Skip to main content
Log in

The role of liquid–liquid immiscibility and crystal fractionation in the genesis of carbonatite magmas: insights from Kerimasi melt inclusions

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We have reconstructed the compositional evolution of the silicate and carbonate melt, and various crystalline phases in the subvolcanic reservoir of Kerimasi Volcano in the East African Rift. Trace element concentrations of silicate and carbonate melt inclusions trapped in nepheline, apatite and magnetite from plutonic afrikandite (clinopyroxene–nepheline–perovskite–magnetite–melilite rock) and calciocarbonatite (calcite–apatite–magnetite–perovskite–monticellite–phlogopite rock) show that liquid immiscibility occurred during the generation of carbonatite magmas from a CO2-rich melilite–nephelinite magma formed at relatively high temperatures (1,100 °C). This carbonatite magma is notably more calcic and less alkaline than that occurring at Oldoinyo Lengai. The CaO-rich (32–41 wt%) nature and alkali-“poor” (at least 7–10 wt% Na2O + K2O) nature of these high-temperature (>1,000 °C) carbonate melts result from strong partitioning of Ca (relative to Mg, Fe and Mn) in the immiscible carbonate and the CaO-rich nature (12–17 wt%) of its silicate parent (e.g., melilite–nephelinite). Evolution of the Kerimasi carbonate magma can result in the formation of natrocarbonatite melts with similar composition to those of Oldoinyo Lengai, but with pronounced depletion in REE and HFSE elements. We suggest that this compositional difference results from the different initial parental magmas, e.g., melilite–nephelinite at Kerimasi and a nephelinite at Oldoinyo Lengai. The difference in parental magma composition led to a significant difference in the fractionating mineral phase assemblage and the element partitioning systematics upon silicate–carbonate melt immiscibility. LA-ICP-MS analysis of coeval silicate and carbonate melt inclusions provides an opportunity to infer carbonate melt/silicate melt partition coefficients for a wide range of elements. These data show that Li, Na, Pb, Ca, Sr, Ba, B, all REE (except Sc), U, V, Nb, Ta, P, Mo, W and S are partitioned into the carbonate melt, whereas Mg, Mn, Fe, Co, Cu, Zn, Al, Sc, Ti, Hf and Zr are partitioned into the silicate melt. Potassium and Rb show no preferential partitioning. Kerimasi melt inclusions show that the immiscible calcic carbonate melt is strongly enriched in Sr, Ba, Pb, LREE, P, W, Mo and S relative to other trace elements. Comparison of our data with experimental results indicates that preferential partitioning of oxidized sulfur (as SO4 2−), Ca and P (as PO4 3−) into the carbonate melt may promote the partitioning of Nb, Ta, Pb and all REE, excluding Sc, into this phase. Therefore, it is suggested that P and S enrichment in calcic carbonate magmas promotes the genesis of REE-rich carbonatites by liquid immiscibility. Our study shows that changes in the partition coefficients of elements between minerals and the coexisting melts along the liquid line of descent are rather significant at Kerimasi. This is why, in addition to the REE, Nb, Ta and Zr are also enriched in Kerimasi calciocarbonatites. We consider significant amounts of apatite and perovskite precipitated from melilite–nephelinite-derived carbonate melt as igneous minerals can have high LREE, Nb and Zr contents relative to other carbonatite minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bailey DK (1993) Carbonatite magmas. J Geol Soc Lond 150:637–651

    Article  Google Scholar 

  • Baker MB, Wyllie PJ (1992) High pressure apatite solubility in carbonate-rich liquids: implications for mantle metasomatism. Geochim Cosmochim Acta 56:3409–3422

    Article  Google Scholar 

  • Bali E, Audétat A, Keppler H (2011) The mobility of U and Th in subduction zone fluids: an indicator of oxygen fugacity and fluid salinity. Contrib Mineral Petrol 161:597–613

    Article  Google Scholar 

  • Blundy J, Dalton J (2000) Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems and implication for mantle metasomatism. Contrib Mineral Petrol 139:356–371

    Article  Google Scholar 

  • Blundy JD, Wood BJ (1994) Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372:452–454

    Article  Google Scholar 

  • Bodnar RJ, Student JJ (2006) Melt inclusions in plutonic rocks: Petrography and microthermometry. In: Webster JD (ed) Melt inclusions in plutonic rocks. Mineralogical Association of Canada Short Course, Canada, pp 1–25

    Google Scholar 

  • Brooker RA, Kjarsgaard BA (2011) Silicate–carbonate liquid immiscibility and phase relations in the system SiO2–Na2O–Al2O3–CaO–CO2 at 01–25 GPa with applications to carbonatite genesis. J Petrol 52:1281–1305

    Article  Google Scholar 

  • Byrne RH, Lee JH, Bingler LS (1990) Rare earth element complexation by PO4 3− ions in aqueous solution. Geochim Cosmochim Acta 55:2729–2735

    Article  Google Scholar 

  • Chakhmouradian AR (2006) High-field-strength elements in carbonatitic rocks: geochemistry crystal chemistry and significance for constraining the sources of carbonatites. Chem Geol 235:138–160

    Article  Google Scholar 

  • Church AA (1996) The petrology of the Kerimasi carbonatite volcano and the carbonatites of Oldoinyo Lengai with a review of other occurrences of extrusive carbonatites, Ph D thesis University of London

  • Dawson JB (2008) The Gregory rift valley and Neogene-recent volcanoes in Northern Tanzania. Geol Soc Lond 33:64–66

    Google Scholar 

  • Dawson JB, Pinkerton H, Pyle DM, Nyamweru C (1994) June 1993 eruption of Oldoinyo Lengai Tanzania: exceptionally viscous and large carbonatite lava flows and evidence for coexisting silicate and carbonate magmas. Geology 22:799–802

    Article  Google Scholar 

  • Dawson JB, Smith JV, Steele IM (1995) Petrology and mineral chemistry of plutonic igneous xenoliths from the carbonatite volcano Oldoinyo Lengai Tanzania. J Petrol 36:797–826

    Article  Google Scholar 

  • de Moor MJ, Fischer TP, King PL, Botcharnikov RE, Hervig RL, Hilton DR, Barry PH, Mangasini F, Ramirez C (2013) Volatile-rich silicate melts from Oldoinyo Lengai volcano (Tanzania): implications for carbonatite genesis and eruptive behavior. Earth Planet Sci Lett 361:379–390

    Article  Google Scholar 

  • Gittins J, Harmer RE (2003) Myth and reality in the carbonatite–silicate rock ‘‘association’’. Period Mineral 72:19–26

    Google Scholar 

  • Guzmics T, Zajacz Z, Kodolányi J, Halter W, Szabó C (2008) LA-ICP-MS study of apatite- and K-feldspar-hosted primary carbonatite melt inclusions in clinopyroxenite xenoliths from lamprophyres Hungary: implication for significance of carbonatite melts in the Earth’s mantle. Geochim Cosmochim Acta 72:1864–1886

    Article  Google Scholar 

  • Guzmics T, Mitchell RH, Szabó CS, Berkesi M, Milke R, Abart R (2011) Carbonatite melt inclusions in coexisting magnetite apatite and monticellite in Kerimasi calciocarbonatite Tanzania: melt evolution and petrogenesis. Contrib Mineral Petrol 161:177–196

    Article  Google Scholar 

  • Guzmics T, Mitchell RH, Szabó CS, Berkesi M, Milke R, Ratter K (2012) Liquid immiscibility between silicate carbonate and sulfide melts in melt inclusions hosted in co-precipitated minerals from Kerimasi volcano (Tanzania): evolution of carbonated nephelinitic magma. Contrib Mineral Petrol 164:101–122

    Article  Google Scholar 

  • Halter W, Pettke T, Heinrich CA, Rothen-Rutishauser B (2002) Major to trace element analysis of melt inclusions by laser-ablation ICP-MS: methods of quantification. Chem Geol 183:63–86

    Article  Google Scholar 

  • Hammouda T, Chantel J, Devidal J-L (2010) Apatite solubility in carbonatitic liquids and trace element partitioning between apatite and carbonatite at high pressure. Geochim Cosmochim Acta 74:7220–7235

    Article  Google Scholar 

  • Harmer RE, Gittins J (1997) The origin of dolomitic carbonatites: field and experimental evidence. J Afr Earth Sci 25:5–28

    Article  Google Scholar 

  • Hay RL (1983) Natrocarbonatite tefra of Kerimasi volcano Tanzania. Geology 11:599–602

    Article  Google Scholar 

  • Hornig-Kjarsgaard I (1998) Rare earth elements in sövitic carbonatites and their mineral phases. J Petrol 39:2105–2121

    Article  Google Scholar 

  • Jones JH, Walker D, Picket DA, Murrel MT, Beate P (1995) Experimental investigations of the partitioning of Nb Mo Ba Ce Pb Ra Th Pa and U between immiscible carbonate and silicate liquids. Geochim Cosmochim Acta 59:1307–1320

    Article  Google Scholar 

  • Keller J, Zaitsev AN (2012) Geochemistry and petrogenetic significance of natrocarbonatites at Oldoinyo Lengai Tanzania: composition of lavas from 1988 to 2007. Lithos 152:47–55

    Article  Google Scholar 

  • Keller J, Zaitsev AN, Wiedenmann D (2006) Primary magmas at Oldoinyo Lengai: the role of olivine melilitites. Lithos 91:150–172

    Article  Google Scholar 

  • Keppler H (2010) The distribution of sulfur between haplogranitic melts and aqueous fluids. Geochim Cosmochim Acta 74:645–660

    Article  Google Scholar 

  • Keppler H, Wyllie PJ (1991) Partitioning of Cu Sn Mo W U and Th between melt and aqueous fluid in the systems haplogranite–H2O–HCl and haplogranite–H2O–HF. Contrib Mineral Petrol 109:139–150

    Article  Google Scholar 

  • Kjarsgaard BA (1998) Phase relations of a carbonated high CaO nephelinite at 0.2 and 0.5 GPa. J Petrol 39:2061–2075

    Article  Google Scholar 

  • Kjarsgaard BA, Hamilton DL, Peterson TD (1995) Peralkaline nephelinite/carbonatite liquid immiscibility: comparison of phase compositions in experiments and natural lavas from Oldoinyo Lengai. In: Bell K, Keller J (eds) Carbonatite volcanism. Springer, Berlin, pp 163–190

    Chapter  Google Scholar 

  • Klemme S, Dalpé C (2003) Trace-element partitioning between apatite and carbonatite melt. Am Mineral 88:639–646

    Google Scholar 

  • Kogarko LN, Plant DA, Henderson C, Kjarsgaard BA (1991) Na-rich carbonate inclusions in perovskite and calzirtite from the Guli intrusive Ca-carbonatite polar Siberia. Contrib Mineral Petrol 109:124–129

    Article  Google Scholar 

  • Koster van Groos AF, Wyllie PJ (1968) Liquid immiscibility in the join NaAlSi3O8-Na2CO3-H2O. Am J Sci 266:932–967

    Article  Google Scholar 

  • Le Bas MJ (1977) Carbonatite–nephelinite volcanism. Wiley, London

    Google Scholar 

  • Lee W-J, Wyllie PJ (1997) Liquid immiscibility in the join NaAlSiO4–NaAlSi3O8–CaCO3 at 1 GPa: implications for crustal carbonatites. J Petrol 38:1113–1135

    Article  Google Scholar 

  • Lee W-J, Wyllie PJ (1998) Petrogenesis of carbonatite magmas from mantle to crust constrained by the system CaO–(MgO+FeO*)–(Na2O+K2O)–(SiO2+Al2O3+TiO2)–CO2. J Petrol 39:495–517

    Article  Google Scholar 

  • Mariano AN, Roeder PL (1983) Kerimasi: a neglected carbonatite volcano. J Geol 91:449–453

    Article  Google Scholar 

  • Martin L, Schmidt MW, Mattsson HB, Ulmer P, Hametner K, Günther D (2012) Element partitioning between immiscible carbonatite–kamafugite melts with application to the Italian ultrapotassic suite. Chem Geol 320–321:96–112

    Article  Google Scholar 

  • Martin L, Schmidt MW, Mattsson HB, Günther D (2013) Element Partitioning between immiscible carbonatite and silicate melts for dry and H2O-bearing systems at 1–3 GPa. J Petrol 1–38

  • Mitchell RH (2005) Carbonatites and carbonatites and carbonatites. Can Mineral 43:1852–1853

    Google Scholar 

  • Mitchell RH (2009) Peralkaline nephelinite-natrocarbonatite immiscibility and carbonatite assimilation at Oldoinyo Lengai Tanzania. Contrib Mineral Petrol 158:589–598

    Article  Google Scholar 

  • Mitchell RH, Dawson JB (2012) Carbonate–silicate immiscibility and extremely peralkaline silicate glasses from Nasira cone and recent eruptions at Oldoinyo Lengai Volcano Tanzania. Lithos 152:40–46

    Article  Google Scholar 

  • Nielsen T (1980) The petrology of a melilitolite melteigite carbonatite and syenite ring dike system in the Gardiner complex East Greenland. Lithos 13:181–197

    Article  Google Scholar 

  • Nielsen T, Solovova IP, Veksler IV (1997) Parental melts of melilitolite and origin of alkaline carbonatite: evidence from crystallised melt inclusions Gardiner complex. Contrib Mineral Petrol 126:331–344

    Article  Google Scholar 

  • Panina LI (2005) Multiphase carbonate-salt immiscibility in carbonatite melts: data on melt inclusions from the Krestovskiy massif minerals (Polar Siberia). Contrib Mineral Petrol 150:19–36

    Article  Google Scholar 

  • Panina LI, Stoppa F (2009) Silicate–carbonate–salt liquid immiscibility and origin of the sodalite–haüyne rocks: study of melt inclusions in olivine foidite from Vulture volcano S Italy. Cent Eur J Geosci 1:377–392

    Article  Google Scholar 

  • Rass IT, Plechov PY (2000) Melt inclusions in olivines of olivine–melilite rocks Guli Massif northwest of the Siberian Platform. Doklady Earth Sci 375:389–392

    Google Scholar 

  • Reguir EP, Chakhmouradian AR, Halden MN, Yang P, Zaitsev AN (2008) Early magmatic and reaction-induced trends in magnetite from the carbonatites of Kerimasi Tanzania. Can Mineral 46:879–900

    Article  Google Scholar 

  • Roedder E (1987) Silicate liquid immiscibility in magmas. In: Yoder HS (ed) The evolution of the igneous rocks. Princeton University Press, Princeton, pp 15–58

    Google Scholar 

  • Seifert W, Thomas R (1995) Silicate-carbonate immiscibility: a melt inclusion study of olivine melilitite and wehrlite xenoliths in tephrite from the Elbe Zone Germany. Chem Erde 55:263–279

    Google Scholar 

  • Severs MJ, Beard JS, Fedele L, Hanchar JM, Mutchler SR, Bodnar RJ (2009) Partitioning behavior of trace elements between dacitic melt and plagioclase orthopyroxene and clinopyroxene based on laser ablation ICPMS analysis of silicate melt inclusions. Geochim Cosmochim Acta 73:2123–2141

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767

    Article  Google Scholar 

  • Sharygin VV, Kamenetsky VS, Zaitsev AN, Kamenetsky MB (2012) Silicate–natrocarbonatite liquid immiscibility in 1917 eruption combeite–wollastonite nephelinite Oldoinyo Lengai Volcano Tanzania: melt inclusion study. Lithos 152:23–39

    Article  Google Scholar 

  • Sokolov SV, Veksler IV, Senin VG (1999) Alkalis in carbonatite magmas: new evidence from melt inclusions. Petrology 7:602–609

    Google Scholar 

  • Solovova IP, Girnis AV, Ryabchikov ID, Simakin SG (2006) High-temperature carbonatite melt and its interrelations with alkaline magmas of the Dunkel’dyk complex, southeastern Pamirs. Doklady Earth Sci 410:1148–1151

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geological Society of London, London, pp 313–345

    Google Scholar 

  • Veksler IV, Petibon C, Jenner GA, Dorfman AM, Dingwell DB (1998) Trace element partitioning in immiscible silicate–carbonate liquid systems: an initial experimental study using a centrifuge autoclave. J Petrol 39:2095–2104

    Article  Google Scholar 

  • Veksler IV, Dorfman AM, Dulski P, Kamenetsky VS, Danyushevsky LV, Jeffries T, Dingwell DB (2012) Partitioning of elements between silicate melt and immiscible fluoride chloride carbonate phosphate and sulfate melts with implications to the origin of natrocarbonatite. Geochim Cosmochim Acta 79:20–40

    Article  Google Scholar 

  • Witt-Eickschen G, O’Neill H (2005) The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene orthopyroxene olivine and spinel in upper mantle peridotite. Chem Geol 221:65–101

    Article  Google Scholar 

  • Woolley AR, Kjarsgaard BA (2008) Carbonatite occurrences of the world: map and database. Geological Survey of Canada, Open File 5796, 1 CD-ROM + 1 map

  • Xu C, Kynicky J, Chakhmouradian AR, Campbell IH, Allen CM (2010) Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit Central China. Lithos 118:145–155

    Article  Google Scholar 

  • Zaitsev AN, Keller J (2006) Mineralogical and chemical transformation of Oldoinyo Lengai natrocarbonatites, Tanzania. Lithos 91:191–207

    Article  Google Scholar 

  • Zajacz Z, Halter W (2007) LA-ICPMS analyses of silicate melt inclusions in co-precipitated minerals: quantification data analysis and mineral/melt partitioning. Geochim Cosmochim Acta 71:1021–1040

    Article  Google Scholar 

  • Zajacz Z, Candela PA, Piccoli PM, Sanchez-Valle C (2012) The partitioning of sulfur and chlorine between andesite melts and magmatic volatiles and the exchange coefficients of major cations. Geochim Cosmochim Acta 89:81–101

    Article  Google Scholar 

  • Zurevinski SE, Mitchell RH (2004) Extreme compositional variation of pyrochlore-group minerals at the Oka carbonatite complex Quebec: evidence of magma mixing. Can Mineral 42:1159–1168

    Article  Google Scholar 

Download references

Acknowledgments

This project is supported by the Hungarian Science Foundation (OTKA PD 105364) and by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences to T. Guzmics. Z. Zajacz was supported by the Swiss National Science Foundation under project number PZ00P2_136857 and by the Natural Sciences and Engineering Research Council of Canada. Research by R. H. Mitchell at Kerimasi is supported by the Natural Sciences and Engineering Research Council of Canada and Almaz Petrology. The authors are also grateful to Professor Max Schmidt for his editorial work and two anonymous reviewers for their constructive reviews and useful suggestions. This is No 65 publications of Lithosphere Fluid Research Lab at Eötvös University, Budapest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Guzmics.

Additional information

Communicated by Timothy L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

410_2014_1093_MOESM1_ESM.jpg

Fig. A.1 Schematic draw of Kerimasi volcano and its environment modified after Hay, 1983. Circles show the sample sites (JPEG 2865 kb)

410_2014_1093_MOESM2_ESM.jpg

Fig. A.2 Evolution of the carbonate melt during crystallization of calciocarbonatite, Kerimasi, Tanzania (determined by LA-ICP-MS). The presented chemical evolution could result in the formation of a natrocarbonatite melt enriched in alkalis, Ba, Sr, S, Pb, Mo and W. For comparison, the average bulk rock composition of natrocarbonatites from Oldoinyo Lengai (Keller and Zaitsev, 2012) is also plotted (JPEG 694 kb)

Supplementary material 3 (XLS 32 kb)

Supplementary material 4 (XLS 62 kb)

Supplementary material 5 (XLS 70 kb)

Supplementary material 6 (XLS 66 kb)

Supplementary material 7 (XLS 108 kb)

Supplementary material 8 (XLS 71 kb)

Supplementary material 9 (XLS 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzmics, T., Zajacz, Z., Mitchell, R.H. et al. The role of liquid–liquid immiscibility and crystal fractionation in the genesis of carbonatite magmas: insights from Kerimasi melt inclusions. Contrib Mineral Petrol 169, 17 (2015). https://doi.org/10.1007/s00410-014-1093-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-014-1093-4

Keywords

Navigation