Biochemical conversions by yeast fermentation at high cell densities. United States Patent, 4,329,414

  • Yuan J-P, Peng J, Yin K, Wang J-H (2011) Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res 55(1):150–165

    Google Scholar 

  • Yurkov AM, Vustin MM, Tyaglov BV, Maksimova IA, Sineokly SP (2008) Pigmented basidiomycetous yeasts are a promising source of carotenoids and ubiquinone Q (10). Microbiol 77:1–6

    Article  CAS  Google Scholar 

  • Yurkov AM, Kemler M, Begerow D (2012) Assessment of yeast diversity in soils under different management regimes. Fungal Ecol 5(1):24–35

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, E.A. Biotechnology of non-Saccharomyces yeasts—the basidiomycetes. Appl Microbiol Biotechnol 97, 7563–7577 (2013). https://doi.org/10.1007/s00253-013-5046-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5046-z

Keywords

Navigation