Skip to main content
Log in

The role of liquid immiscibility in the genesis of carbonatites — An experimental study

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The two-liquid field between alkali-carbonate liquids and phonolite or nephelinite magmas from the Oldoinyo Lengai volcano has been determined between 0.7 and 7.6 kb and 900°–1,250° C. The miscibility gap expands with increase in \(P_{CO_2 }\) and decrease in temperature. Concomitantly there is a rotation of tie-lines so that the carbonate liquids become richer in CaO. The element distribution between the melts indicates that a carbonate liquid equivalent in composition to Oldoinyo Lengai natrocarbonatite lava would have separated from a phonolitic rather than a nephelinitic magma. CO2-saturated nephelinites coexist with carbonate liquids much richer in CaO than the Lengai carbonatites, but even so these liquids have high alkali concentrations. If the sövites of hypabyssal and plutonic ijolite-carbonatite complexes originated by liquid immiscibility, then large quantities of alkalis have been lost, as is suggested by fenitization and related phenomena. The miscibility gap closes away from Na2O-rich compositions, so that the tendency to exsolve a carbonatite melt is greater in salic than in mafic silicate magmas. The two-liquid field does not approach kimberlitic compositions over the range of pressures studied, suggesting that the globular textures observed in many kimberlite sills and dykes may be the result of processes other than liquid immiscibility at crustal pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apden, J.A.: Inclusion studies in ijolitic and carbonatitic rocks with particular reference to the identification of their solid components. Ph.D. Thesis, Leicester University 1978

  • Bailey, D.K.: Carbonatitic volcanoes and shallow intrusions in Zambia. In: Carbonatites (O.F. Tuttle, J. Gittins, eds.). New York: Wiley Interscience 1966

    Google Scholar 

  • Brey, G.: Carbon dioxide in highly undersaturated basaltic magmas. Ph.D. Thesis, Australian National University 1976

  • Brey, G.: Solubility, mechanisms of CO2 in silicate melts and its importance for the origin of olivine melilitites. IASPEI/IAVCEI Joint Assemblies, Durham, abstracts 221 (1977)

  • Brey, G., Green, D.H.: Solubility of CO2 in olivine melilitite at high pressures and role of CO2 in the earth's upper mantle. Contrib. Mineral. Petrol. 55, 217–230 (1976)

    Google Scholar 

  • Cooper, A.F., Gittins, J., Tuttle, O.F.: The system Na2CO3-K2CO3-CaCO3 at 1 kbar and its significance in carbonatite petrogenesis. Am. J. Sci. 275, 534–560 (1975)

    Google Scholar 

  • Dawson, J.B.: Sodium carbonatite lavas from Oldoinyo Lengai, Tanganyika. Nature 195, 1075–1076 (1962a)

    Google Scholar 

  • Dawson, J.B.: The geology of Oldoinyo Lengai. Bull. Volcanol. 24, 349–388 (1962b)

    Google Scholar 

  • Dawson, J.B.: Reactivity of the cations in carbonate magma. Geol. Assoc. Can., Proc. 15, 103–113 (1964)

    Google Scholar 

  • Dawson, J.B.: Oldoinyo Lengai — an active volcano with sodium carbonatite lava flows. In: Carbonatites (O.F. Tuttle, J. Gittins, eds.), p. 155–168. New York: Wiley Interscience 1966

    Google Scholar 

  • Donaldson, C.H., Dawson, J.B.: Skeletal crystallization and residual glass compositions in a cellular alkalic pyroxenite nodule from Oldoinyo Lengai. Contrib. Mineral. Petrol. 67, 139–149 (1978)

    Google Scholar 

  • Dunham, A.C., Wilkinson, F.C.F.: Accuracy, precision and detection limits of energy dispersive electron microprobe analysis of silicates. X-Ray Spectrom. 7, 50–56 (1978)

    Google Scholar 

  • Eckermann, H. von: The alkaline district of Alnö Island. Sven. Geol. Undersok. Ser. C. 36 (1948)

  • Eggler, D.H.: The role of CO2 upon partial melting of peridotite in the system Na2O-CaO-Al2O3-MgO-SiO2-CO2 to 35 kb, with an analysis of melting in a peridotite — H2O-CO2 system. Am. J. Sci. 278, 305–343 (1978)

    Google Scholar 

  • Freestone, I.C., Hamilton, D.L.: Liquid immiscibility in K2O-FeO-Al2O3-SiO2 discussion. Nature 267, 559 (1977)

    Google Scholar 

  • Freestone, I.C., Hamilton, D.L.: Scanning electron microscope study of liquid immiscibility. In: Progress in Experimental Petrology, 4th report, N.E.R.C. Publication D11, London 10–11 (1978)

  • Gittins, J.: The significance of some porphyritic textures in carbonatites. Can. Mineral. 12, 226–228 (1973)

    Google Scholar 

  • Gittins, J., Allen, C.R., Cooper, A.F.: Phlogopitization of pyroxenite; its bearing on the composition of carbonatite magmas. Geol. Mag. 112, 503–507 (1975)

    Google Scholar 

  • Gurney, J.J., Ebrahim, S.: Chemical composition of Lesotho kimberlites. In: Lesotho kimberlites (P.H. Nixon, ed.), p. 280–284. Lesotho National Development Corporation 1973

  • Hamilton, D.L., Freestone, I.C., Dawson, J.B., Donaldson, C.H.: Origin of carbonatites by liquid immiscibility. Nature 279, 52–54 (1979)

    Google Scholar 

  • Hards, N.J., Freestone, I.C.: Liquid immiscibility in fluor-silicate systems. Progr. Expt. Petrol., 4th Report, N.E.R.C. Publication D11, London 11–13 (1978)

  • Knorring, O. von: Geochemical characteristics of carbonatites. Nature 194, 860–861 (1962)

    Google Scholar 

  • Koster van Groos, A.F.: The effect of high CO2 pressures on alkali rock and its bearing on the formation of ultrabasic rocks and the associated carbonatites. Am. J. Sci. 275, 163–185 (1975a)

    Google Scholar 

  • Koster van Groos, A.F.: The distribution of strontium between coexisting silicate and carbonate liquids at elevated pressures and temperatures. Geochim. Cosmochim. Acta 39, 27–34 (1975b)

    Google Scholar 

  • Koster van Groos, A.F., Wyllie, P.J.: Liquid immiscibility in the system Na2O -Al2O3-SiO2-CO2 at pressures to 1 kb. Am. J. Sci. 264, 234–255 (1966)

    Google Scholar 

  • Koster van Groos, A.F., Wyllie, P.J.: Liquid immiscibility in the join NaAlSi3O8-Na2CO3-H2O and its bearing on the genesis of carbonatites. Am. J. Sci. 266, 932–967 (1968a)

    Google Scholar 

  • Koster van Groos, A.F., Wyllie, P.J.: Melting relationships in the system NaAlSi3O8-NaF-H2O to 4 kbar pressure. J. Geol. 76, 50–70 (1968b)

    Google Scholar 

  • Koster van Groos, A.F., Wyllie, P.J.: Melting relationships in the system NaAlSi3O8-NaCl-H2O at one kilobar pressure, with petrological applications. J. Geol. 77, 581–605 (1969)

    Google Scholar 

  • Koster van Groos, A.F., Wyllie, P.J.: Liquid immiscibility in the join NaAlSi3O8-CaAl2Si2O8-Na2CO3-H2O. Am. J. Sci. 273, 465–487 (1973)

    Google Scholar 

  • Le Bas, M.J.: Carbonatite-nephelinite volcanism. John Wiley & Sons 1977

  • Le Bas, M.J., Handley, C.D.: Variation in apatite composition in ijolitic and carbonatitic igneous rocks. Nature 279, 54–56 (1979)

    Google Scholar 

  • Middlemost, E.A.K.: Petrogenetic model for the origin of carbonatites. Lithos 7, 275–278 (1974)

    Google Scholar 

  • Mitchell, R.H.: The alleged kimberlite-carbonatite relationship: additional contrary mineralogical evidence. Am. J. Sci. 279, 570–589 (1979)

    Google Scholar 

  • Mitchell, R.H., Brunfelt, A.O.: Rare earth element geochemistry of the Fen alkaline complex, Norway. Contrib. Mineral. Petrol. 52, 247–259 (1975)

    Google Scholar 

  • Naslund, H.R.: Liquid immiscibility in the system KAlSi3O8-NaAlSi3O8-FeO-Fe2O3-SiO2 and its application to natural magmas. Carnegie Inst. Washington Yearb. 75, 592–597 (1976)

    Google Scholar 

  • Phillips, W.J.: Interpretation of crystalline spheroidal structures in igneous rocks. Lithos 6, 235–244 (1973)

    Google Scholar 

  • Rankin, A.H.: Fluid inclusion studies in apatite from carbonatites of the Wasaki area of Western Kenya. Lithos 8, 123–136 (1975)

    Google Scholar 

  • Rankin, A.H.: Fluid inclusion evidence for the formation conditions of apatite from the Tororo carbonatite complex of Eastern Uganda. Mineral. Mag. 41, 155–164 (1977)

    Google Scholar 

  • Rankin, A.H., Le Bas, M.J.: Liquid immiscibility between silicate and carbonate melts in naturally occurring ijolite magma. Nature 250, 206–209 (1974a)

    Google Scholar 

  • Rankin, A.H., Le Bas, M.J.: Nahcolite (NaHCO3) in inclusions in apatites from some Eastern African ijolites and carbonatites. Mineral. Mag. 39, 564–570 (1974b)

    Google Scholar 

  • Roedder, E.: Silicate liquid immiscibility in magmas and in the system K2O-FeO-Al2O3-SiO2: an example of serendipity. Geochim. Cosmochim. Acta 42, 1597–1617 (1978)

    Google Scholar 

  • Verwoerd, W.J.: Liquid immiscibility and the carbonatite-ijolite relationship: preliminary data on the join NaFe3+Si2O6-CaCO3 and related compositions. Carnegie Inst. Washington Yearb. 77, 767–774 (1978)

    Google Scholar 

  • Visser, W., Koster van Groos, A.F.: Phase relations in the system K2O-FeO-Al2O3-SiO2 at 1 atmosphere with special emphasis on low temperature liquid immiscibility. Am. J. Sci. 279, 70–91 (1979)

    Google Scholar 

  • Watkinson, D.H., Wyllie, P.J.: Experimental studies of the compositional join NaAlSiO4-CaCO3-H2O and the genesis of alkali rock-carbonatite complexes. J. Petrol. 12, 357–378 (1971)

    Google Scholar 

  • Wendlandt, R.F., Harrison, W.J.: Rare earth partitioning between immiscible carbonate and silicate liquids and CO2 vapour; results and implications for the formation of light rare earth-enriched rocks. Contrib. Mineral. Petrol. 69, 409–419 (1979)

    Google Scholar 

  • Wyllie, P.J.: Mantle fluid compositions buffered by carbonates in peridotite-CO2-H2O. J. Geol. 85, 187–208 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freestone, I.C., Hamilton, D.L. The role of liquid immiscibility in the genesis of carbonatites — An experimental study. Contr. Mineral. and Petrol. 73, 105–117 (1980). https://doi.org/10.1007/BF00371385

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371385

Keywords

Navigation