Skip to main content
Log in

Genetic architecture of grain protein content in wheat

  • Theoretical Articles and Reviews
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Studies on identification and localization of quantitative traits for grain protein content (QGpc-loci) on chromosomes in Triticum aestivum and Triticum durum are reviewed. Association of QGpc with various traits of morphology, physiology, adaptation and tolerance to abiotic and biotic stress is shown. Genetic and environmental QGpc contexts that should be taken into account when using molecular markers in breeding for the grain protein content are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bushuk, W., Wheat Breeding for End-Product Use, Euphytica, 1998, vol. 100, pp. 137–145.

    Article  Google Scholar 

  2. Souza, E.J., Martin, J.M., Guttieri, M.J., et al., Influence of Genotype, Environment, and Nitrogen Management on Spring Wheat Quality, Crop Sci., 2004, vol. 44, pp. 425–432.

    Article  CAS  Google Scholar 

  3. Sozinov, A.A., Polimorfizm belkov i ego znachenie v genetike i selektsii (Protein Polymorphism and Its Value in Genetics and Breeding), Moscow: Nauka, 1985.

    Google Scholar 

  4. Melnikova, N.V. and Kudryavtsev, A.M., Allelic Diversity at Gliadin-Coding Gene Loci in Cultivars of Spring Durum Wheat (Triticum durum Desf.) Bred in Russia and Former Soviet Republics in the 20th Century, Russ. J. Genet., 2009, vol. 45, no. 10, pp. 1208–1214.

    Article  CAS  Google Scholar 

  5. Novoselskaya-Dragovich, A.Yu., Krupnov, V. A., Saifulin, R.A., and Pukhalskiy, V.A., Dynamics of Genetic Variation at Gliadin-Coding Loci in Saratov Cultivars of Common Wheat Triticum aestivum L. over Eight Decades of Scientific Breeding, Russ. J. Genet., 2003, vol. 39, no. 10, pp. 1130–1137.

    Article  CAS  Google Scholar 

  6. Novoselskaya-Dragovich, A.Yu., Fisenko, A.V., Imasheva, A.G., and Pukhalskiy, V.A., Comparative Analysis of the Genetic Diversity Dynamics at Gliadin Loci in the Winter Common Wheat Triticum aestivum L. Cultivars Developed in Serbia and Italy over 40 years of Scientific Breeding, Russ. J. Genet., 2007, vol. 43, no. 11, pp. 1236–1242.

    Article  CAS  Google Scholar 

  7. Payne, P.I., Genetics of Wheat Storage Proteins and the Effect of Allelic Variation on Bread-Making Quality, Ann. Rev. Plant Physiol., 1987, vol. 38, pp. 141–153.

    Article  CAS  Google Scholar 

  8. Shewry, P.R. and Halford, N.G., Cereal Seed Storage Proteins: Structures, Properties and Role in Grain Utilization, J. Exp. Bot., 2002, vol. 53, pp. 947–958.

    Article  PubMed  CAS  Google Scholar 

  9. Johnson, V.A., Mattern, P.J., Schmidt, J.W., et al., Genetic Advances in Wheat Protein Quantity and Composition, Proceedings of 4th International Wheat Genetics Symposium, Columbia, 1973, pp. 547–556.

  10. Krupnova, O.V., Interrelation between Yield and Protein Content in a Grain of Cereal and Legume Crops, S-kh. Biol., 2009, no. 3, pp. 13–23.

  11. Simmonds, N.W., The Relation between Yield and Protein in Cereal Grains, J. Sci. Food Agric., 1995, vol. 67, pp. 309–315.

    Article  CAS  Google Scholar 

  12. Blanco, A., Simeone, R., and Gadaleta, A., Detection of QTLs for Grain Protein Content in Durum Wheat, Theor. Appl. Genet., 2006, vol. 112, pp. 1195–1204.

    Article  PubMed  CAS  Google Scholar 

  13. DePauw, R.M., Knox, R.E., Clarke, F.R., et al., Shifting Undesirable Correlations, Euphytica, 2007, vol. 157, pp. 409–415.

    Article  Google Scholar 

  14. Bogard, M., Allard, V., Brancourt-Hulmel, M., et al., Deviation from the Grain Protein Concentration-Grain Yield Negative Relationship is Highly Correlated to Post-Anthesis N Uptake in Winter Wheat, J. Exp. Bot., 2010, vol. 61, pp. 4303–4312.

    Article  PubMed  CAS  Google Scholar 

  15. Barbottin, A., Lecomte, C., Bouchard, C., and Jeuffroy, M.H., Nitrogen Remobilization during Grain Filling in Wheat: Genotypic and Environmental Effect, Crop Sci., 2005, vol. 45, pp. 1141–1150.

    Article  Google Scholar 

  16. Fontaine, J.-X., Ravel, C., Pageau, K., et al., A Quantitative Genetic Study for Elucidating the Contribution of Glutamine Synthetase, Glutamate Dehydrogenase and Other Nitrogen-Related Physiological Traits to the Agronomic Performance of Common Wheat, Theor. Appl. Genet., 2009, vol. 119, pp. 645–662.

    Article  PubMed  CAS  Google Scholar 

  17. Shearman, V.J., Sylvester-Bradley, R., Scott, R.K., and Foulkes, M.J., Physiological Changes Associated with Wheat Yield Progress in the UK, Crop Sci., 2005, vol. 45, pp. 175–178.

    Google Scholar 

  18. Yan, X., Wu, P., Ling, H., et al., Plant Nutriomics in China: An Overview, Ann. Bot., 2006, vol. 98, pp. 473–482.

    Article  PubMed  CAS  Google Scholar 

  19. Hirel, B., Le Gouis, J., Ney, B., and Gallais, A., The Challenge of Improving Nitrogen Use Efficiency in Crop Plants: Towards a More Central Role for Genetic Variability and Quantitative Genetics within Integrated Approaches, J. Exp. Bot., 2007, vol. 58, pp. 2369–2387.

    Article  PubMed  CAS  Google Scholar 

  20. Palomeque, L., Liu, L.-J., Li, W., et al., QTL in Mega-Environments: I. Universal and Specific Seed Yield QTL Detected in a Population Derived from a Cross of High-Yielding Dapted x High-Yielding Exotic Soybean Lines, Theor. Appl. Genet., 2009, vol. 119, pp. 417–427.

    Article  PubMed  Google Scholar 

  21. Collins, N.C., Tardieu, F., and Tuberosa, R., Quantitative Trait Loci and Crop Performance under Abiotic Stress: Where Do We Stand?, Plant Physiol., 2008, vol. 147, pp. 469–486.

    Article  PubMed  CAS  Google Scholar 

  22. Laperche, E.A., Brancourt-Hulmel, M., Heumez, E., et al., Using Genotype x Nitrogen Interaction Variables to Evaluate the QTL Involved in Wheat Tolerance to Nitrogen Constraints, Theor. Appl. Genet., 2007, vol. 115, pp. 399–415.

    Article  PubMed  CAS  Google Scholar 

  23. Yamamoto, T., Yonemaru, J., and Yano, M., Towards the Understanding of Complex Traits in Rice: Substantially or Superficially?, DNA Res., 2009, vol. 16, pp. 141–154.

    Article  PubMed  CAS  Google Scholar 

  24. Law, C.N., Young, C.F., Brown, J.W.S., et al., The Study of Grain Protein Control in Wheat Using Whole Chromosome Substitution Lines, Seed Protein Improvement by Nuclear Techniques (IAEA Proc. Ser. STI Pub.), 1978, pp. 483–502.

  25. Mansur, L.M., Qualset, O., and Kasarda, D.D., Effects of Cheyenne Chromosomes on Milling and Baking Quality in Chinese Spring Wheat in Relation to Glutenin and Gliadin Storage Proteins, Crop Sci., 1990, vol. 30, pp. 593–602.

    Article  Google Scholar 

  26. Perretant, M.R., Cadalen, T., Charmet, G., et al., QTL Analysis of Bread-Making Quality in Wheat Using a Doubled Haploid Population, Theor. Appl. Genet., 2000, vol. 100, pp. 1167–1175.

    Article  CAS  Google Scholar 

  27. Zanetti, S., Winzeler, M., Feulillet, C., et al., Genetic Analysis of Bread-Making Quality in Wheat and Spelt, Plant Breed., 2001, vol. 120, pp. 13–19.

    Article  CAS  Google Scholar 

  28. Groos, C., Robert, N., Bervas, E., and Charmet, C., Genetic Analysis of Grain Protein-Content, Grain Yield and Thousand-Kernel Weight in Bread Wheat, Theor. Appl. Genet., 2003, vol. 106, pp. 1032–1040.

    PubMed  CAS  Google Scholar 

  29. Groos, C., Bervas, E., Chanliaud, E., and Charmet, G., Genetic Analysis of Bread-Making Quality Scores in Bread Wheat Using a Recombinant Inbred Line Population, Theor. Appl. Genet., 2007, vol. 115, pp. 313–323.

    Article  PubMed  CAS  Google Scholar 

  30. Mann, G., Diffey, S., Cullis, B., et al., Genetic Control of Wheat Quality: Interactions between Chromosomal Regions Determining Protein Content and Composition, Dough Rheology, and Sponge and Dough Baking Properties, Theor. Appl. Genet., 2009, vol. 118, pp. 1519–1537.

    Article  PubMed  Google Scholar 

  31. Ma, W., Sutherland, M., Kammholz, S., et al., Wheat Flour Protein Content and Water Absorption Analysis in a Doubled Haploid Population, J. Cereal Sci., 2007, vol. 45, pp. 302–308.

    Article  CAS  Google Scholar 

  32. Kuchel, H., Langridge, P., Mosionek, L., et al., The Genetic Control of Milling Yield, Dough Rheology and Baking Quality of Wheat, Theor. Appl. Genet., 2006, vol. 112, pp. 1487–1495.

    Article  PubMed  CAS  Google Scholar 

  33. Prasad, M., Kumar, N., Kulwal, P.L., et al., QTL Analysis for Grain Protein Content Using SSR Markers and Validation Studies Using NILs in Bread Wheat, Theor. Appl. Genet., 2003, vol. 106, pp. 659–667.

    PubMed  CAS  Google Scholar 

  34. Turner, A.S., Bradburne, R.P., Fish, L., and Snape, J.W., New Quantitative Trait Loci Influencing Grain Texture and Protein Content in Bread Wheat, J. Cereal Sci., 2004, vol. 40, pp. 51–60.

    Article  CAS  Google Scholar 

  35. McCartney, C., Somers, D., Lukow, O., et al., QTL Analysis of Quality Traits in the Spring Wheat Cross RL4452 x AC Domain, Plant Breed., 2006, vol. 125, pp. 565–575.

    Article  CAS  Google Scholar 

  36. Campbell, K.G., Finney, P.L., Bergman, C.J., et al., Quantitative Trait Loci Associated with Milling and Baking Quality in a Common Hard Wheat Cross, Crop Sci., 2001, vol. 41, pp. 1275–1285.

    Article  CAS  Google Scholar 

  37. Breseghello, F., Finney, P.L., Gaines, C., et al., Genetic Loci Related to Kernel Quality Differences between a Common and a Hard Wheat Cultivar, Crop Sci., 2005, vol. 45, pp. 1685–1695.

    Article  CAS  Google Scholar 

  38. Kulwal, P.L., Kumar, N., Kumar, A., et al., Gene Networks in Hexaploid Wheat: Interacting Quantitative Trait Loci for Grain Protein Content, Funct. Integr. Genom, 2005, vol. 5, no. 4, pp. 254–259.

    Article  CAS  Google Scholar 

  39. Huang, X.-Q., Cloutier, S., Lycar, L., et al., Molecular Detection of QTLs for Agronomic and Quality Traits in a Double Haploid Population Derived from Two Canadian Wheats (Triticum aestivum L.), Theor. Appl. Genet., 2006, vol. 113, pp. 753–766.

    Article  PubMed  CAS  Google Scholar 

  40. Nishio, Z., Takata, K., Ito, M., et al., Small-Scale Bread-Quality-Test Performance Heritability in Bread Wheat: Influence of High Molecular Weight Glutenin Subunits and the 1BL.1RS Translocation, Crop Sci., 2007, vol. 47, pp. 1451–1458.

    Article  CAS  Google Scholar 

  41. Weightman, R.M., Millar, S., Alava, J., et al., Effects of Drought and the Presence of the 1BL/1RS Translocation on Grain Vitreosity, Hardness and Protein Content in Winter Wheat, J. Cereal Sci., 2008, vol. 47, pp. 457–468.

    Article  CAS  Google Scholar 

  42. Khlestkina, E.K. and Giura, A., A New Gene Controlling the Flowering Response to Photoperiod in Wheat, Euphytica, 2009, vol. 165, pp. 579–585.

    Article  CAS  Google Scholar 

  43. Brevis, J.C., Chicaiza, O., Imtiaz, A.K., et al., Agronomic and Quality Evaluation of Common Wheat Near-Isogenic Lines Carrying the Leaf Rust Resistance Gene Lr47, Crop Sci., 2008, vol. 48, pp. 1441–1451.

    Article  Google Scholar 

  44. Nelson, J.C., Andreescu, C., Breseghello, F., et al., Quantitative Trait Locus Analysis of Wheat Quality Traits, Euphytica, 2006, vol. 149, pp. 145–159.

    Article  CAS  Google Scholar 

  45. Mesfin, A., Frohberg, R., and Anderson, J.A., RFLP Markers Associated with High Grain Protein from Triticum turgidum L. var. dicoccoides Introgressed into Hard Red Spring Wheat, Crop Sci., 1999, vol. 39, pp. 508–513.

    Article  CAS  Google Scholar 

  46. Joppa, L.R., Du, C., Hart, G.E., and Hareland, G.A., Mapping Gene(s) for Grain Protein in Tetraploid Wheat (Triticum turgidum L.) Using a Population of Recombinant Inbred Chromosome Lines, Crop Sci., 1997, vol. 37, pp. 1586–1589.

    Article  CAS  Google Scholar 

  47. Chee, P.W., Elias, E.M., Anderson, J.A., and Kianianand, S.F., Evaluation of a High Grain Protein QTL from Triticum turgidum L. var. dicoccoides in an Adapted Durum Wheat Background, Crop Sci., 2001, vol. 41, pp. 295–301.

    Article  CAS  Google Scholar 

  48. Olmos, S., Distelfeld, A., Chicaiza, O., et al., Precise Mapping of a Locus Affecting Grain Protein Content in Durum Wheat, Theor. Appl. Genet., 2003, vol. 107, pp. 1243–1251.

    Article  PubMed  CAS  Google Scholar 

  49. Blanco, A., De Giovanni, C., Laddomada, B., et al., Quantitative Trait Loci Influencing Grain Protein Content in Tetraploid Wheats, Plant Breed., 1996, vol. 115, pp. 310–316.

    Article  Google Scholar 

  50. Suprayogi, Y., Pozniak, C.J., Clarke, F.R., et al., Identification and Validation of Quantitative Trait Loci for Grain Protein Concentration in Adapted Canadian Durum Wheat Populations, Theor. Appl. Genet., 2009, vol. 119, pp. 437–448.

    PubMed  CAS  Google Scholar 

  51. Peleg, Z., Cakmak, I., Ozturk, L., et al., Quantitative Trait Loci Conferring Grain Mineral Nutrient Concentrations in Durum-Wild Emmer Wheat RIL Population, Theor. Appl. Genet., 2009, vol. 119, pp. 353–369.

    Article  PubMed  CAS  Google Scholar 

  52. Klindworth, D.L., Hareland, G.A., Elias, E.M., et al., Agronomic and Quality Characteristics of Two New Sets of Langdon Durum-Wild Emmer Wheat Chromosome Substitution Lines, J. Cereal Sci., 2009, vol. 50, pp. 29–35.

    Article  CAS  Google Scholar 

  53. Patil, R.M., Oak, M.D., Tamhankar, S.A., and Rao, V.S., Molecular Mapping of QTLs for Gluten Strength as Measured by Sedimentation Volume and Mixograph in Durum Wheat (Triticum turgidum L. ssp. durum), J. Cereal Sci., 2009, vol. 49, pp. 378–386.

    Article  CAS  Google Scholar 

  54. Gu, Y.Q., Salse, J., and Coleman-Derr, D., Types and Rates of Sequence Evolution at the High-Molecular-Weight Glutenin Locus in Hexaploid Wheat and Its Ancestral Genomes, Genetics, 2006, vol. 174, pp. 1493–1504.

    Article  PubMed  CAS  Google Scholar 

  55. Branlard, G., Genetic Diversity of French Common Wheat Germplasm Based on Gliadin Alleles, Theor. Appl. Genet., 1998, vol. 96, pp. 209–218.

    Article  Google Scholar 

  56. Kudryavtsev, A.M., Creating a System of Durum Wheat (T. durum Desf.) Genetic Markers and Its Use in Scientific Research and Practical Design, Extended Abstract of Doctoral (Biol.) Dissertation, Moscow: Vavilov Inst. General Genetics, 2007, p. 47.

    Google Scholar 

  57. Mickelson, S., See, D., Meyer, F.D., et al., Mapping of QTL Associated with Nitrogen Storage and Remobilization in Barley (Hordeum vulgare L.) Leaves, J. Exp. Bot., 2003, vol. 54, pp. 801–812.

    Article  PubMed  CAS  Google Scholar 

  58. Hirel, B., Martin, A., Terce-Laforque, T., et al., Physiology of Maize: I. A Comprehensive and Integrated View of Nitrogen Metabolism in a C4 Plant, Physiol. Plantarum, 2005, vol. 124, pp. 167–177.

    Article  CAS  Google Scholar 

  59. Waines, J.G. and Ehdaie, B., Domestication and Crop Physiology: Roots of Green-Revolution Wheat, Ann. Bot., 2007, vol. 100, no. 5, pp. 991–998.

    Article  PubMed  Google Scholar 

  60. Kumakov, V.A., Berezin, B.V., Evdokimova, O.A., et al., Produktsionnyi protsess v posevakh pshenitsy (Productivity Process in Wheat Crops), Saratov, 1994.

  61. Kichey, T., Hirel, B., Heumez, E., et al., Wheat Genetic Variability for Post-Anthesis Nitrogen Absorption and Remobilization Revealed by 15N Labeling and Correlations with Agronomic Traits and Nitrogen Physiological Markers, Field Crops Res., 2007, vol. 102, pp. 22–32.

    Article  Google Scholar 

  62. Yang, L., Mickelson, S., See, D., et al., Genetic Analysis of the Function of Major Leaf Proteases in Barley (Hordeum vulgare L.) Nitrogen Remobilization, J. Exp. Bot., 2004, vol. 55, pp. 2607–2616.

    Article  PubMed  CAS  Google Scholar 

  63. Boisson, M., Mondon, K., Torney, V., et al., Partial Sequences of Nitrogen Metabolism Genes in Hexaploid Wheat, Theor. Appl. Genet., 2005, vol. 110, pp. 932–940.

    Article  PubMed  CAS  Google Scholar 

  64. Habash, D.Z., Bernard, S., Schondelmaier, J., et al., The Genetics of Nitrogen Use in Hexaploid Wheat: N Utilization, Development and Yield, Theor. Appl. Genet., 2007, vol. 114, pp. 403–419.

    Article  PubMed  CAS  Google Scholar 

  65. Fatta, N., Caputo, C., and Barneix, A.J., The Absence of the Short Arm of Chromosome 7B Produces Inhibition of N Mobilization and Decrease Grain Protein Concentration in Wheat (Triticum aestivum L.) cv. Chinese Spring, Agronomie, 2000, vol. 10, pp. 423–430.

    Article  Google Scholar 

  66. Uauy, C., Brevis, J.C., and Dubcovsky, J., The High Grain Protein Gene Gpc-B1 Accelerates Senescence and Has Pleiotropic Effects on Protein Content in Wheat, J. Exp. Bot., 2006, vol. 57, pp. 2785–2794.

    Article  PubMed  CAS  Google Scholar 

  67. Waters B.M., Uauy C., Dubcovsky J., Grusak M.A. Wheat (Triticum aestivum) NAM Proteins Regulate the Translocation of Iron, Zinc, and Nitrogen Compounds from Vegetative Tissues to Grain, J. Exp. Bot., 2009, vol. 60, pp. 4263–4274.

    Article  PubMed  CAS  Google Scholar 

  68. Distelfeld, A., Korol, A., Dubcovsky, J., et al., Colinearity between the Barley Grain Protein Content (GPC) QTL on Chromosome Arm 6HS and the Wheat Gpc-B1 Region, Mol. Breed., 2008, vol. 22, pp. 25–38.

    Article  CAS  Google Scholar 

  69. Borner, A., Schumann, E., Furste, A., et al., Mapping of Quantitative Trait Loci Determining Agronomic Important Characters in Hexaploid Wheat (Triticum aestivum L.), Theor. Appl. Genet., 2002, vol. 105, pp. 921–936.

    Article  PubMed  Google Scholar 

  70. Gonzalez-Hernandez, J.L., Elias, E., and Kianian, S., Mapping Genes for Grain Protein Concentration and Grain Yield on Chromosome 5B of Triticum turgidum L. var. dicoccoides, Euphytica, 2004, vol. 139, pp. 217–225.

    Article  CAS  Google Scholar 

  71. Brevis, J.C., Morris, C.F., Manthey, F., and Dubcovsky, J., Effect of the Grain Protein Content Locus Gpc-B1 on Bread and Pasta Quality, J. Cereal Sci., 2010, vol. 51, pp. 357–365.

    Article  CAS  Google Scholar 

  72. Jukanti, A.K. and Fisher, A.M., A High-Grain Protein Content Locus on Barley (Hordeum vulgare) Chromosome 6 Is Associated with Increased Flag Leaf Proteolysis and Nitrogen Remobilization, Physiol. Plantarum, 2008, vol. 132, pp. 426–439.

    Article  CAS  Google Scholar 

  73. Triboi, E., Martre, P., Girousse, C., et al., Unravelling Environmental and Genetic Relationships between Grain Yield and Nitrogen Concentration for Wheat, Eur. J. Agron., 2006, vol. 25, pp. 108–118.

    Article  CAS  Google Scholar 

  74. Britto, D.T. and Kronzucker, H.J., The Case for Cytosolic N Heterostasis: A Critique of a Recently Proposed Model, Plant Cell Environ., 2003, vol. 26, pp. 183–188.

    Article  CAS  Google Scholar 

  75. Dupont, F.M., Hurkman, W.J., Vensel, W.H., et al., Protein Accumulation and Composition in Wheat Grains: Effects of Mineral Nutrients and High Temperature, Eur. J. Agron., 2006, vol. 25, pp. 96–107.

    Article  CAS  Google Scholar 

  76. Campbell, B.T., Baenziger, P.S., Gill, K.S., et al., Identification of QTLs and Environmental Interactions Associated with Agronomic Traits on Chromosome 3A of Wheat, Crop Sci., 2003, vol. 43, pp. 1493–1505.

    Article  CAS  Google Scholar 

  77. Breseghello, F., and Sorrells, M.E., QTL Analysis of Kernel Size and Shape in Two Hexaploid Wheat Mapping Population Wheat, Field Crops Res., 2007, vol. 10, pp. 172–179.

    Article  Google Scholar 

  78. Sun, X., Wu, K., Zhao, Y., et al., QTL Analysis of Kernel Shape and Weight Using Recombinant Inbred Lines in Wheat, Euphytica, 2009, vol. 165, pp. 615–624.

    Article  CAS  Google Scholar 

  79. McIntosh, R.A., Yamazaki, Y., Devos, K.M., et al., Catalogue of Gene Symbols for Wheat, in Proceedings of the 10th International Wheat Genetics Symposium, Rome, 2003, vol. 4.

  80. Iqbal, M., Navabi, A., Yang, R-C., et al., The Effect of Vernalization Genes on Earliness and Related Agronomic Traits of Spring Wheat in Northern Growing Regions, Crop Sci., 2007, vol. 47, pp. 1031–1039.

    Article  Google Scholar 

  81. Blake, N.K., Lanning, S.P., Martin, J.M., et al., Effect of Variation for Major Growth Habit Genes on Maturity and Yield in Five Spring Wheat Populations, Crop Sci., 2009, vol. 49, pp. 1211–1220.

    Article  CAS  Google Scholar 

  82. Reynolds, M.P., Saint Pierre, C., Saad, A.S.I., et al., Evaluating Potential Genetic Gains in Wheat Associated with Stress-Adaptive Trait Expression in Elite Genetic Resources under Drought and Heat Stress, Crop Sci., 2007, vol. 47, pp. 172–189.

    Article  Google Scholar 

  83. Lobachev, Yu.V., Proyavlenie genov nizkoroslosti u yarovykh pshenits v Nizhnem Povolzh’e (Manifestation of Dwarfing Genes among Spring Wheats in the Lower Povolzhye), Saratov: Saratov Gos. Agronom. Univ., 2000.

    Google Scholar 

  84. Pinthus, M.J. and Gale, M.D., The Effects of’ Gibberellin-Insensitive’ Dwarfing Alleles in Wheat on Grain Weight and Protein Content, Theor. Appl. Genet., 1990, vol. 79, pp. 108–112.

    Article  Google Scholar 

  85. Shearman, V.J., Sylvester-Bradley, R., Scott, R.K., and Foulkes, M.J., Physiological Changes Associated with Wheat Yield Progress in the UK, Crop Sci., 2005, vol. 45, pp. 175–178.

    Google Scholar 

  86. Ciaffi, M., Dominici, L., Lafiandra, D., and Porceddu, E., Seed Storage Proteins of Wild Wheat Progenitors and Their Relationships with Technological Properties, Hereditas, 2008, vol. 116, pp. 315–322.

    Google Scholar 

  87. Sherman, J.D., Lanning, S.P., Clark, D., and Talbert, L.E., Registration of Near-Isogenic Hard-Textured Wheat Lines Differing for Presence of a High Grain Protein Gene, J. Plant Registr., 2008, vol. 2, pp. 162–164.

    Article  Google Scholar 

  88. Brevis, J.C. and Dubcovsky, J., Effects of the Chromosome Region Including the Grain Protein Content Locus Gpc-B1 on Wheat Grain and Protein Yield, Crop Sci., 2010, vol. 50, pp. 93–104.

    Article  CAS  Google Scholar 

  89. Pershina, L.A., Devyatkina, E.P., Belova, L.I., et al., Traits of Alloplasmic Wheat-Barley Substitution and Addition Lines Hordeum marinum subsp. gussoneanum-Triticum aestivum, Russ. J. Genet., vol. 45, no. 10, pp. 1223–1229.

  90. Johnson, V.A., Schmidt, J.W., and Mattern, P.J., Cereal Breeding for Better Protein Impact, Econ. Bot., 1968, vol. 22, pp. 16–24.

    Article  Google Scholar 

  91. Semenov, V.N., Productivity and Grain Quality of High Protein and Resistant to Leaf Rust Lines of Spring Bread Wheat in Povolzhye, Extended Abstract of Doctoral (Agric.) Dissertation, Nemchinovka Moskovskaya Oblast, 1996, p. 18.

  92. Sarma, D. and Knott, D.R., The Transfer of Leaf Rust Resistance from Agropyron to Triticum by Irradiation, Can. J. Genet. Cytol., 1966, vol. 8, pp. 137–143.

    Google Scholar 

  93. Krupnov, V.A., Sibikeev, S.N., Krupnova, O.V., and Druzhin, A.E., Interaction of Translocations from Elongated Wheat-Grass and Intermediate Wheat-Grass in the Bread Wheat Gene Pool, Agrarnyi Vestn. Yugo-Vostoka, 2010, no. 1(4) pp. 11–14.

  94. Sinigovets, M.E., Cytogenetic Bases of Wheat-Grass Use in Wheat Breeding, Extended Abstract of Doctoral (Biol.) Dissertation, Kiev, 1988, p. 49.

  95. Krupnov, V.A., Voronina, S.A., Druzhin, A.E., and Krupnova, O.V., Effects of 7DL7AG- and 1BL1RS-Translocations on Grain Yield and Quality of Bread Wheat in Povolzhye, Vestn. VOGiS, 2009, vol. 13, no. 4, pp. 751–758.

    Google Scholar 

  96. Krupnov, V.A. and Sibikeev, S.N., Alien Genes for Bread Wheat Improvement, Identifitsirovannyi gene pool rastenii i selektsiya (Identified Plant Gene Pool and Breeding), Rigin, B.V. and Gaevska, E.I., Eds., St.-Petersburg: Vses. Inst. Rastenievodstva, 2005, pp. 740–758.

    Google Scholar 

  97. Uauy, C., Brevis, J.C., Chen, X., et al., High-Temperature Adult Plant (HTAP) Stripe Rust Resistance Gene Yr36 from Triticum turgidum L. var. dicoccoides Is Closely Linked to the Grain Protein Content Locus Gpc-B1, Theor. Appl. Genet., 2005, vol. 112, pp. 97–105.

    Article  PubMed  CAS  Google Scholar 

  98. Zhao, L., Zhang, K.-P., Liu, B., et al., A Comparison of Grain Protein Content QTLs and Flour Protein Content QTLs across Environments in Cultivated Wheat, Euphytica, 2010, vol. 174, pp. 325–335.

    Article  CAS  Google Scholar 

  99. Martin, A., Belastegui-Macadam, X., Quillere, I., et al., Nitrogen Management and Senescence in Two Maize Hybrids Differing in the Persistence of Leaf Greenness: Agronomic, Physiological and Molecular Aspects, New Phytol., 2005, vol. 167, pp. 483–492.

    Article  PubMed  CAS  Google Scholar 

  100. Boote, K.J. and Sinclair, T.R., Significant Discoveries and Our Changing Perspective on Research, Crop Sci., 2006, vol. 46, pp. 2270–2277.

    Article  Google Scholar 

  101. Kawaura, K., Mochida, K., and Ogihara, Y., Expression Profile of Two Storage-Protein Gene Families in Hexaploid Wheat Revealed by Large-Scale Analysis of Expressed Sequence Tags, Plant Physiol., 2005, vol. 139, pp. 1870–1880.

    Article  PubMed  Google Scholar 

  102. Altpeter, F., Vimla, V., Vibha, S., and Indra, K.V., Integration and Expression of the High-Molecular-Weight Glutenin Subunit 1Ax1 Gene into Wheat, Nat. Biotechnol., 1996, vol. 14, pp. 1155–59.

    Article  PubMed  CAS  Google Scholar 

  103. Leon, E., Marin, S., Gimenez, M.J., et al., Mixing Properties and Dough Functionality of Transgenic Lines of a Commercial Wheat Cultivar Expressing the 1Ax1, 1Dx5 and 1Dy10 HMW Glutenin Subunit Genes, J. Cereal Sci., 2009, vol. 49, pp. 148–156.

    Article  CAS  Google Scholar 

  104. Konzak, F.C., Genetic Control of the Content, Amino Acid Composition and Processing Properties of Proteins in Wheat, Adv. Genet., 1977, vol. 19, pp. 408–582.

    Google Scholar 

  105. Rogers, W.J., Rickatson, J.M., Sayers, E.J., and Law, C.N., Dosage Effects of Chromosomes of Homoeologous Groups 1 and 6 upon Bread-Making Quality in Hexaploid Wheat, Theor. Appl. Genet., 1990, vol. 80, pp. 281–287.

    Article  Google Scholar 

  106. Zlatska, A.V., Grain Protein Content in Wheat: Genetics of the Character and Some Predictions for Its Improvement in Common Wheat, Russ. J. Genet., 2005, vol. 41, no. 8, pp. 823–834.

    Article  CAS  Google Scholar 

  107. Levy, A., Galili, G., and Feldman, M., The Effect of Additions of Aegilops longissima Chromosomes on Grain Protein in Common Wheat, Theor. Appl. Genet., 1985, vol. 69, pp. 429–435.

    Article  CAS  Google Scholar 

  108. Wanous, M.K., Munkvold, J.D., Kruse, J.D., et al., Identification of Chromosome Arms Influencing Expression of the HMW Glutenins in Wheat, Theor. Appl. Genet., 2003, vol. 106, pp. 213–220.

    PubMed  CAS  Google Scholar 

  109. Storlie, E.W., Ihry, R.J., Baehr, L.M., et al., Genomic Regions Influencing Gene Expression of the HMW Glutenins in Wheat, Theor. Appl. Genet., 2009, vol. 118, pp. 295–303.

    Article  PubMed  CAS  Google Scholar 

  110. Ravel, C., Martre, P., Romeuf, I., et al., Nucleotide Polymorphism in the Wheat Transcriptional Activator spa Influences Its Pattern of Expression and Has Pleiotropic Effects on Grain Protein Composition, Dough Viscoelasticity, and Grain Hardness, Plant Physiol., 2009, vol. 151, pp. 2133–2144.

    Article  PubMed  CAS  Google Scholar 

  111. Van Herpen, T.W.J.M., Riley, M., Sparks, C., et al., Detailed Analysis of the Expression of an Alpha-Gliadin Promoter and the Deposition of Alpha-Gliadin Protein during Wheat Grain Development, Ann. Bot., 2008, vol. 102, pp. 331–342.

    Article  PubMed  CAS  Google Scholar 

  112. Verdier, J. and Thompson, R.D., Transcriptional Regulation of Storage Protein Synthesis during Dicotyledon Seed Filling, Plant Cell Physiol., 2008, vol. 49, no. 9, pp. 1263–1271.

    Article  PubMed  CAS  Google Scholar 

  113. Dudley, J.W., From Means to QTL: The Illinois Long-Term Selection Experiment as a Case Study in Quantitative Genetics, Crop Sci., 2007, vol. 47, pp. S20–S31.

    Article  CAS  Google Scholar 

  114. Dudley, J.W., Epistatic Interactions in Crosses of Illinois High Oil x Illinois Low Oil and of Illinois High Protein x Illinois Low Protein Corn Strains, Crop Sci., 2008, vol. 48, pp. 59–68.

    Article  Google Scholar 

  115. Uribelarrea, M., Below, F.E., and Moose, S.P., Grain Composition and Productivity of Maize Hybrids Derived from the Illinois Protein Strains in Response to Variable Nitrogen Supply, Crop Sci., 2004, vol. 44, pp. 1593–1600.

    Article  Google Scholar 

  116. Uribelarrea, M., Below, F.E., and Moose, S.P., Divergent Selection for Grain Protein Affects Nitrogen Use in Maize, Field Crops Res., 2007, vol. 100, pp. 82–90.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Krupnov.

Additional information

Original Russian Text © V.A. Krupnov, O.V. Krupnova, 2012, published in Genetika, 2012, Vol. 48, No. 2, pp. 149–159.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krupnov, V.A., Krupnova, O.V. Genetic architecture of grain protein content in wheat. Russ J Genet 48, 129–138 (2012). https://doi.org/10.1134/S1022795412010139

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795412010139

Keywords

Navigation