Skip to main content

Advertisement

Log in

Flowering time in wheat (Triticum aestivum L.): a key factor for global adaptability

  • Review
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Wheat is one of the most widely cultivated crops and, being the staple diet of more than 40 countries, it plays an imperative role in food security. Wheat has remarkable genetic potential to synchronize its flowering time with favourable environmental conditions. This ability to time its flowering is a key factor for its global adaptability and enables wheat plant to produce satisfactory grain yield under very diverse temperature and soil moisture conditions. Vernalization (Vrn), photoperiod (Ppd) and earliness per se (Eps) are the three genetic systems controlling flowering time in wheat. The objective of this review is to provide comprehensive information on the physiological, molecular and biological aspects of the three genetic constituents of flowering and maturity time in wheat. Reviews written in the past have covered either one of the aspects; and generally focused on one of the three genetic constituents of the flowering time. The current review provides (a) a detailed overview of all three gene systems (vernalization, photoperiod and earliness per se) controlling flowering time, (b) details of the primer sequences, their annealing temperatures and expected amplicon sizes for all known markers of detecting vernalization and photoperiod alleles, and (c) an up to date list of QTLs affecting flowering and/or maturity time in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali ML, Baenziger PS, Ajlouni ZA, Campbell BT, Gill KS, Eskridge KM, Mujeeb-Kazi A, Dweikat I (2011) Mapping QTL for agronomic traits on wheat chromosome 3A and a comparison of recombinant inbred chromosome line populations. Crop Sci 51:553–566

    Google Scholar 

  • Amir J, Sinclair TR (1991) A model of temperature and solar radiation effects on spring wheat growth and yield. Field Crops Res 28:47–58

    Google Scholar 

  • Andeden EE, Yediay FE, Baloch FS, Shaaf S, Kilian B, Nachit M, Özkan H (2011) Distribution of vernalization and photoperiod genes (Vrn-A1, Vrn-B1, Vrn-D1, Vrn-B3, Ppd-D1) in Turkish bread wheat cultivars and landraces. Cereal Res Commun 39:352–364

    CAS  Google Scholar 

  • Beales J, Turner A, Griffiths S, Snape JW, Laurie DA (2007) A pseudo-response regulator is mis-expressed in photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum). Theor Appl Genet 115:721–733

    PubMed  CAS  Google Scholar 

  • Bennett D, Izanloo A, Edwards J, Kuchel H, Chalmers K, Tester M, Reynolds M, Schnurbusch T, Langridge P (2012) Identification of novel quantitative trait loci for days to ear emergence and flag leaf glaucousness in a bread wheat (Triticum aestivum L.) population adapted to southern Australian conditions. Theor Appl Genet 124:697–711

    PubMed  Google Scholar 

  • Bentley AR, Turner AS, Gosman N, Leigh FJ, Maccaferri M, Dreisigacker S, Greenland A, Laurie DA (2011) Frequency of photoperiod-insensitive Ppd-A1a alleles in tetraploid, hexaploid and synthetic hexaploid wheat germplasm. Plant Breeding 130:10–15

    Google Scholar 

  • Berry GJ, Salisbury PA, Halloran GM (1980) Expression of vernalization genes in near-isogenic wheat lines: duration of vernalization period. Ann Bot 46:235–241

    Google Scholar 

  • Bonnin I, Rousset M, Madur D, Sourdille P, Dupuits C, Brunel D, Goldringer I (2008) FT genome A and D polymorphisms are associated with the variation of earliness components in hexaploid wheat. Theor Appl Genet 116:383–394

    PubMed  CAS  Google Scholar 

  • Borner A, Korzun V, Worland AJ (1998) Comparative genetic mapping of loci affecting plant height and development in cereals. Euphytica 100:245–248

    CAS  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Google Scholar 

  • Briggs WR, Olney MA (2001) Photoreceptors in plant photomorphogenesis to date. Five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiol 125:85–88

    PubMed Central  PubMed  CAS  Google Scholar 

  • Brooking IR (1996) Temperature response of vernalization in wheat: a developmental analysis. Ann Bot 78:507–512

    Google Scholar 

  • Bullrich L, Appendino ML, Tranquilli G, Lewis S, Dubcovsky J (2002) Mapping of a thermo-sensitive earliness per se gene on Triticum monococcum chromosome 1Am. Theor Appl Genet 105:585–593

    PubMed  CAS  Google Scholar 

  • Busch RH, Elsayed FA, Heiner RE (1984) Effect of daylength insensitivity on agronomic traits and grain protein in hard red spring wheat. Crop Sci 24:1106–1109

    Google Scholar 

  • Bushuk W (1998) Wheat breeding for end product use. Euphytica 100:137–145

    Google Scholar 

  • Carter AH, Garland-Campbell K, Kidwell KK (2011) Genetic mapping of quantitative trait loci associated with important agronomic traits in the spring wheat (Triticum aestivum L.) cross ‘Louise’ × ‘Penawawa’. Crop Sci 51:84–95

    Google Scholar 

  • Cashmore AR, Jarillo JA, Wu YJ, Liu D (1999) Cryptochromes: blue light receptors for plants and animals. Science 284:760–765

    PubMed  CAS  Google Scholar 

  • Chen F, Gao M, Zhang J, Zuo A, Shang X, Cui D (2013) Molecular characterization of vernalization response genes in bread wheat from the Yellow and Huai Valley of China. BMC Plant Biol 13:199

    PubMed  Google Scholar 

  • Chouard P (1960) Vernalization and its relation to dormancy. Annu Rev Plant Physiol 11:191–237

    CAS  Google Scholar 

  • Chu CG, Xu SS, Friesen TL, Faris JD (2008) Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits. Mol Breed 22:251–266

    CAS  Google Scholar 

  • Cooper JP (1956) Developmental analysis of populations in the cereals and herbage grasses. 1. Methods and techniques. J Agric Sci 47:262–279

    Google Scholar 

  • Curtis BC (2002) Wheat in the world. In: Curtis BC, Rajaram S, Macpherson HG (eds) Bread wheat: improvement and production. FAO, Italy

    Google Scholar 

  • Danyluk J, Kane NA, Breton G, Limin AE, Fowler DB, Sarhan F (2003) TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol 132:1849–1860

    PubMed Central  PubMed  CAS  Google Scholar 

  • Davidson JL, Christian KR, Jones DB, Bremner PM (1985) Responses of wheat to vernalization and photoperiod. Aust J Agric Res 36:347–359

    Google Scholar 

  • Devos KM (2005) Updating the ‘crop circle’. Curr Opin Plant Biol 8:155–162

    PubMed  CAS  Google Scholar 

  • Devos KM, Dolezel J, Feullet C (2009) Genome organization and comparative genomics. In: Carver BF (ed) Wheat: science and trade. Wiley Blackwell, Danvers, pp 327–368

    Google Scholar 

  • Diallo AO, Ali-Benali MA, Badawi M, Houde M, Sarhan F (2012) Expression of vernalization responsive genes in wheat is associated with histone H3 trimethylation. Mol Genet Genomics 287:575–590

    PubMed  CAS  Google Scholar 

  • Distelfeld A, Li C, Dubcovsky J (2009a) Regulation of flowering in temperate cereals. Curr Opin Plant Biol 12:178–184

    Google Scholar 

  • Distelfeld A, Tranquilli G, Li C, Yan L, Dubcovsky J (2009b) Genetic and Molecular Characterization of the VRN2 Loci in Tetraploid Wheat. Plant Physiol 149:245–257

    Google Scholar 

  • Dubcovsky J, Lijavetzky D, Appendino L, Tranquilli G, Dvorak JD (1998) Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement. Theor Appl Genet 97:968–975

    CAS  Google Scholar 

  • Dubcovsky J, Chen C, Yan L (2005) Molecular characterization of the allelic variation at the VRN-H2 vernalization locus in barley. Mol Breed 15:395–407

    CAS  Google Scholar 

  • Dvorak J, Zhang HB (1990) Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proc Natl Acad Sci USA 87:9640–9644

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dvorak J, Di Terlizzi P, Zhang HB, Resta P (1993) The evolution of polyploid wheats: identification of the A genome donor species. Genome 36:21–31

    PubMed  CAS  Google Scholar 

  • Dyck JA, Matus-Cádiz MA, Hucl P, Talbert L, Hunt T, Dubuc JP, Nass H, Clayton G, Dobb J, Quick J (2004) Agronomic performance of hard red spring wheat isolines sensitive and insensitive to photoperiod. Crop Sci 44:1976–1981

    Google Scholar 

  • FAO (2009) FAOSTAT database. Agricultural crops: wheat: area harvested/yield. http://faostat.fao.org/

  • Ferrándiz C, Gu Q, Martienssen R, Yanofsky MF (2000) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127:725–734

    PubMed  Google Scholar 

  • Flood RG, Halloran GM (1986a) The influence of genes for vernalization response on development and growth in wheat. Ann Bot 58:505–513

    Google Scholar 

  • Flood RG, Halloran GM (1986b) Genetics and physiology of vernalization response in wheat. Adv Agron 39:87–125

    Google Scholar 

  • Ford MA, Austin RB, Angus WJ, Sage GCM (1981) Relationship between the responses of spring wheat genotypes to temperature and photoperiodic treatments and their performance in the field. J Agric Sci 96:623–634

    Google Scholar 

  • Fosket DE (1994) Plant growth & development, a molecular approach. Academic Press, San Diego

    Google Scholar 

  • Foulkes MJ, Sylvester-Bradley R, Worland AJ, Snape JW (2004) Effect of a photoperiod response gene Ppd-D1 on yield potential and drought resistance in UK winter wheat. Euphytica 135:63–73

    CAS  Google Scholar 

  • Fu D, Szűcs P, Yan L, Helguera M, Skinner JS, von Zitzewitz J, Hays PM, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics 273:54–65

    PubMed  CAS  Google Scholar 

  • Goncharov NP (1998) Genetic resources of wheat related species: the Vrn genes controlling growth habit (spring vs winter). Euphytica 100:371–376

    Google Scholar 

  • Goncharov NP (2004) Response to vernalization in wheat: its quantitative or qualitative nature. Cereal Res Commun 32:323–330

    CAS  Google Scholar 

  • Goncharov NP, Shitova IP (1999) The inheritance of growth habit in old local varieties and landraces of hexaploid wheat. Genetika (Russian) 35:386–392

    CAS  Google Scholar 

  • Gonzalez FG, Slafer GA, Miralles DJ (2002) Vernalization and photoperiod responses during wheat pre-flowering reproductive phases. Field Crops Res 74:183–195

    Google Scholar 

  • Gonzalez FG, Slafer GA, Miralles DJ (2003a) Grain and floret numbering response to photoperiod during stem elongation in fully and slightly vernalized wheats. Field Crops Res 81:17–27

    Google Scholar 

  • Gonzalez FG, Slafer GA, Miralles DJ (2003b) Floret development and spike growth as affected by photoperiod during stem elongation in wheat. Field Crops Res 81:29–38

    Google Scholar 

  • Gororo NN, Flood RG, Eastwood RF, Eagles HA (2001) Photoperiod and vernalization responses in T. turgidum × T. tauschii synthetic hexaploid wheats. Ann Bot (Lond) 88:947–952

    Google Scholar 

  • Gotoh T (1979) Genetic studies on growth habit of some important spring wheat cultivars in Japan, with special reference to the identification of the spring genes involved. Jpn J Breed 29:133–145

    Google Scholar 

  • Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Herry L, Faure S, Laurie D, Bilham L, Snape J (2009) Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet 119:383–395

    PubMed  CAS  Google Scholar 

  • Gustafson PO, Raskina O, Ma X, Nevo E (2009) Wheat evolution, domestication and improvement. In: Carver BF (ed) Wheat: science and trade. Wiley Blackwell, Danvers, pp 5–30

    Google Scholar 

  • Halloran GM (1975) Genotype differences in photoperiodic sensitivity and vernalization response in wheat. Ann Bot 39:845–851

    Google Scholar 

  • Hanocq E, Niarquin M, Heumez E, Rousset M, Le Gouis J (2004) Detection and mapping of QTL for earliness components in a bread wheat recombinant inbred lines population. Theor Appl Genet 110:106–115

    PubMed  CAS  Google Scholar 

  • Hanocq E, Laperche A, Jaminon O, Laine AL, Le Gouis J (2007) Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor Appl Genet 114:569–584

    PubMed  CAS  Google Scholar 

  • Hay RKM, Kirby EJM (1991) Convergence and synchrony: a review of the coordination of development in wheat. Aust J Agric Res 42:661–700

    Google Scholar 

  • Herndl M, White JW, Graef S, Claupein W (2008) The impact of vernalization requirement, photoperiod sensitivity and earliness per se on grain protein content of bread wheat (Triticum aestivum L.). Euphytica 163:309–320

    Google Scholar 

  • Hoogendoorn J (1985) A reciprocal F1 monosomic analysis of the genetic control of time of ear emergence, number of leaves and number of spikelets in wheat (Triticum aestivum L.). Euphytica 34:545–558

    Google Scholar 

  • Huang XQ, Cloutier S, Lycar L, Radovanovic N, Humphreys DG, Noll JS, Somers DJ, Brown PD (2006) Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet 113:753–766

    PubMed  CAS  Google Scholar 

  • Hunt LA (1979) Photoperiodic responses of winter wheats from different climatic regions. J Plant Breed 82:70–80

    Google Scholar 

  • Iqbal M, Navabi A, Salmon DF, Yang R-C, Spaner D (2006) A genetic examination of early flowering and maturity in Canadian spring wheats. Can J Plant Sci 86:995–1004

    Google Scholar 

  • Iqbal M, Navabi A, Yang R-C, Salmon DF, Spaner D (2007) Molecular characterization of vernalization response genes in Canadian spring wheat. Genome 50:511–516

    PubMed  CAS  Google Scholar 

  • Iqbal M, Shahzad A, Ahmed I (2011) Allelic variation at the Vrn-A1, Vrn-B1, Vrn-D1, Vrn-B3 and Ppd-D1a loci of Pakistani spring wheat cultivars. Electron J Biotechnol 14. doi:10.2225/vol14-issue1-fulltext-6

  • Iwaki K, Nakagawa K, Kuno H, Kato K (2000) Ecogeo-graphical differentiation in East Asian wheat, revealed from the geographical variation of growth habit and Vrn genotype. Euphytica 111:137–143

    Google Scholar 

  • Iwaki K, Haruna S, Niwa T, Kato K (2001) Adaptation and ecological differentiation in wheat with special reference to geographical variation of growth habit and Vrn genotype. Plant Breeding 120:107–114

    CAS  Google Scholar 

  • Jedel PE, Evans LE, Scarth R (1986) Vernalization responses of a selected group of spring wheats (Tritium aestivum L.) cultivars. Can J Plant Sci 66:1–9

    Google Scholar 

  • Kamran A, Randhawa HS, Pozniak C, Spaner D (2013a) Phenotypic effects of the flowering gene complex in Canadian spring wheat germplasm. Crop Sci 53:84–94

    Google Scholar 

  • Kamran A, Iqbal M, Navabi A, Randhawa HS, Pozniak C, Spaner D (2013b) Earliness per QTLs and their interaction with photoperiod insensitive allele Ppd-D1a in Cutler × AC Barrie spring wheat population. Theor Appl Genet 126:1965–1976

    PubMed  CAS  Google Scholar 

  • Kato K, Wada T (1999) Genetic analysis and selection experiment for narrow-sense earliness in wheat by using segregating hybrid progenies. Breed Sci 49:233–238

    Google Scholar 

  • Kato K, Miura H, Akiyama M, Kuroshima M, Sawada S (1998) RFLP mapping of the three major genes, Vrn-A1, Q and B1, on the long arm of chromosome 5A of wheat. Euphytica 101:91–95

    CAS  Google Scholar 

  • Kato K, Miura H, Sawada S (1999a) Detection of an earliness per se quantitative trait locus in the proximal region of wheat chromosome 5AL. Plant Breeding 118:391–394

    CAS  Google Scholar 

  • Kato K, Miura H, Sawada S (1999b) QTL mapping of genes controlling ear emergence time and plant height on chromosome 5A of wheat. Theor Appl Genet 98:472–477

    CAS  Google Scholar 

  • Kato K, Taketa S, Ban T, Iriki N, Miura K (2001) The influence of a spring habit gene, Vrn-D1, on heading time in wheat. Plant Breeding 120:115–120

    CAS  Google Scholar 

  • Kato K, Yamashita M, Ishimoto K, Yoshino H, Fujita M (2003) Genetic analysis of two genes for vernalization response, the former Vrn2 and Vrn4, by using PCR based molecular markers. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proceedings of the 10th international wheat genetics symposium. Instituto Sperimentale per la Cerealicoltura, Paestum, vol 3, pp 971–973

  • Khlestkina EK, Giura A, Roder MS, Borner A (2009) A new gene controlling the flowering response to photoperiod in wheat. Euphytica 165:579–585

    CAS  Google Scholar 

  • Kirby EJM (1988) Analysis of leaf, stem and ear growth in wheat from terminal spikelet stage to anthesis. Field Crops Res 18:127–140

    Google Scholar 

  • Kirby EJM (1990) Co-ordination of leaf emergence and leaf and spikelet primordium initiation in wheat. Field Crops Res 25:253–264

    Google Scholar 

  • Klaimi YY, Qualset CO (1974) Genetics of time of heading in wheat (Triticum aestivum L.) II. The inheritance of vernalization response. Genetics 76:119–133

    PubMed Central  PubMed  CAS  Google Scholar 

  • Knott DR (1986) Effects of genes for photoperiodism, semi-dwarfism, and awns on agronomic characters in a wheat cross. Crop Sci 26:1158–1162

    Google Scholar 

  • Kosner J, Pankova K (1998) The detection of allelic variants at the recessive vrn loci of winter wheat. Euphytica 101:9–16

    Google Scholar 

  • Kosner J, Zurkova D (1996) Photoperiodic response and its relation to earliness in wheat. Euphytica 89:59–64

    Google Scholar 

  • Kulwal PL, Roy JK, Balyan HS (2003) QTL mapping for growth and leaf characters in bread wheat. Plant Sci 164:267–277

    CAS  Google Scholar 

  • Kuspira J, Maclagan J, Kirby K, Bhambhani RN (1986) Genetic and cytogenetic analyses of the A genome of Triticum monococcum L. II. The mode of inheritance of spring versus winter growth habit. Can J Genet Cytol 28:88–95

    Google Scholar 

  • Laurie DA, Pratchett N, Bezant JH, Snape JW (1995) RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter 9 spring barley (Hordeum vulgare L) cross. Genome 38:575–585

    PubMed  CAS  Google Scholar 

  • Law CN, Worland AJ (1997) Genetic analysis of some flowering time and adaptive traits in wheat. New Phytol 137:19–28

    Google Scholar 

  • Law CN, Worland AJ, Giorgi B (1976) The genetic control of ear emergence time by chromosomes 5A and 5D of wheat. Heredity 36:49–58

    Google Scholar 

  • Law CN, Sutka J, Worland AJ (1978) A genetic study of day length response in wheat. Heredity 41:575–585

    Google Scholar 

  • Law CN, Suarez E, Miller TE, Worland AJ (1998) The influence of the group 1 chromosomes of wheat on ear-emergence times and their involvement with vernalization and day length. Heredity 41:185–191

    Google Scholar 

  • Leonova I, Pestsova E, Salina E, Efremova T, Roder M, Borner A (2003) Mapping of the Vrn-B1 gene in Triticum aestivum using microsatellite markers. Plant Breeding 122:209–212

    CAS  Google Scholar 

  • Levy J, Peterson ML (1972) Responses of spring wheats to vernalization and photoperiod. Crop Sci 12:487–490

    Google Scholar 

  • Lewis S, Faricelli ME, Appendino ML, Valarik M, Dubcovsky J (2008) The chromosome region including the earliness per se locus Eps-Am1 affects the duration of early developmental phases and spikelet number in diploid wheat. J Exp Bot 59:3595–3607

    PubMed Central  PubMed  CAS  Google Scholar 

  • Li C, Dubcovsky J (2008) Wheat FT protein regulates VRN1 transcription through interactions with FDL2. Plant J 55:543–554

    PubMed  CAS  Google Scholar 

  • Lin F, Xue DG, Tian CJ, Cao Y, Zhang ZZ, Zhang ZQ, Ma ZQ (2008) Mapping chromosomal regions affecting flowering time in a spring wheat RIL population. Euphytica 164:768–777

    Google Scholar 

  • Loukoianov A, Yan L, Blechl A, Sanchez A, Dubcovsky J (2005) Regulation of VRN-1 vernalization genes in normal and transgenic polyploid wheat. Plant Physiol 138:2364–2373

    PubMed Central  PubMed  CAS  Google Scholar 

  • Maccaferri M, Sanguineti MC, Corneti S, Ortega JLA, Salem MB, Bort J, DeAmbrogio E, del Moral LFG, Demontis A, El-Ahmed A, Maalouf F, Machlab H, Martos V, Moragues M, Motawaj J, Nachit M, Nserallah N, Ouabbou H, Royo C, Slama A, Tuberosa R (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178:489–511

    PubMed Central  PubMed  Google Scholar 

  • Marcinska I, Dubert F, Biesaga-Koscielniak J (1995) Transfer of the ability to flower in winter wheat via callus tissue regenerated from immature inflorescences. Plant Cell Tissue Organ Cult 41:285–288

    Google Scholar 

  • Marshall L, Busch R, Cholick F, Edwards I, Frohberg R (1989) Agronomic performance of spring wheat isolines differing for day length response. Crop Sci 29:752–757

    Google Scholar 

  • Martinic ZF (1975) Life cycle of common wheat varieties in natural environments as related to their response to shortened photoperiod. J Plant Breed 75:237–251

    Google Scholar 

  • McIntosh RA, Devos KM, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Sommers DJ Anderson OA (2007) Catalogue of gene symbols for wheat (supplement). USDA-ARS, Washington, DC. http://wheat.pw.usda.gov/ggpages/wgc/2007upd.html

  • Miglietta F (1989) Effect of photoperiod and temperature on leaf initiation rates in wheat (Triticum spp.). Field Crops Res 21:121–130

    Google Scholar 

  • Milec Z, Tomková L, Sumíková T, Pánková K (2012) A new multiplex PCR test for the determination of Vrn-B1 alleles in bread wheat (Triticum aestivum L.). Mol Breed 30:317–323

    CAS  Google Scholar 

  • Milec Z, Sumíková T, Tomkova L, Pánková K (2013) Distribution of different Vrn-B1 alleles in hexaploid spring wheat germplasm. Euphytica 192:371–378

    CAS  Google Scholar 

  • Miralles DJ, Richards RA (2000) Responses of leaf and tiller emergence and primordium initiation in wheat and barley to interchanged photoperiod. Ann Bot 85:655–663

    Google Scholar 

  • Miralles DJ, Katz SD, Colloca A, Slafer GA (1998) Floret development in near isogenic wheat lines differing in plant height. Field Crops Res 59:21–30

    Google Scholar 

  • Miralles DJ, Richards RA, Slafer GA (2000) Duration of stem elongation period influences the number of fertile florets in wheat and barley. Aust J Plant Physiol 27:931–941

    Google Scholar 

  • Miura H, Nakagawa M, Worland AJ (1999) Control of ear emergence time by chromosome 3A of wheat. Plant Breeding 118:85–87

    Google Scholar 

  • Miura H, Worland AJ (1994) Genetic control of vernalization, day-length response, and earliness per se by homoeologous group-3 chromosomes in wheat. Plant Breeding 113:160–169

    Google Scholar 

  • Miura H, Parker BB, Snape JW (1992) The location of major genes and associated quantitative trait loci on chromosome arm 5BL of wheat. Theor Appl Genet 85:197–204

    PubMed  CAS  Google Scholar 

  • Mizuno T (1998) His-Asp phosphotransfer signal transduction. J Biochem 123:555–563

    PubMed  CAS  Google Scholar 

  • Mizuno T, Nakamichi N (2005) Pseudo-response regulators (PRRs) or true oscillator components (TOCs). Plant Cell Physiol 46:677–685

    PubMed  CAS  Google Scholar 

  • Moore G (1995) Cereal genome evolution: pastoral pursuits with ‘Lego’ genomes. Curr Opin Genet Dev 5:717–724

    PubMed  CAS  Google Scholar 

  • Murai K, Miyamae M, Kato H, Takumi S, Ogihara Y (2003) WAP1, a wheat APETALA1 homolog, plays a central role in the phase transition from vegetative to reproductive growth. Plant Cell Physiol 44:1255–1265

    PubMed  CAS  Google Scholar 

  • Naranjo T, Corredor E (2004) Clustering of centromeres precedes bivalent chromosome pairing of polyploidy wheats. Trends Plant Sci 9:214–217

    PubMed  CAS  Google Scholar 

  • Neff MM, Fankhauser C, Chory J (2000) Light: an indicator of time and place. Genes Dev 14:257–271

    PubMed  CAS  Google Scholar 

  • Oliver SN, Finnegan EJ, Dennis ES, Peacock WJ, Trevaskis B (2009) Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. Proc Natl Acad Sci USA 106:8386–8391

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ortiz-Ferrara G, Mosaad MG, Mahalakshmi V, Rajaram S (1998) Photoperiod and vernalization response of Mediterranean wheats, and implications for adaptation. Euphytica 100:377–384

    Google Scholar 

  • Paterson AH, Bowers JE, Burow MD, Draye X, Elsik CG, Jiang CX, Katsar CS, Lan TH, Lin YR, Ming R, Wright RJ (2000) Comparative genomics of plant chromosomes. Plant Cell 12:1523–1539

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pidal B, Yan L, Fu D, Zhang F, Tranquilli G, Dubcovsky J (2009) The CARG box located upstream from the transcriptional start of wheat vernalization gene VRN1 is not necessary for the vernalization response. Heredity 100:355–364

    CAS  Google Scholar 

  • Porter JR, Gawith M (1999) Temperatures and the growth and development of wheat: a review. Eur J Agron 10:23–36

    Google Scholar 

  • Pugsely AT (1966) The photoperiodic sensitivity of some spring wheats with special reference to the variety Thatcher. Aust J Agric Res 17:591–599

    Google Scholar 

  • Pugsley AT (1971) A genetic analysis of the spring–winter habit of growth in wheat. Aust J Agric Res 22:21–31

    Google Scholar 

  • Pugsley AT (1972) Additional genes inhibiting winter habit in wheat. Euphytica 21:547–552

    Google Scholar 

  • Rahman MS (1980) Effect of photoperiod and vernalization on the rate of development and spikelet number per ear in 30 varieties of wheat. J Aust Inst Agric Sci 46:68–70

    Google Scholar 

  • Rawson HM, Richards RA (1993) Effects of high temperature and photoperiod on floral development in wheat isolines differing in vernalisation and photoperiod genes. Field Crops Res 32:181–192

    Google Scholar 

  • Rawson HM, Zajac M, Penrose LDJ (1998) Effect of seedling temperature and its duration on development of wheat cultivars differing in vernalizing response. Field Crops Res 57:289–300

    Google Scholar 

  • Riley R, Chapman V (1958) Genetic control of the cytologically diploid behavior of hexaploid wheat. Nature 182:713–715

    Google Scholar 

  • Roberts DWA, Larson RI (1985) Vernalization and photoperiod responses of selected chromosome substitution lines derived from ‘Rescue’, ‘Cadet’ and ‘Cypress’ wheats. Can J Genet Cytol 27:586–591

    Google Scholar 

  • Santra DK, Santra M, Allan RE, Campbell KG, Kidwell KK (2009) Genetic and molecular characterization of vernalization genes Vrn-A1, Vrn-B1, and Vrn-D1 in spring wheat germplasm from the Pacific Northwest Region of the U.S.A. Plant Breeding 128:576–584

    CAS  Google Scholar 

  • Sarma RN, Fish L, Gill BS, Snape JW (2000) Physical characterization of the homoeologous Group 5 chromosomes of wheat in terms of rice linkage blocks, and physical mapping of some important genes. Genome 43:191–198

    Google Scholar 

  • Sasani S, Hemming MN, Oliver S, Greenup A, Tavakkol-Afshari R (2009) The influence of vernalization and daylength cues on the expression of flowering-time genes in the leaves and shoot apex of barley (Hordeum vulgare). J Exp Bot 60:2169–2178

    PubMed Central  PubMed  CAS  Google Scholar 

  • Scarth R, Law CN (1983) The location of the photoperiod gene Ppd-B1 and an additional genetic factor for ear emergence time on chromosome 2B of wheat. Heredity 51:607–619

    Google Scholar 

  • Serrago RA, Miralles DJ, Slafer GA (2008) Floret fertility in wheat as affected by photoperiod during stem elongation and removal of spikelets at booting. Eur J Agron 28:301–308

    Google Scholar 

  • Shah MM, Gill KS, Yen Y, Kaeppler SM, Ariyarathne HM (1999) Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop Sci 39:1728–1732

    CAS  Google Scholar 

  • Shcherban AB, Emtseva MV, Efremova TT (2012) Molecular genetical characterization of vernalization genes Vrn-A1, Vrn-B1 and Vrn-D1 in spring wheat germplasm from Russia and adjacent regions. Cereal Res Commun 40:351–361

    CAS  Google Scholar 

  • Shimada S, Ogawa T, Kitagawa S, Suzuki T, Ikari C, Shitsukawa N, Abe T, Kawahigashi H, Kikuchi R, Handa H (2009) A genetic network of flowering-time genes in wheat leaves, in which an APETALA1/FRUITFULL-like gene, VRN1, is upstream of FLOWERING LOCUS T. Plant J 58:668–681

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shindo C, Sasakuma T, Tsujimoto H (2003) Segregation analysis of heading traits in hexaploid wheat utilizing recombinant inbred lines. Heredity 90:56–63

    PubMed  CAS  Google Scholar 

  • Singh SK, Singh AM, Jain N, Singh GP, Ahlawat AK, Ravi I (2013) Molecular characterization of vernalization and photoperiod genes in wheat varieties from different agro-climatic zones of India. Cereal Res Commun 41: 376–38

    Google Scholar 

  • Slafer GA (2003) Genetic basis of yield as viewed from a crop physiologist’s perspective. Ann Appl Biol 142:117–128

    Google Scholar 

  • Slafer GA, Rawson HM (1994) Sensitivity of wheat phasic development to major environmental factors: a re-examination of some assumptions made by physiologists and modelers. Aust J Plant Physiol 21:393–426

    Google Scholar 

  • Slafer GA, Rawson HM (1995) Photoperiod × temperature interactions in contrasting wheat genotypes: time to heading and final leaf number. Field Crops Res 44:73–83

    Google Scholar 

  • Slafer GA, Rawson HM (1996) Responses to photoperiod change with phenophase and temperature during wheat development. Field Crops Res 46:1–13

    Google Scholar 

  • Slafer GA, Calderini DF, Miralles DJ (1996) Yield components and compensation in wheat: opportunities for further increasing yield potential. In: Reynolds MP, Rajaram S, McNab A (eds) Increasing yield potential in wheat: breaking the barriers, CIMMYT, pp 101–133

  • Slafer GA, Araus JL, Royo C, Garcia del Moral LF (2005) Promising ecophysiological traits for genetic improvement of cereal yields in Mediterranean environments. Ann Appl Biol 146:61–70

    Google Scholar 

  • Snape JW, Law CN, Parker BB, Worland AJ (1985) Genetical analysis of chromosome 5 A of wheat and its influence on important agronomic characters. Theor Appl Genet 71:518–526

    PubMed  CAS  Google Scholar 

  • Snape JW, Butterworth K, Whitechurch E, Worland AJ (2001) Waiting for fine times: genetics of flowering time in wheat. Euphytica 119:185–190

    CAS  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot-Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    PubMed  CAS  Google Scholar 

  • Statistics Canada (2011) Field crop reporting series. http://www.statcan.ca

  • Stelmakh AF (1990) Geographic distribution of Vrn genes in landraces and improved varieties of spring bread wheat. Euphytica 45:113–118

    Google Scholar 

  • Stelmakh AF (1993) Genetic effect of Vrn genes on heading date and agronomic traits in bread wheat. Euphytica 65:53–60

    Google Scholar 

  • Stelmakh AF (1998) Genetic systems regulating flowering response in wheat. Euphytica 100:359–369

    Google Scholar 

  • Streck NA, Weiss A, Baenziger PS (2003) Wheat: a generalized vernalization response function for winter wheat. Agron J 95:155–159

    Google Scholar 

  • Syme JR (1968) Ear emergence of Australian, Mexican and European wheats in relation to time of sowing and their response to vernalization and day length. Aust J Exp Agric Anim Husb 8:578–581

    Google Scholar 

  • Takahashi R, Yasuda S (1971) Genetics of earliness and growth habit in barley. In: Nilan RA (ed) Barley genetics II (Proceeding of second international barley genetics symposium). Washington State University Press, Pullman, pp 388–408

  • Toth B, Galiba G, Fe′her E, Sutka J, Snape JW (2003) Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theor Appl Genet 107:509–514

    PubMed  CAS  Google Scholar 

  • Trevaskis B (2010) The central role of the VERNALIZATION1 gene in the vernalization response of cereals. Funct Plant Biol 37:479–487

    CAS  Google Scholar 

  • Trevaskis B, Bagnall DJ, Ellis MH, Peacock WJ, Dennis ES (2003) MADS box genes control vernalization-induced flowering in cereals. Proc Natl Acad Sci 100:13099–13104

    PubMed Central  PubMed  CAS  Google Scholar 

  • Trevaskis B, Hemming MN, Dennis ES, Peacock WJ (2007) The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci 12:351–357

    Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    PubMed  CAS  Google Scholar 

  • van Beem J, Mohler V, Lukman R, van Ginkel M, William M, Crossa J, Worland AJ (2005) Analysis of genetic factors influencing the developmental rate of globally important CIMMYT wheat cultivars. Crop Sci 45:2113–2119

    Google Scholar 

  • Wang E, Engel T (1998) Simulation of phenological development of wheat crops. Agric Syst 58:1–24

    Google Scholar 

  • Wang SY, Ward RW, Ritchie JT, Fisher RA, Schulthess U (1995a) Vernalization in wheat I. A model based on the interchangeability of plant age and vernalization duration. Field Crops Res 41:91–100

    Google Scholar 

  • Wang SY, Ward RW, Ritchie JT, Fisher RA, Schulthess U (1995b) Vernalization in wheat I. A model based on interchangeability of plant age and vernalization duration. Field Crops Res 41:91–100

    Google Scholar 

  • Wang RX, Hai L, Zhang XY, You GX, Yan CS, Xiao SH (2009) QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679. Theor Appl Genet 118:313–325

    Google Scholar 

  • Whitechurch EM, Slafer GA (2002) Contrasting Ppd alleles in wheat: effects on sensitivity to photoperiod in different phases. Field Crops Res 73:95–105

    Google Scholar 

  • Whitechurch EM, Snape JW (2003) Developmental responses to vernalization in wheat deletion lines for chromosomes 5A and 5D. Plant Breeding 122:35–39

    Google Scholar 

  • Wilsie CP (1962) Crop adaptation and distribution. Freeman, San Francisco

    Google Scholar 

  • Worland AJ (1996) The influence of the flowering time genes on environmental adaptability in European wheats. Euphytica 89:49–57

    Google Scholar 

  • Worland T, Snape JW (2001) Genetic basis of worldwide wheat varietal improvement. In: Bonjean AP, Angus WJ (eds) The world wheat book: a history of wheat breeding. Intercept Ltd., London, pp 61–67

    Google Scholar 

  • Worland AJ, Appendino ML, Sayers EJ (1994) The distribution, in European winter wheats, of genes that influence ecoclimatic adaptability whist determining photoperiodic insensitivity and plant height. Euphytica 80:219–228

    Google Scholar 

  • Worland AJ, Börner A, Korzun V, Li WM, Petrovíc S, Sayers EJ (1998a) The influence of photoperiod genes on the adaptability of European winter wheats. Euphytica 100:385–394

    CAS  Google Scholar 

  • Worland AJ, Korzum V, Röder MS, Ganal MW, Law CN (1998b) Genetic analysis of the dwarfing gene (Rht8) in wheat. Part II. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theor Appl Genet 96:1110–1120

    CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J (2004a) Allelic variation at the VRN-1 promoter region in polyploidy wheat. Theor Appl Genet 109:1677–1686

    PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004b) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    PubMed  CAS  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yang FP, Zhang XK, Xia XC, Laurie DA, Yang WX, He ZH (2009) Distribution of photoperiod insensitive Ppd-D1a allele in Chinese wheat cultivars. Euphytica 165:445–452

    CAS  Google Scholar 

  • Yoshida T, Nishida H, Zhu J, Nitcher R, Distelfeld A, Akashi Y, Kato K, Dubcovsky J (2010) Vrn-D4 is a vernalization gene located on the centromeric region of chromosome 5D in hexaploid wheat. Theor Appl Genet 120:543–552

    PubMed  CAS  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Google Scholar 

  • Zhang XK, Xiao YG, Zhang Y, Xia XC, Dubcovsky J, He ZH (2008) Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3 in Chinese wheat cultivars and their association with growth habit. Crop Sci 48:458–470

    CAS  Google Scholar 

  • Zhang K, Tian J, Zhao L, Liu B, Chen G (2009) Detection of quantitative trait loci for heading date based on the doubled haploid progeny of two elite Chinese wheat cultivars. Genetica 135:257–265

    Google Scholar 

  • Zhang J, Wang Y, Wu S, Yang J, Liu H, Zhou Y (2012) A single nucleotide polymorphism at the Vrn-D1 promoter region in common wheat is associated with vernalization response. Theor Appl Genet 125:1697–1704

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean Spaner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamran, A., Iqbal, M. & Spaner, D. Flowering time in wheat (Triticum aestivum L.): a key factor for global adaptability. Euphytica 197, 1–26 (2014). https://doi.org/10.1007/s10681-014-1075-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1075-7

Keywords

Navigation