Skip to main content
Log in

Colinearity between the barley grain protein content (GPC) QTL on chromosome arm 6HS and the wheat Gpc-B1 region

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Grain Protein Content (GPC) is an important determinant of grain quality in many crops, including barley and wheat. Recently, the map-based cloning of Gpc-B1, a wheat GPC quantitative trait locus (QTL), revealed a NAC transcription factor (TtNAM-B1) that was associated with increased grain protein, zinc, and iron content. In barley, a QTL for GPC was identified in a segregating population developed from a cross between ‘Karl’ (low GPC) and ‘Lewis’ (average GPC). This QTL was mapped near marker hvm74 on chromosome 6H and was suggested as a potential orthologue for Gpc-B1 on chromosome arm 6BS. In the current study, wheat genes that were previously mapped within a 0.8 cM segment spanning the TtNAM-B1 gene were converted into barley molecular markers. These new markers, together with the barley TtNAM-B1 orthologous gene (designated HvNAM-1 hereafter) were mapped on a 0.7 cM interval encompassing the peak of the barley QTL for GPC on chromosome arm 6HS. Sequence comparison of HvNAM-1 parental alleles showed two single nucleotide polymorphisms (SNPs) that result in two amino acid differences. Analysis of the allelic variation in a wild and cultivated barley collection revealed that the Karl haplotype was present only in nine out of 147 tested accessions. The colinearity between the wheat and barley GPC regions and the low frequency of the HvNAM-1 haplotype associated with low GPC suggest that the barley NAC transcription factor is responsible for the GPC QTL on barley chromosome 6H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avivi L (1978) High protein content in wild tetraploid Triticum dicoccoides Korn. In: Ramanujam S (ed) Proceedings of the 5th international wheat genetics symposium, New Delhi, India. Indian Society of Genetics and Plant Breeding (ISGPB), pp 372–380

  • Burger WC, Wesenberg DM, Carden JE, Pawlisch PE (1979) Protein content and composition of Karl and related barleys. Crop Sci 19:235–238

    Article  CAS  Google Scholar 

  • Cakmak I, Torun A, Millet E, Feldman M, Fahima T, Korol AB, Nevo E, Braun HJ, Ozkan H (2004) Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci Plant Nutr 50:1047–1054

    CAS  Google Scholar 

  • Cantrell RG, Joppa LR (1991) Genetic analysis of quantitative traits in wild emmer (Triticum turgidum L. var. dicoccoides). Crop Sci 31:645–649

    Article  Google Scholar 

  • Distelfeld A, Uauy C, Olmos S, Schlatter AR, Dubcovsky J, Fahima T (2004) Microcolinearity between a 2-cM region encompassing the grain protein content locus Gpc-6B1 on wheat chromosome 6 and a 350-kb region on rice chromosome 2. Funct Integ Genomics 4:59–66

    Article  CAS  Google Scholar 

  • Distelfeld A, Uauy C, Fahima T, Dubcovsky J (2006) Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytol 169:753–763

    Article  PubMed  CAS  Google Scholar 

  • Distelfeld A, Cakmak I, Peleg Z, Ozturk L, Yazici AM, Budak H, Saranga Y, Fahima T (2007) Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol Plantarum 127:635–644

    Article  CAS  Google Scholar 

  • Dubcovsky J, Galvez AF, Dvorak J (1994) Comparison of the genetic organization of the early salt stress response gene system in salt-tolerant Lophopyrum elongatum and salt-sensitive wheat. Theor Appl Genet 87:957–964

    Article  CAS  Google Scholar 

  • Dubcovsky J, Luo MC, Zhong GY, Bransteitter R, Desai A, Kilian A, Kleinhofs A, Dvorak J (1996) Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics 143:983–999

    PubMed  CAS  Google Scholar 

  • Hockett EA, Gilbertson KM, McGuire CF, Bergman LE, Wiesner LE, Robbins GS (1985) Release of ‘Lewis’ barley. Crop Sci 25:570–571

    Article  Google Scholar 

  • Jansen RC, Van Ooijen JM, Stam P, Lister C, Dean C (1995) Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet 91:33–37

    Article  CAS  Google Scholar 

  • Joppa LR, Hart GE, Hareland GA (1997) Mapping a QTL for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Sci 37:1586–1589

    Article  CAS  Google Scholar 

  • Kade M, Barneix AJ, Olmos S, Dubcovsky J (2005) Nitrogen uptake and remobilization in tetraploid ‘Langdon’ durum wheat and a recombinant substitution line with the high grain protein gene Gpc-B1. Plant Breeding 124:343–349

    Article  CAS  Google Scholar 

  • Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Franckowiak JD, Hoffman D, Skadsen R, Steffenson B (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712

    Article  CAS  Google Scholar 

  • Korol AB, Ronin YI, Nevo E (1998) Approximated analysis of QTL-environmental interaction with no limits on the number of environments. Genetics 148:2015–2028

    PubMed  CAS  Google Scholar 

  • Kunzel G, Korzun L, Meister A (2000) Cytogenetically integrated physical RFLP maps for the barley genome based on translocation breakpoints. Genetics 154:397–412

    PubMed  CAS  Google Scholar 

  • Lebreton CM, Visscher PM (1998) Empirical non-parametric bootstrap strategies in QTL mapping: conditioning on the genetic model. Genetics 148:525–535

    PubMed  CAS  Google Scholar 

  • Li JZ, Sjakste TG, Roder MS, Ganal W (2003) Development and genetic mapping of 127 new microsatellite markers in barley. Theor Appl Genet 107:1021–1027

    Article  PubMed  CAS  Google Scholar 

  • Mester D, Ronin YI, Minkov D, Nevo E, Korol A (2003) Constructing large scale genetic maps using evolutionary strategy algorithm. Genetics 165:2269–2282

    PubMed  CAS  Google Scholar 

  • Mickelson S, See D, Meyer FD, Garner JP, Foster CR, Blake TK, Fischer AM (2003) Mapping of QTL associated with nitrogen storage and remobilization in barley (Hordeum vulgare L.) leaves. J Exp Bot 54:801–812

    Article  PubMed  CAS  Google Scholar 

  • Olmos S, Distelfeld A, Chicaiza O, Schlatter AR, Fahima T, Echenique V, Dubcovsky J (2003) Precise mapping of a locus affecting grain protein content in durum wheat. Theor Appl Genet 107:1243–1251

    Article  PubMed  CAS  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL, Skriverl K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87

    Article  PubMed  CAS  Google Scholar 

  • See D, Kanazin V, Kephart K, Blake T (2002) Mapping genes controlling variation in barley grain protein concentration. Crop Sci 42:680–685

    Article  CAS  Google Scholar 

  • Simmonds N (1995) The relation between yield and protein in cereal grain. J Sci Food Agr 67:309–315

    Article  CAS  Google Scholar 

  • Uauy C, Brevis JC, Dubcovsky J (2006a) The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. J Exp Bot 57:2785–2794

    Article  PubMed  CAS  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006b) A NAC gene regulating senescence improves grain Protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  PubMed  CAS  Google Scholar 

  • Weng Y, Lazar MD (2002) Comparison of homoeologous group-6 short arm physical maps of wheat and barley reveals a similar distribution of recombinogenic and gene-rich regions. Theor Appl Genet 104:1078–1085

    Article  PubMed  CAS  Google Scholar 

  • Wesenberg DM, Hayes RM, Strandridge NN, Burger WC, Goplin ED, Petr FC (1976) Registration of Karl barley. Crop Sci 16:737

    Article  Google Scholar 

  • Yang L, Mickelson S, Deven S, Blake TK, Fischer AM (2004) Genetic analysis of the function of major leaf proteases in barley (Hordeum vulgare L.) nitrogen remobilization. J Exp Bot 55:2607–2616

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Tomkins JP, Waugh R, Frisch DA, Kudrna D, Kleinhofs A, Brueggeman RS, Muehlbauer GJ, Wise RP, Wing RA (2000) A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theor Appl Genet 101:1093–1099

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Research Grant No. US-3573-04C from BARD, the United States—Israel Binational Agricultural Research Foundation. A. Distelfeld is indebted to Vaadia-BARD Postdoctoral Fellowship Award No. FI-386-06. The authors wish to thank L. Beloborodov for excellent technical assistance. Barley seeds were kindly provided by the USDA-ARS, National Small Grains Germplasm Research Facility, Aberdeen, Idaho.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzion Fahima.

 

 

Appendix 1 Allelic diversity for HvNAM-1 (markers uhb6 and uhb7) among wild and cultivated barley accessions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Distelfeld, A., Korol, A., Dubcovsky, J. et al. Colinearity between the barley grain protein content (GPC) QTL on chromosome arm 6HS and the wheat Gpc-B1 region. Mol Breeding 22, 25–38 (2008). https://doi.org/10.1007/s11032-007-9153-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-007-9153-3

Keywords

Navigation