Skip to main content
Log in

The Effect of Different Dominant VRN Alleles and Their Combinations on the Duration of Developmental Phases and Productivity in Common Wheat Lines

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Using allele-specific primers and hybridological analysis, the allelic composition of the VRN and PPD loci was determined in common wheat lines derived from the Bezostaya 1 (Bez1) cultivar. In lines of the Bez1 cultivar carrying different dominant alleles of the VRN genes and their combinations, the duration of certain developmental phases was examined. It was demonstrated that, in lines with the combination of two dominant alleles of the VRN-1 locus (Bez1Vrn-A1aVrn-B1a and Bez1Vrn-A1aVrn-B1c), the duration of the “tillering–first node” and “shoots–heading” periods was statistically significantly decreased compared to the initial isogenic lines (i:Bez1Vrn-A1a, i:Bez1Vrn-B1a, and i:Bez1Vrn-B1c). In addition, the presence of two dominant alleles led to the reduction in the time span of the organogenesis stages, as shown by studying the dynamics of shoot apex size and morphology in common wheat lines of the Bez1 cultivar. The productivity analysis in the lines of the Bez1 cultivar showed that the i:Bez1Vrn-B1c line was characterized by highest productivity among isogenic lines, while the Bez1Vrn-A1a Vrn-B1c line was more productive than the Bez1Vrn-A1a Vrn-B1a line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Snape, J.W., Butterworth, K., Whitechurch, E., and Worland, A.J., Waiting for fine times: genetics of flowering time in wheat, Euphytica, 2001, vol. 119, pp. 185—190. https://doi.org/10.1023/A:1017594422176

    Article  CAS  Google Scholar 

  2. Kamran, A., Iqbal, M., and Spaner, D., Flowering time in wheat (Triticum aestivum L.): a key factor for global adaptability, Euphytica, 2014, vol. 197, pp. 1—26. https://doi.org/10.1007/s10681-014-1075-7

    Article  CAS  Google Scholar 

  3. Yan, L., Loukoianov, A., Tranquilli, G., et al., Positional cloning of wheat vernalization gene VRN1,Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, pp. 6263—6268. https://doi.org/10.1073/pnas.0937399100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Trevaskis, B., Hemming, M.N., Peacock, W.J., and Dennis, E.S., HvVRN2 responds to day length, whereas HvVRN1 is regulated by vernalization and developmental status, Plant Physiol., 2006, vol. 140, pp. 1397—1405. https://doi.org/10.1104/pp.105.073486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yan, L., Fu, D., Li, C., et al., The wheat and barley vernalization gene VRN3 is an orthologue of FT,Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, pp. 19581—19586. https://doi.org/10.1073/pnas.0607142103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yoshida, T., Nishida, H., Zhu, J., et al., Vrn-D4 is a vernalization gene located on the centromeric region of chromosome 5D in hexaploid wheat, Theor. Appl. Genet., 2010, vol. 120, pp. 543—552. https://doi.org/10.1007/s00122-009-1174-3

    Article  CAS  PubMed  Google Scholar 

  7. Stelmakh, A.F., Genetic effects of Vrn genes on heading date and agronomic traits in bread wheat, Euphytica, 1993, vol. 65, pp. 53—60.

    Article  Google Scholar 

  8. Loukoianov, A., Yan, L., Blechl, A., et al., Regulation of VRN-1 vernalization genes in normal and transgenic polyploid wheat, Plant Physiol., 2005, vol. 138, pp. 2364—2373. https://doi.org/10.1104/pp.105.064287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shi, C., Zhao, L., Zhang, X., et al., Gene regulatory network and abundant genetic variation play critical roles in heading stage of polyploidy wheat, BMC Plant Biol., 2019, vol. 19, no. 1, p. 6. https://doi.org/10.1186/s12870-018-1591-z

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yan, L., Helguera, M., Kato, K., et al., Allelic variation at the VRN-1 promoter region in polyploid wheat, Theor. Appl. Genet., 2004, vol. 109, pp. 1677—1686. https://doi.org/10.1007/s00122-004-1796-4

    Article  CAS  PubMed  Google Scholar 

  11. Dubcovsky, J., Loukoianov, A., Fu, D., et al., Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2,Plant Mol. Biol., 2006, vol. 60, no. 4, pp. 469—480. https://doi.org/10.1007/s11103-005-4814-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Golovnina, K.A., Kondratenko, E.Y., Blinov, A.G., and Goncharov, N.P., Molecular characterization of vernalization loci VRN1 in wild and cultivated wheats, BMC Plant Biol., 2010, vol. 10, pp. 168—182. https://doi.org/10.1186/1471-2229-10-168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Muterko, A., Kalendar, R., and Salina, E., Novel alleles of the VERNALIZATION1 genes in wheat are associated with modulation of DNA curvature and flexibility in the promoter region, BMC Plant Biol., 2016, vol. 16, pp. 65—81. https://doi.org/10.1186/s12870-015-0691-2

    Article  CAS  Google Scholar 

  14. Fu, D., Szucs, P., Yan, L., et al., Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat, Mol. Genet. Genomics, 2005, vol. 273, pp. 54—65. https://doi.org/10.1007/s00438-004-1095-4

    Article  CAS  PubMed  Google Scholar 

  15. Santra, D.K., Santra, M., Allan, R.E., et al., Genetic and molecular characterization of vernalization genes Vrn-A1, Vrn-B1 and Vrn-D1 in spring wheat germplasm from the Pacific Northwest region of the USA, Plant Breed., 2009, vol. 128, pp. 576—584. https://doi.org/10.1111/j.1439-0523.2009.01681.x

    Article  CAS  Google Scholar 

  16. Milec, Z., Tomková, L., Sumíková, T., and Pánková, K., A new multiplex PCR test for the determination of Vrn-B1 alleles in bread wheat (Triticum aestivum L.), Mol. Breed., 2012, vol. 30, pp. 317—323. https://doi.org/10.1007/s11032-011-9621-7

    Article  CAS  Google Scholar 

  17. Shcherban, A.B., Efremova, T.T., and Salina, E.A., Identification of a new Vrn-B1 allele using two near-isogenic wheat lines with difference in heading time, Mol. Breed., 2012, vol. 29, pp. 675—685. https://doi.org/10.1007/s11032-011-9581-y

    Article  CAS  Google Scholar 

  18. Zhang, J., Wang, Y., Wu, S., et al., A single nucleotide polymorphism at the Vrn-D1 promoter region in common wheat is associated with vernalization response, Theor. Appl. Genet., 2012, vol. 125, pp. 1697—1704. https://doi.org/10.1007/s00122-012-1946-z

    Article  PubMed  Google Scholar 

  19. Muterko, A., Balashova, I., Cockram, J., et al., The new wheat vernalization response allele Vrn-D1s is caused by DNA transposon insertion in the first intron, Plant Mol. Biol. Rep., 2015, vol. 33, pp. 294—303. https://doi.org/10.1007/s11105-014-0750-0

    Article  CAS  Google Scholar 

  20. Nowak, M. and Kowalczyk, K., Allelic variation at the Vrn-1 locus of Polish cultivars of common wheat (Triticum aestivum L.), Acta Biol. Cracov., Ser. Bot., 2010, vol. 52, no. 2, pp. 86—91. https://doi.org/10.2478/v10182-010-0028-2

    Article  Google Scholar 

  21. Shcherban, A.B., Emtseva, M.V., and Efremova, T.T., Molecular genetical characterization of vernalization genes Vrn-A1, Vrn-B1 and Vrn-D1 in spring wheat germplasm from Russia and adjacent regions, Cereal Res. Commun., 2012, vol. 40, no. 3, pp. 425—435. https://doi.org/10.1556/CRC.40.2012.3.4

    Article  CAS  Google Scholar 

  22. Shcherban, A.B., Börner, A., and Salina, E.A., Effect of VRN-1 and PPD-1 genes on heading time in European bread wheat cultivars, Plant Breed., 2014, vol. 134, pp. 49—55. https://doi.org/10.1111/pbr.12223

    Article  CAS  Google Scholar 

  23. Efremova, T.T., Chumanova, E.V., Trubacheeva, N.V., et al., Prevalence of VRN1 locus alleles among spring common wheat cultivars cultivated in Western Siberia, Russ. J. Genet., 2016, vol. 52, no. 2, pp. 146—153. https://doi.org/10.1134/S102279541601004X

    Article  CAS  Google Scholar 

  24. Likhenko, I.E., Stasyuk, A.I., Shcherban, A.B., et al., Study of allelic composition of Vrn-1 and Ppd-1 genes in early–ripening and middle–early varieties of spring soft wheat in Siberia, Russ. J. Genet.: Appl. Res., 2014, vol. 5, no. 3, pp 198—207. https://doi.org/10.1134/S2079059715030107

    Article  CAS  Google Scholar 

  25. Yankovskaya, A.A., Fisenko, A.V., Dragovich, A.Yu., et al., The genetic diversity of spring soft wheat cultivars in European Russia at the VRN and PPD genes, defining the earing time, Genetika (Moscow), 2018, vol. 54, no. 13, suppl., pp. S32—S36. https://doi.org/10.1134/S0016675818130209

    Article  Google Scholar 

  26. Iqbal, M., Navabi, A., Yang, R.C., et al., Molecular characterization of vernalization response genes in Canadian spring wheat, Genome, 2007, vol. 50, pp. 511—516. https://doi.org/10.1139/G07-028

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, X.K., Xiao, Y.G., Zhang, Y., et al., Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3 in Chinese wheat cultivars and their association with growth habit, Crop Sci., 2008, vol. 48, pp. 458—470. https://doi.org/10.2135/cropsci2007.06.0355

    Article  CAS  Google Scholar 

  28. Iqbal, M., Shahzad, A., and Ahmed, I., Allelic variation at the Vrn-A1, Vrn-B1, Vrn-D1, Vrn-B3 and Ppd-D1a loci of Pakistani spring wheat cultivars, Electron. J. Biotechnol., 2011, vol. 14, no. 1, pp. 1—8. https://doi.org/10.2225/vol14-issue1-fulltext-6

    Article  CAS  Google Scholar 

  29. Potokina, E.K., Koshkin, V.A., Alekseeva, E.A., et al., The combination of the Ppd and Vrn gene alleles determines the heading date in common wheat varieties, Russ. J. Genet.: Appl. Res., 2012, vol. 2, no. 4, pp. 311—318. https://doi.org/10.1134/S2079059712040089

    Article  Google Scholar 

  30. Milec, Z., Sumíková, T., Tomková, L., and Pánková, K., Distribution of different Vrn-B1 alleles in hexaploid spring wheat germplasm, Euphytica, 2013, vol. 192, pp. 371—378. https://doi.org/10.1007/s10681-013-0863-9

    Article  CAS  Google Scholar 

  31. Law, C.N., Sutka, J., and Worland, A.J., A genetic study of day-length response in wheat, Heredity, 1978, vol. 41, no. 2, pp. 185—191.

    Article  Google Scholar 

  32. Worland, A.J., Börner, A., Korzun, V., et al., The influence of photoperiod genes on the adaptability of European winter wheats, Euphytica, 1998, vol. 100, pp. 385—394.

    Article  CAS  Google Scholar 

  33. Khlestkina, E.K., Giura, A., Roder, M.S., and Borner, A., A new gene controlling the flowering response to photoperiod in wheat, Euphytica, 2009, vol. 165, pp. 579—585. https://doi.org/10.1007/s10681-008-9783-5

    Article  CAS  Google Scholar 

  34. Beales, J., Turner, A., Griffiths, S., et al., A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.), Theor. Appl. Genet., 2007, vol. 115, no. 5, pp. 721—733. https://doi.org/10.1007/s00122-007-0603-4

    Article  CAS  PubMed  Google Scholar 

  35. Nishida, H., Yoshida, T., Kawakami, K., et al., Structural variation in the 5′ upstream region of photoperiod-insensitive alleles Ppd-A1a and Ppd-B1a identified in hexaploid wheat (Triticum aestivum L.), and their effect on heading time, Mol. Breed., 2013, vol. 31, pp. 27—37. https://doi.org/10.1007/s11032-012-9765-0

    Article  CAS  Google Scholar 

  36. Scarth, R. and Law, C.N., The control of the day length response in wheat by the group 2 chromosomes, Z. Pflanzenzücht., 1984, vol. 93, pp. 140—150.

    Google Scholar 

  37. Cockram, J., Jones, H., Leigh, F.J., et al., Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity, J. Exp. Bot., 2007, vol. 58, no. 6, pp. 1231—1244. https://doi.org/10.1093/jxb/erm042

    Article  CAS  PubMed  Google Scholar 

  38. Koval, S.F. and Goncharov, N.P., Multiple allelism at the VRN1 locus of common wheat, Acta Agron. Hung., 1998, vol. 46, no. 2, pp. 113—119.

    Google Scholar 

  39. Efremova, T.T., Arbuzova, V.S., Leonova, I.N., and Makhmudova, K., Multiple allelism in the Vrn-B1 locus of common wheat, Cereal Res. Commun., 2011, vol. 39, no. 1, pp. 12—21. https://doi.org/10.1556/CRC.39.2011.1.2

    Article  Google Scholar 

  40. Emtseva, M.V., Efremova, T.T., and Arbuzova, V.S., The influence of Vrn-B1a and Vrn-B1c alleles on the length of developmental phases of substitution and nearisogenic lines of common wheat, Russ. J. Genet., 2013, vol. 49, no. 5, pp. 545—552. https://doi.org/10.1134/S1022795413050050

    Article  CAS  Google Scholar 

  41. Shcherban, A.B., Khlestkina, E.K., Efremova, T.T., and Salina, E.A., The effect of two differentially expressed wheat VRN-B1 alleles on the heading time is associated with structural variation in the first intron, Genetica, 2013, vol. 141, pp. 133—141. https://doi.org/10.1007/s10709-013-9712-y

    Article  CAS  PubMed  Google Scholar 

  42. Goncharov, N.P., Response to vernalization in wheat: its quantitative or qualitative nature, Cereal Res. Commun., 2004, vol. 32, pp. 323—330.

    Article  CAS  Google Scholar 

  43. Chumanova, E.V., Efremova, T.T., Kruchinina, Y.V., and Pershina, L.A., Development and investigation of common wheat lines of winter cultivar Bezostaya 1 with combinations of dominant alleles of VRN-1 loci, Vavilovskii Zh. Genet. Sel., 2018, vol. 22, no. 8, pp. 951—956. https://doi.org/10.18699/VJ18.437

    Article  Google Scholar 

  44. Sharp, P.J., Kreis, M., Shewry, P.R., and Gale, M.D., Location of β-amylase sequences in wheat and its relatives, Theor. Appl. Genet., 1988, vol. 75, pp. 286—290. https://doi.org/10.1007/BF00303966

    Article  CAS  Google Scholar 

  45. Kuperman, F.M., Rzhanova, E.I., Murashev, V.V., et al., Biologiya razvitiya kul’turnykh rastenii (Developmental Biology of Cultivated Plants), Moscow: Vyssh. Shkola, 1982.

  46. Voronin, A.N. and Stel’makh, A.F., Stages of organogenesis in common wheat lines nearly isogenic for Vrn1–3 loci, Nauch.-Tekhn. Byull. Vses. Sel.-Genet. Inst., 1985, no. 1 (55), pp. 19—23.

  47. Pánková, K. and Košner, J., Chromosome substitutions with dominant loci Vrn-1 and their effect on developmental stages of wheat, Czech J. Genet. Plant Breed., 2004, vol. 40, no. 2, pp. 37—44.

    Article  Google Scholar 

  48. Stelmakh, A.F., Geographic distribution of Vrn genes in landraces and improved varieties of spring bread wheat, Euphytica, 1990, vol. 45, pp. 113—118.

    Google Scholar 

  49. Worland, A.J., The influence of flowering time genes on environmental adaptability in European wheats, Euphytica, 1996, vol. 89, pp. 49—57. https://doi.org/10.1007/BF00015718

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (grant no. 18-34-00146 mol_a) and budget financing on the state contract with the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (grant no. 0324-2019-0039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Chumanova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by N. Maleeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chumanova, E.V., Efremova, T.T. & Kruchinina, Y.V. The Effect of Different Dominant VRN Alleles and Their Combinations on the Duration of Developmental Phases and Productivity in Common Wheat Lines. Russ J Genet 56, 822–834 (2020). https://doi.org/10.1134/S1022795420070029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420070029

Keywords:

Navigation