Skip to main content
Log in

Mineralogy and petrology of the Polino Monticellite Calciocarbonatite (Central Italy)

Mineralogie und Petrologie des Monticellit-Calciokarbonatites von Polino, Mittelitalien

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Two small diatremes, about 0.25 my old, cut through Liassic limestones about 1 km NNE of the village of Polino (Long. 12°50'54″E-Lat. 42°35'34″N; Central Italy).

The material filling the larger diatreme is mainly composed of a tuffisite with abundant lapilli showing concentric structure. Both unaltered country-rocks and massive hypabyssal carbonatite occur in the tuffisite as angular clasts and blocks, from a few mm up to more than 1 m in diameter.

The Polino rock occurs in a strongly-potassic igneous district (Umbria Latium Ultra-alkaline District) which comprises phonolitic pyroclastic rocks and very rare kamafugitic lavas.

Massive carbonatite blocks have an average mode of 53% Sr-Ba-rich calcite, 23% Fe-monticellite, 9% Th-perovskite plus Ti-magnetite, 6% Cr-phlogopite, 6% forsteritic olivine, about 2% Zr-schorlomite and ca. 1% Si-CO-OH apatite. Perovskite, schorlom ite, and apatite form cognate phases, whereas olivine and phlogopite, often replaced by monticellite, occur as nodules and as discrete grains with compositions and deformation features typical of mantle xenocrysts found in alkali basalts and ultramafic rocks.

High modal content of Ca-carbonate, high Sr, Ba and LREE contents of calcite, the presence of rare minerals peculiar to carbonatitic rocks and an essential amount of monticellite indicate classification of the Polino rock as a monticellite calciocarbonatite.

The Polino rock represents a carbonatitic melt strongly contaminated by mantle-crystal debris. It displays unusual geochemical features having trace elements closer to those of the regional-associated kamafugitic rocks rather than to those of common carbonatites.

Zusammenfassung

Zwei kleine, um 0.25 Millionen Jahre alte Diatreme durchschlugen liassische Kalkgesteine, ungefdhr 1 km NNE des Dorfes Polino (Long. 12°50'54″E-Lat. 42°35'34″N; Mittelitalien). Das Material, aus dem das größere Diatrem besteht, ist überwiegend Tuffisit mit häufigen Lapilli, die eine konzentrische Struktur zeigen. Sowohl nichtalterierte Nebengesteine, wie auch massive, hypabyssale Karbonatite treten im Tuffisit als eckige Klasten und Blöcke auf, mit einem Durchmesser von wenigen mm bis 1 m.

Das Polino-Gestein tritt in einem sehr Kalium-reichen Vulkan-Distrikt (der Umbria-Latium Ultraalkaline Distrikt) auf, der aus phonolitischen Pyroklastika und untergeordnet aus kamafugitischen Laven aufgebaut ist.

Massive Karbonatite bestehen im Durchschnitt aus 53% Sr-Ba-reichem Calcit, 23% Fe-Monticellit, 9% Th-Perovskit und Ti-Magnetit, 6% Cr-Phlogopit, 6% Fo-reichem Olivin, ungefdhr 2% Zr-Schorlomit und ca. 1 % Si-CO-OH-Apatit. Perovskit, Schorlo mit und Apatit bilden eine Mineralassoziation, während Olivin und Phlogopit, die häufig durch Monticellit verdrdngt sind, als Nodulen und Einzelkbrner auftreten. Letztere zeigen Zusammensetzungen und Deformationen wie sie für Mantel-Xenokristalle in Alkali-Basalten und ultramafischen Gesteinen typisch sind.

Der hohe Modalgehalt an Ca-Karbonat, hohe Sr, Ba und LREE-Gehalte im Calcit, das Vorhandensein von besonders für Karbonatite außergewöhnlichen Mineralen und häufiger Monticellit sprechen für eine Klassifizierung des Polino-Gesteins als Monticellit-Calciokarbonatit.

Das Polino-Gestein repräsentiert eine karbonatitische Schmelze, die von Mantelkristallen kontaminiert ist. Die außergewöhnliche Geochemie dieser Gesteine ist durch Spurenelemente, die eine engere Verwandtschaft zu den regional assoziierten Kamafugiten als zu üblichen Karbonatiten erkennen lassen, geprägt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arima M (1988) Barium-rich phlogopite in a mantle derived xenolith of the Upper Canada Mine kimberlite, Ontario, Canada: implications for Ba-reservoir in the upper mantle. J Jpn Assoc Petrol Econ Geol 83: 217–231

    Google Scholar 

  • Atkinson WJ, Hughes FE, Smith CB (1984) A review of the kimberlitic rocks of Western Australia. In:Kornprobst J (ed) Kimberlites I: kimberlites and related rocks. Proc Third Int Kimberlite Conf. Elsevier, New York, pp 195–224

    Google Scholar 

  • Bailey DK (1989) Carbonate melts from the mantle in the volcanoes of South-east Zambia. Nature 338: 415–418

    Google Scholar 

  • Bailey DK (1990) Mantle carbonatite eruptions: crustal context and implications. Lithos 26: 37–42

    Google Scholar 

  • Barker DS, Nixon PH (1989) High-Ca, low-alkali carbonatite volcanism at Fort Portal, Uganda. Contrib Mineral Petrol 103: 166–177

    Google Scholar 

  • Borodin LS, Bykova AV (1961) Zirconian schorlomite. Dokl Akad Nauk SSSR 141: 1454–1456

    Google Scholar 

  • Boyd FR, Nixon PH (1975) Origins of the ultramafic nodules from kimberlites of Northern Lesotho and the Monastery Mine, South Africa. Phys Chem Earth 9: 431–453

    Google Scholar 

  • Capedri S, Venturelli G, Salvioli-Mariani E, Crawford AJ, Barbieri M (1989) Upper mantle xenoliths and megacrysts in an alkali-basalt from Tallante, south eastern Spain. Eur J Mineral 1: 685–699

    Google Scholar 

  • Carswell DA (1975) Primary and secondary phlogopites and clinopyroxenes in garnet lherzolite xenoliths. Phys Chem Earth 9: 417–430

    Google Scholar 

  • Cloos H (1941) Bau und Tätigkeit von Tuffschloten. Untersuchungen an den Schwäbischen Vulkanen. Geol Rundsch32: 709–800

    Google Scholar 

  • Conticelli S, Peccerillo A (1990) Petrological significance of high-pressure ultramafic xenoliths from ultrapotassic rocks of Central Italy. Lithos 24: 305–322

    Google Scholar 

  • Cundari A, Ferguson AK (1991) Petrogenetic relationship between melilitite and lamproite in the Roman Comagmatic region: the lavas of S. Venanzo and Cupaello. Contrib Mineral Petrol 107: 343–357

    Google Scholar 

  • Dawson JB, Smith JV (1988) Metasomatized and veined upper-mantle xenoliths from Pello-Hill, Tanzania: evidence for anomalously light mantle beneath the Tanzanian sector of the East African rift valley. Contrib Mineral Petrol 100: 510–527

    Google Scholar 

  • Dawson JB, Hervig RL, Smith JV (1980) Fertile iron-rich dunite from the Bultfontein kimberlite, South Africa. Fortschr Mineral 59: 303–324

    Google Scholar 

  • De Albuquerque Sgarbi PB, Gomez Valença J (1993) Kalsilite in Brazilian kamafugitic rocks. Mineral Mag 57: 165–171

    Google Scholar 

  • Delaney S, Smith JV, Carswell DA, Dawson JB (1980) Chemistry of micas from kimberlites and xenoliths. II. Primary and secondary textured micas from peridotite xenoliths. Geochim Cosmochim Acta 44: 857–872

    Google Scholar 

  • Eggler DH (1989) Carbonatites, primary melts, and mantle dynamics. In:Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 561–579

    Google Scholar 

  • Erlank AJ, Water FG, Hawkesworth CJ, Haggerty SE, Allsopp HL, Rickard RS, Menzies MA (1987) Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes, South Africa. In:Menzies MA, Hawkesworth CJ (ed) mantle metasomatism. Academic Press, London, pp 221–309

    Google Scholar 

  • Foley SF, Wheller GE (1990) Parallels in the origin of the geochemical signatures of island arc volcanics and continental potassic igneous rocks: the role of residual titanates. Chem Geol 85: 1–18

    Google Scholar 

  • Frey FA, Green DH (1974) The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanites. Geochim Cosmochim Acta 38: 1023–1059

    Google Scholar 

  • Gaspar JC, Wyllie PJ (1983) Magnetite in the carbonatites from the Jacupiranga complex, Brazil. Am Mineral 68: 195–213

    Google Scholar 

  • Gaspar JC, Wyllie PJ (1987) The phlogopites from the Jacupiranga carbonatite intrusions. Mineral Petrol 36: 121–134

    Google Scholar 

  • Gittins J, Hewins RH, Laurin AF (1975) Kimberlitic-carbonatitic dykes of the Saguenay River Valley, Quebec, Canada. Phys Chem Earth 9: 137–148

    Google Scholar 

  • Jaques AL, Lewis JD, Smith CB, Gregory CP, Ferguson J, Chapell BW, McCulloch MT (1984) The diamond-bearing ultrapotassic (lamproitec) rocks of the West Kimberley region, Western Australia. In:Kornprobst J (ed) Kimberlites I: kimberlites and related rocks. Proc Third Int Kimberlite Conf. Elsevier, New York, pp 195–224

    Google Scholar 

  • Jones AP (1989) Upper-mantle enrichment by kimberlitec or carbonatitic magmatism. In:Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 448–463

    Google Scholar 

  • Kapustin YL (1980) Mineralogy of carbonatites. Amerind Publishing Co Pvt, New Delhi

    Google Scholar 

  • Le Bas MJ (1984) Oceanic carbonatites. In:Kornprobst J (ed) Kimberlites I: kimberlites and related rocks. Proc Third Int Kimberlite Conf. Elsevier, New York, pp 169–178

  • Liu YU, Comodi P (1993) Some aspects of the crystal-chemistry of apatites. Min Mag (in press)

  • Lloyd FE, Edgar AD, Forsyth DM, Barnett RL (1991) The paragenesis of upper-mantle xenoliths from the Quaternary volcanics south-east of Gees, West Eifel, Germany. Miner Mag 55: 95–112

    Google Scholar 

  • Locardi E (1990) Le mineralizzazioni fluoritifere laziali sono delle carbonatiti: l'esempio di Pianciano. L'industria mineraria 6: 1–7

    Google Scholar 

  • Lupini L, Williams CT, Woolley AR (1992) Zr-rich garnet and Zr- and Th-rich perovskite from the Polino carbonatite, Italy. Min Mag 56: 581–586

    Google Scholar 

  • Mariano AN (1989) Nature of economic mineralization in carbonatites and related rocks. In:Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 149–177

    Google Scholar 

  • Milton C, Ingram BL, Blade LV (1961) Kimzeyite, a zirconuun garnet from Magnet Cove, Arkansas. Am Mineral 46: 533–548

    Google Scholar 

  • Mitchell RH (1986) Kimberlites: mineralogy, geochemistry and petrology. Plenum Press, New York

    Google Scholar 

  • Nakamura N (1974) Determination of REE, Ba, Fe, Mg, Na, and K in carbonaceous and ordinary chondrites. Geochim Cosmochim Acta 38: 757–775

    Google Scholar 

  • Nickel EH (1960) A zirconium-bearing garnet from Oka, Quebec. Can Min 6: 549–550

    Google Scholar 

  • Nixon PH, Roger NW, Gibson IL, Grey A (1981) Depleted and fertile mantle xenoliths from Southern Africa kimberlites. Ann Rev Earth Planet Sci 9: 285–309

    Google Scholar 

  • Nixon PH, Boyd FR, Lee DC (1987) Western Australia xenoliths from kimberlites and lamproites. In:Nixon PH (ed) Mantle xenoliths. Wiley, New York, pp 281–293

    Google Scholar 

  • Platt RG, Mitchell RH (1979) The Marathon dikes. I. Zirconium-rich titanian garnets and manganoan magnesian ulvospinel-magnetite spinels. Am Mineral 64: 546–550

    Google Scholar 

  • Reynolds DL (1954) Fluidization as a geological process and its bearing on the problem of intrusive granites. Am J Sci 25: 577–613

    Google Scholar 

  • Sen G (1988) Petrogenesis of spinel lherzolite and pyroxenite suite xenoliths from the Koolau shield, Ohau, Hawaii: implications for petrology of the post-eruptive lithosphere beneath Ohau. Contrib Mineral Petrol 100: 61–91

    Google Scholar 

  • Sommerauer J, Katz-Lehnert K (1985) A new partial substitution mechanism of CO3 −2/CO3OH−3 and SiO4 −4 for PO4 −3 group in hydroxyapatite from Kaiserstuhl alkaline complex (SW-Germany). Contrib Mineral Petrol 91: 360–368

    Google Scholar 

  • Song Y, Frey FA (1989) Geochemistry of peridotite xenoliths in basalt from Hannanouba, eastern China: implications for subcontinental mantle heterogeneity. Geochim Cosmochim Acta 53: 97–113

    Google Scholar 

  • Stoppa F, Lupini L (1991) Caratteristiche identificative di una roccia carbonatitica del Pleistocene superiore affiorante presso Polino (Tr-Umbria). Studi Geologici Camerti, Volume Speciale (1): 383–398

  • Stoppa F, Lavecchia G (1992) Late-Pleistocene ultra-alkaline magmatic activity in the Umbria-Latium Region (Italy): an overview. J Volcanol Geotherm Res 52: 277–293

    Google Scholar 

  • Wallace EM, Green HD (1988) An experimental determination of primary carbonatite magma composition. Nature 335: 343–346

    Google Scholar 

  • Walter LS (1963) Experimental studies on Bowen's decarbonation series. II. P-T univariant equilibria of the reaction forsterite + calcite - monticellite - periclase + CO2. Am J Sci 261: 773–779

    Google Scholar 

  • Wood DA, Joron JC, Treuil M (1979) A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth Planet Sci Lett 45: 326–336

    Google Scholar 

  • Woolley AR, Kempe DRC (1989) Carbonatites: nomenclature, average chemical compositions, and element distribution. In:Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 1–14

    Google Scholar 

  • Wyllie PJ (1989) Origin of carbonatites: evidence from phase equilibrium studies. In:Bell K (ed) Carbonatites: gnesis and evolution. Unwin Hyman, London, pp 500–545

    Google Scholar 

  • Wyllie PJ, Baker MB, White BS (1990) Experimental boundaries and evolution of carbonatites. Lithos 26: 3–19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoppa, F., Lupini, L. Mineralogy and petrology of the Polino Monticellite Calciocarbonatite (Central Italy). Mineralogy and Petrology 49, 213–231 (1993). https://doi.org/10.1007/BF01164595

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01164595

Keywords

Navigation