Skip to main content
Log in

Liquid immiscibility in deep-seated magmas and the generation of carbonatite melts

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

This paper reviews the results of investigations of melt inclusions in minerals of carbonatites and spatially associated silicate rocks genetically related to various deep-seated undersaturated silicate magmas of alkaline ultrabasic, alkaline basic, lamproitic, and kimberlitic compositions. The analysis of this direct genetic information showed that all the deep magmas are inherently enriched in volatile components, the most abundant among which are carbon dioxide, alkalis, halides, sulfur, and phosphorus. The volatiles probably initially served as agents of mantle metasomatism and promoted melting in deep magma sources. The derived magmas became enriched in carbon dioxide, alkalis, and other volatile components owing to the crystallization and fractionation of early high-magnesium minerals and gradually acquired the characteristics of carbonated silicate liquids. When critical compositional parameters were reached, the accumulated volatiles catalyzed immiscibility, the magmas became heterogeneous, and two-phase carbonate-silicate liquid immiscibility occurred at temperatures of ≥1280–1250°C. The immiscibility was accompanied by the partitioning of elements: the major portion of fluid components partitioned together with Ca into the carbonate-salt fraction (parental carbonatite melt), and the silicate melt was correspondingly depleted in these components and became more silicic. After spatial separation, the silicate and carbonate-silicate melts evolved independently during slow cooling. Differentiation and fractionation were characteristic of silicate melts. The carbonatite melts became again heterogeneous within the temperature range from 1200 to 800–600°C and separated into immiscible carbonate-salt fractions of various compositions: alkali-sulfate, alkali-phosphate, alkali-fluoride, alkali-chloride, and Fe-Mg-Ca carbonate. In large scale systems, polyphase silicate-carbonate-salt liquid immiscibility is usually manifested during the slow cooling and prolonged evolution of deeply derived melts in the Earth’s crust. It may lead to the formation of various types of intrusive carbonatites: widespread calcite-dolomite and rare alkali-sulfate, alkali-phosphate, and alkali-halide rocks. The initial alkaline carbonatite melts can retain their compositions enriched in P, S, Cl, and F only at rapid eruption followed by instantaneous quenching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Le Bas, Carbonatite-Nephelinite Volcanism (Willey, New York, 1977).

    Google Scholar 

  2. B. A. Kjarsgaard and D. L. Hamilton, “Liquid Immiscibility and the Origin of Alkali-Poor Carbonatites,” Mineral. Mag. 52, 43–55 (1988).

    Article  Google Scholar 

  3. B.A. Kjarsgaard, D.L. Hamilton, “The genesis of carbonatites by immiscibility,” in Carbonatites: genesis and evolution (London), pp. 388–409 (1989).

  4. J. Gittins and B. C. Jago, “Differentiation of Natrocarbonatite Magma at Oldoinyo Lengai Volcano, Tanzania,” Mineral. Mag. 62(6), 759–768 (1998).

    Article  Google Scholar 

  5. L. N. Kogarko, D. A. Plant, C. M. B. Henderson, et al., “Na-Rich Carbonate Inclusions in Perovskite and Calzirtite from the Guli Intrusive Ca-Carbonatite, Polar Siberia,” Contrib. Mineral. Petrol 109(1), 124–129 (1991).

    Article  Google Scholar 

  6. A. R. Entin, A. I. Zaitsev, N. I. Nenashev, et al., “On the Sequence of Geologic Events Related to the Emplacement of the Tomtor Massif of Alkaline Ultrabasic Rocks and Carbonatites,” Geol. Geofiz., No. 12, 42–51 (1990).

  7. A. A. Frolov, A. V. Tolstov, and S. V. Belov, Carbonatite Deposits of Russia (NIA-Priroda, Moscow, 2003) [in Russian].

    Google Scholar 

  8. V. Morogan and S. Lindblom, “Volatiles Associated with the Alkaline-Carbonatite Magmatism at Alno: A Study of Fluid and Solid Inclusions in Minerals from the Langazsholmen Ring Complex,” Contrib. Mineral. Petrol. 122(3), 262–274 (1995).

    Article  Google Scholar 

  9. L. Werner, “Bastnasit from Mountain Pass, California,” Aufschluss 48, 137–142 (1997).

    Google Scholar 

  10. L. S. Egorov, Melilitic Rocks of the Maimecha-Kotui Province (Nedra, Leningrad, 1969) [in Russian].

    Google Scholar 

  11. L. S. Egorov, “Alkaline Ultrabasic Magmatism and Its Mineralogy,” Geol. Rudn. Mestorozhd., No. 4, 24–40 (1985).

  12. L. I. Panina, A. M. Sazonov, and L. M. Usol’tseva, “Melilitic and Melilite-Bearing Rocks of the Krestovskii Intrusion (Polar Siberia) and Their Genesis,” Geol. Geofiz. 42(9), 1314–1332 (2001).

    Google Scholar 

  13. L. I. Panina, “Multiphase Carbonate-Salt Immiscibility in Carbonatite Melts: Data on Melt Inclusions from the Krestovskiy Massif Minerals (Polar Siberia),” Contrib. Mineral. Petrol. 150, 19–36 (2005).

    Article  Google Scholar 

  14. J. B. Dawson, J. V. Smith, and I. M. Stelle, “1966 Ash Eruption of the Carbonatite Volcano Oldoinyo Lengai: Mineralogy of Lapilli and Mixing of Silicate and Carbonate Magmas,” Mineral. Mag. 56(1), 1–16 (1992).

    Article  Google Scholar 

  15. L. I. Panina, “Physicochemical Conditions of the Formation of Rocks in Alkaline Ultrabasic Intrusions,” Geol. Geofiz., No. 1, 39–51 (1985).

  16. N. F. D. Nielsen, I. P. Solovova, and I. V. Veksler, “Parental Melts of Melilitolite and Origin of Alkaline Carbonatite: Evidence from Crystallized Melt Inclusions, Gardiner Complex,” Contrib. Mineral. Petrol. 126, 331–344 (1997).

    Article  Google Scholar 

  17. I. V. Veksler, T. F. Nielsen, and S. V. Sokolov, “Mineralogy of Crystallized Melt Inclusions from Gardiner and Kovdor Ultramafic Alkaline Complexes: Implications for Carbonatite Genesis,” J. Petrol. 39(11–12), 2015–2031 (1998).

    Article  Google Scholar 

  18. I. P. Solovova, I. D. Ryabchikov, L. N. Kogarko, et al., “Inclusions in Minerals of the Palabora Carbonatite Complex, South Africa,” Geokhimiya, No. 5, 435–447 (1998) [Geochem. Int. 36, 377–388 (1998)].

  19. I. M. Samson, W. Liu, and A. E. Williams-Jones, “The Nature of Orthomagmatic Hydrothermal Fluids in the Oka Carbonatite, Quebec, Canada: Evidence from Fluid Inclusions,” Geochim. Cosmochim. Acta 59(10), 1963–1977 (1995).

    Article  Google Scholar 

  20. B. E. Nesbitt and W. C. Kelly, “Magmatic and Hydrothermal Inclusions in Carbonatite of the Magnet Cove Complex, Arkansas,” Contrib. Mineral. Petrol. 63, 271–294 (1977).

    Article  Google Scholar 

  21. L. I. Panina, F. Stoppa, and L. M. Usol’tseva, “Genesis of Melilitite Rocks of Pian di Celle Volcano, Umbrian Kamafugite Province, Italy: Evidence from Melt Inclusions in Minerals,” Petrologiya, No. 3, 405–421 (2003) [Petrology 11, 365–382 (2003)].

  22. O. von Knorring and C. G. B. Dubois, “Carbonatitic Lava from Fort Portal Area in Western Uganda,” Nature 192(4807), 1064–1065 (1961).

    Article  Google Scholar 

  23. F. Stoppa and L. Lupini, “Mineralogy and Petrology of the Polino Monticellite Calciocarbonatite (Central Italy),” Mineral. Petrol. 49, 213–231 (1993).

    Article  Google Scholar 

  24. V. V. Sharygin, “Silicate-Carbonate Liquid Immiscibility in Melt Inclusions from Melilitolite Minerals: the Pian Di Celle Volcano (Umbria, Italy),” Memorias, No. 7, 399–402 (2001).

  25. I. P. Solovova, A. V. Girnis, L. N. Kogarko, et al., “Compositions of Magmas and Carbonate-Silicate Liquid Immiscibility in the Vulture Alkaline Igneous Complex, Italy,” Lithos 85, 113–128 (2005).

    Article  Google Scholar 

  26. A. A. Gurenko, A. V. Sobolev, and N. N. Kononkova, “New Petrological Data on Ugandites of the South African Rift Based on Magmatic Inclusion Studies,” Dokl. Akad. Nauk SSSR 305(6), 1383–1386 (1989).

    Google Scholar 

  27. T. Yu. Bazarova, I. T. Bakumenko, V. P. Kostyuk, et al., Magmatogenic Crystallization: Melt Inclusion Data (Nauka, Novosibirsk, 1975) [in Russian].

    Google Scholar 

  28. B. P. Romanchev, “Conditions of Rock Formation in Some Carbonatite Complexes of East Africa as Estimated from Fluid Inclusion Thermometry,” Geokhimiya, No. 2, 172–179 (1972).

  29. I. P. Solovova, A. V. Girnis, and I. D. Ryabchikov, “Inclusions of Carbonate and Silicate Melts in Minerals of Alkali Basaltoids from the East Pamirs,” Petrologiya 4, 339–363 (1996) [Petrology 4, 319–341 (1996)].

    Google Scholar 

  30. I. A. Andreeva, V. B. Naumov, V. I. Kovalenko, et al., “Fluoride-Sulfate and Chloride-Sulfate Salt Melts of the Carbonatite-Bearing Complex Mushugai-Khuduk, Southern Mongolia,” Petrologiya 6(3), 307–315 (1998) [Petrology 6, 284–292 (1998)].

    Google Scholar 

  31. I. A. Andreeva, V. B. Naumov, V. I. Kovalenko, et al., “The Magma Composition and Genesis of Theralite from the Mushugai Khuduk Carbonatite-Bearing Complex in Southern Mongolia,” Geokhimiya, No. 8, 826–841 (1999) [Geochem. Int. 37, 735–749 (1999)].

  32. V. S. Samoilov, V. I. Kovalenko, V. B. Naumov, et al., “Immiscibility of Silicate and Salt Melts during Formation of the Mushugai-Khuduk Alkaline Complex (Southern Mongolia),” Geokhimiya, No. 10, 1447–1460 (1988).

  33. I. A. Andreeva, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (IGEM, Moscow, 2000) [in Russian].

    Google Scholar 

  34. V. B. Naumov, V. I. Kovalenko, A. V. Sobolev, et al., “Immiscibility of Silicate and Salt Melts Based on Inclusions in High-Temperature Fluorite,” Dokl. Akad. Nauk SSSR 288(2), 453–456 (1986).

    Google Scholar 

  35. V. B. Naumov, I. P. Solovova, V. I. Kovalenko, et al., “Natural Phosphate-Silicate Melts,” Dokl. Akad. Nauk SSSR 300(3), 672–675 (1988).

    Google Scholar 

  36. O. V. Kobylkina, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (Ulan-Ude, 2002) [in Russian].

  37. A. G. Doroshkevich, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (Ulan-Ude, 2002) [in Russian].

  38. G. S. Ripp, O. V. Kobylkina, A. G. Doroshkevich, et al., Late Mesozoic Carbonatites of Western Transbaikalia (Nauka, Ulan-Ude, 2000) [in Russian].

    Google Scholar 

  39. L. I. Panina and L. M. Usol’tseva, “Problems of Carbonatite Formation at the Synnyr Alkaline Massif (Northern Transbaikalia),” in Plumes and Problems of Deep Sources of Akaline Magmatism (Khabarovsk, 2003), pp. 75–87 [in Russian].

  40. L. I. Panina, I. E. Proshenkin, E. N. Bulgakova, et al., “Khani Ultrabasic-Intermediate Massif and Its Genesis (Aldan Shield),” Geol. Geofiz., No. 6, 39–49 (1987).

  41. L. I. Panina, I. E. Proshenkin, and E. N. Bulgakova, “Genesis of the Khani Massif (Aldan Shield) Based on the Study of Melt Inclusion Chemistry,” Geol. Geofiz., No. 8, 50–62 (1987).

  42. L. I. Panina and L. M. Usol’tseva, “Alkaline High-Ca Sulfate-Carbonate Melt Inclusions in Melilite-Monticellite-Olivine Rocks from the Malomurunskii Alkaline Massif, Aldan,” Petrologiya 7, 653–669 (1999) [Petrology 7, 610–625 (1999)].

    Google Scholar 

  43. L. I. Panina and L. M. Usol’tseva, “Role of Liquid Immiscibility in the Formation of Calcite Carbonatites of the Malyi Murun Massif (Aldan),” Geol. Geofiz. 41(5), 655–670 (2000).

    Google Scholar 

  44. L. I. Panina and A. A. Konev, “Genetic Features of the Lamproites of the Molbo River (Western Aldan),” Geokhimiya, No. 3, 366–376 (1995).

  45. L. I. Panina, I. V. Motorina, and L. M. Usol’tseva, “Genesis of the Cocites of North Vietnam Based on Melt Inclusion Study,” Geol. Geofiz. 39(7), 882–891 (1998).

    Google Scholar 

  46. I. P. Solovova, A. V. Girnis, L. N. Kogarko, et al., “Geochemical Features of the Prairie Creek Lamproites Based on the Investigation of Microinclusions in Olivines,” Geokhimiya, No. 10, 1449–1459 (1989).

  47. R. H. Mitchell, “Coexisting Glasses Occurring as Inclusions in Leucite from Lamproites: Examples of Silicate Liquid Immiscibility in Ultrapotassic Magmas,” Mineral. Mag. 55, 197–202 (1991).

    Article  Google Scholar 

  48. A. V. Sobolev, N. V. Sobolev, C. B. Smith, et al., “Fluid and Melt Composition in Lamproites and Kimberlites Based on Study of Inclusions in Olivine,” Geol. Soc. Austr. Spec. Publ, No. 14, 220–240 (1989).

  49. V. V. Sharygin and T. Yu. Bazarova, “Melt Evolution during Crystallization of the Wyomingites of the Leucite Hills, USA,” Geol. Geofiz., No. 6, 51–57 (1991).

  50. V. V. Sharygin, “Lamproite Evolution: Evidence from Melt Inclusions,” Geol. Geofiz. 38(1), 136–147 (1997).

    Google Scholar 

  51. A. V. Golovin, V. V. Sharygin, N. P. Pokhilenko, et al., “Secondary Melt Inclusions in Olivine from Unaltered Kimberlites of the Udachnaya-East Pipe, Yakutia,” Dokl. Akad. Nauk 388(3), 369–372 (2003) [Dokl. Earth Si. 388, 93–96 (2003)].

    Google Scholar 

  52. M. B. Kamenetsky, A. V. Sobolev, and V. S. Kamenetsky, “Kimberlite Melts Rich in Alkali Chlorides and Carbonates: A Potent Metasomatic Agent in the Mantle,” Geology 32(10), 845–848 (2004).

    Article  Google Scholar 

  53. R. Maas, M. B. Kamenetsky, A. B. Sobolev, et al., “Sr, Nd and Pb Isotope Evidence for a Mantle Origin of Alkali Chlorides and Carbonates in the Udachnaya Kimberlite, Siberia,” Geology 33(7), 549–552 (2005).

    Article  Google Scholar 

  54. J. B. Dawson, H. Pinkerton, D. M. Pyle, et al., “June 1993 Eruption of Oldoinyo Lengai, Tanzania: Exceptionally Viscous and Large Carbonatite Lava Flow and Evidence for Coexisting Silicate and Carbonate Magmas,” Geology 22(9), 799–802 (1994).

    Article  Google Scholar 

  55. K. Bell and A. Simonetti, “Carbonatite Magmatism and Plume Activity: Implications from the Nd, Pb and Sr Isotope Systematics of Oldoinyo Lengai,” J. Petrol. 37(6), 1321–1339 (1996).

    Article  Google Scholar 

  56. J. B. Dawson, “A Supposed Sovite from Oldoinyo Lengai, Tanzania: Result of Extreme Alteration of Alkali Carbonatite Lava,” Mineral. Mag. 57(1), 93–101 (1993).

    Article  Google Scholar 

  57. T. Andersen, “Evolution of Peralkaline Calcite Carbonatite Magma in the Fen Complex, Southeast Norway,” Lithos 22(2), 99–112 (1988).

    Article  Google Scholar 

  58. R. H. Mitchell, “Carbonate-Carbonate Immiscibility, Neighborite and Potassium Iron Sulphide in Oldoinyo Lengai Natrocarbonatite,” Mineral. Mag. 61, 779–789 (1997).

    Article  Google Scholar 

  59. L. N. Kogarko, C. M. B. Henderson, and H. Pacheco, “Primary Ca-Rich Carbonatite Magma and Carbonate-Silicate-Sulphide Liquid Immiscibility in the Upper Mantle,” Contrib. Mineral. Petrol. 121(3), 267–274 (1995).

    Article  Google Scholar 

  60. I. K. Pyatnenko and L. G. Saprykina, “On the Finding of Carbonatite Lavas and Pyroclastics in the Paleozoic Sedimentary-Volcanic Sequences of Kantozero, Kola Peninsula,” Dokl. Akad. Nauk SSSR 229(4), 919–921 (1976).

    Google Scholar 

  61. M. E. Wallace and D. H. Green, “An Experimental Determination of Primary Carbonatite Magma Composition,” Nature 335(6188), 343–346 (1988).

    Article  Google Scholar 

  62. D. L. Hamilton and B. A. Kjarsgaard, “The Immiscibility of Silicate and Carbonate Liquids,” S. Afr. J. Geol. 96(3), 139–142 (1993).

    Google Scholar 

  63. W. Lee and P. I. Wyllie, “Liquid Immiscibility in the Join NaAlSiO4-NaAlSi3O8-CaCO3 at 1 GPa: Implications for Crystal Carbonatites,” J. Petrol. 38(9), 1113–1135 (1997).

    Article  Google Scholar 

  64. F. Chalot-Prat and M. Arnold, “Immiscibility between Calciocarbonatitic and Silicate Melts and Related Wall Rock Reactions in the Upper Mantle: A Natural Case Study from Romanian Mantle Xenoliths,” Lithos 46(4), 627–659 (1999).

    Article  Google Scholar 

  65. I. D. Ryabchikov, “Processes of Mantle Magma Formation,” in Magmatic Evolution in the Earth’s History (Nauka, Moscow, 1987), pp. 349–371 [in Russian].

    Google Scholar 

  66. S. R. Poulson and Y. Ohmoto, “An Evolution of the Solubility of Sulphide Sulfur in Silicate Melts from Experimental Data and Natural Samples,” Chem. Geol. 85, 57–75 (1990).

    Article  Google Scholar 

  67. J. F. Luhr, “Experimental Phase Relations of Water-and Sulfur-Saturated Arc Magmas and the 1982 Eruptions of El Chichon Volcano,” J. Petrol. 31, 1071–1114 (1990).

    Google Scholar 

  68. M. R. Carrol and M. J. Rutherford, “Sulfide and Sulfate Saturation in Hydrous Silicate Melts,” J. Geophys. Res. 90, 601–612 (1985).

    Google Scholar 

  69. A. A. Marakushev, “On the Genesis of Apatite Deposits in Precambrian Magnesian Marbles,” in Apatites (Nauka, Moscow, 1968), pp. 339–347 [in Russian].

    Google Scholar 

  70. L. N. Kogarko, Genetic Problems of Agpaitic Magmas (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  71. I. C. Freestone and D. L. Hamilton, “The Role of Liquid Immiscibility in the Genesis of Carbonatites: An Experimental Study,” Contrib. Mineral. Petrol. 73, 105–117 (1980).

    Article  Google Scholar 

  72. R. A. Brooker and D. L. Hamilton, “Three-Liquid Immiscibility and the Origin of Carbonatites,” Nature 346, 459–462 (1990).

    Article  Google Scholar 

  73. R. A. Brooker, “The Effect of CO2 Saturation on Immiscibility between Silicate and Carbonate Liquids: An Experimental Study,” J. Petrol. 39(11–12), 1905–1915 (1998).

    Article  Google Scholar 

  74. L. N. Kogarko, “Principle of Chemical Bond Polarity and Its Petrological Significance,” in Petrological Problems of the Earth’s Crust and Upper Mantle (Nauka, Novosibirsk, 1978), pp. 222–228 [in Russian].

    Google Scholar 

  75. N. I. Suk, “Experimental Study of Liquid Immiscibility in Silicate-Carbonate Systems,” Petrologiya 9(5), 547–558 (2001) [Petrology 9, 477–487 (2001)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Panina.

Additional information

Original Russian Text © L.I. Panina, I.V. Motorina, 2008, published in Geokhimiya, 2008, No. 5, pp. 487–504.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panina, L.I., Motorina, I.V. Liquid immiscibility in deep-seated magmas and the generation of carbonatite melts. Geochem. Int. 46, 448–464 (2008). https://doi.org/10.1134/S0016702908050029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702908050029

Keywords

Navigation