Skip to main content
Log in

Polycyclic aromatic hydrocarbons degradation by free-air CO2 enriched (FACE) bacteria into low molecular easy to degrade organic compounds

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Among the 16 prioritized polycyclic aromatic hydrocarbons (PAHs), naphthalene, phenanthrene, fluoranthene, and pyrene have been used for bacterial degradation study. From the free-air CO2 enriched (FACE) soil, five Bacillus strains were isolated and used to utilize the four model toxicants at different concentrations as the sole carbon source. Bacillus amyloliquefaciens has great resistance to different PAHs and better degradation capability. B. amyloliquefaciens can degrade naphthalene (0.5 mg mL− 1), fluoranthene (0.1 mg mL− 1), and pyrene (0.1 mg mL− 1) up to 94%, 65%, and 56% respectively, while B. cereus mineralized phenanthrene (0.5 mg mL− 1) up to 71% within seven days of incubation. B amyloliquefaciens and B. cereus have the capability of ring cleavage and they can convert PAH compounds into less toxic compounds. Based on the metabolites obtained through GC-MS, the biodegradation pathways for each PAH have been predicted to end up in the tricarboxylic acid cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bolan S, Padhye LP, Kumar M, Antoniadis V, Sridharan S, Tang Y, et al. Review on distribution, fate, and management of potentially toxic elements in incinerated medical wastes. Environ Pollut. 2023;321:121080. https://doi.org/10.1016/j.envpol.2023.121080.

    Article  CAS  PubMed  Google Scholar 

  2. Yuan H, Wang Y, Duan H. Risk of lung cancer and occupational exposure to polycyclic aromatic hydrocarbons among workers cohorts — worldwide, 1969–2022. China CDC Wkly. 2022;4:364–9. https://doi.org/10.46234/ccdcw2022.085.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Moubarz G, Saad-Hussein A, Shahy EM, Mahdy-Abdallah H, Mohammed AMF, Saleh IA, et al. Lung cancer risk in workers occupationally exposed to polycyclic aromatic hydrocarbons with emphasis on the role of DNA repair gene. Int Arch Occup Environ Health. 2023;96:313–29. https://doi.org/10.1007/s00420-022-01926-9.

    Article  CAS  PubMed  Google Scholar 

  4. Singh SK, Singh RK. An overview on remediation technologies for polycyclic aromatic hydrocarbons in contaminated lands: a critical approach. Environ Dev Sustain. 2023. https://doi.org/10.1007/s10668-023-04020-3.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Manian KS. Bioremediation of polycyclic aromatic hydrocarbons contaminated soils: recent progress, perspectives and challenges. Environ Monit Assess. 2023;195:1441. https://doi.org/10.1007/s10661-023-12042-7.

    Article  PubMed  Google Scholar 

  6. Thacharodi A, Hassan S, Singh T, Mandal R, Chinnadurai J, Khan HA, et al. Bioremediation of polycyclic aromatic hydrocarbons: an updated microbiological review. Chemosphere. 2023;328:138498. https://doi.org/10.1016/j.chemosphere.2023.138498.

    Article  CAS  PubMed  Google Scholar 

  7. Yesankar PJ, Pal M, Patil A, Qureshi A. Microbial exopolymeric substances and biosurfactants as ‘bioavailability enhancers’ for polycyclic aromatic hydrocarbons biodegradation. Int J Environ Sci Technol. 2023;20:5823–44. https://doi.org/10.1007/s13762-022-04068-0.

    Article  CAS  Google Scholar 

  8. Stading R, Gastelum G, Chu C, Jiang W, Moorthy B. Molecular mechanisms of pulmonary carcinogenesis by polycyclic aromatic hydrocarbons (pahs): implications for human lung cancer. Semin Cancer Biol. 2021;76:3–16. https://doi.org/10.1016/j.semcancer.2021.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Srivastava S, Kumar M. Biodegradation of polycyclic aromatic hydrocarbons (PAHs): a sustainable approach. In: Shah S, Venkatramanan V, Prasad R, editors. Sustainable Green Technologies for Environmental Management. Singapore: Springer; 2019. pp. 111–39. https://doi.org/10.1007/978-981-13-2772-8_6.

    Chapter  Google Scholar 

  10. Cao Z, Yan W, Ding M, Yuan Y. Construction of microbial consortia for microbial degradation of complex compounds. Front Bioeng Biotechnol 2022;10. https://doi.org/10.3389/fbioe.2022.1051233.

  11. Khan S, Ajmal S, Hussain T, Rahman MU. Clay-based materials for enhanced water treatment: adsorption mechanisms, challenges, and future directions. JUmm Al-Qura Univ Appll Sci. 2023. https://doi.org/10.1007/s43994-023-00083-0.

    Article  Google Scholar 

  12. Chen L, Jiang X, Qu N, Lu H, Xu J, Zhang Y, et al. Selective adsorption and efficient degradation of oil pollution by microorganisms immobilized natural biomass aerogels with aligned channels. Mater Today Sustain. 2022;19:100208. https://doi.org/10.1016/j.mtsust.2022.100208.

    Article  Google Scholar 

  13. Farid E, Kamoun EA, Taha TH, El-Dissouky A, Khalil TE. Eco-friendly biodegradation of hydrocarbons compounds from crude oily wastewater using pva/alginate/clay composite hydrogels. J Polym Environ. 2023. https://doi.org/10.1007/s10924-023-02991-y.

    Article  Google Scholar 

  14. Maheshwari N, Kumar M, Thakur IS, Srivastava S. Recycling of carbon dioxide by free air CO 2 enriched (FACE) Bacillus sp. SS105 for enhanced production and optimization of biosurfactant. Bioresour Technol. 2017;242:2–6. https://doi.org/10.1016/j.biortech.2017.03.124.

    Article  CAS  PubMed  Google Scholar 

  15. Srivastava S, Bharti RK, Thakur IS. Characterization of bacteria isolated from palaeoproterozoic metasediments for sequestration of carbon dioxide and formation of calcium carbonate. Environ Sci Pollut Res. 2015;22:1499–511. https://doi.org/10.1007/s11356-014-3442-2.

    Article  CAS  Google Scholar 

  16. Mol HGJ, Rooseboom A, van Dam R, Roding M, Arondeus K, Sunarto S. Modification and re-validation of the ethyl acetate-based multi-residue method for pesticides in produce. Anal Bioanal Chem. 2007;389:1715–54. https://doi.org/10.1007/s00216-007-1357-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maheshwari N, Thakur IS, Srivastava S. Enhanced microbial degradation of pyrene using biosurfactant isolated from Bacillus sp. SS105. Syst Microbiol Biomanufactur. 2022;2(4):723–31 https://doi.org/10.1007/s43393-022-00097-5.

  18. Maheshwari N, Kumar M, Thakur IS, Srivastava S. Carbon dioxide biofixation by free air CO2 enriched (FACE) bacterium for biodiesel production. J CO2 Utilization. 2018;27:423–32. https://doi.org/10.1016/j.jcou.2018.08.010.

    Article  CAS  Google Scholar 

  19. Ni’matuzahroh, Trikurniadewi N, Pramadita ARA, Pratiwi IA, Salamun, Fatimah et al. Biodegradation of naphthalene and phenanthren by Bacillus subtilis 3KP. AIP Conference Proceedings. 2017;1854:1–6. https://doi.org/10.1063/1.4985417.

  20. Al-Thukair AA, Malik K, Nzila A. Biodegradation of selected hydrocarbons by novel bacterial strains isolated from contaminated Arabian Gulf sediment. Sci Rep. 2020;10:21846. https://doi.org/10.1038/s41598-020-78733-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dharmasiri RBN, Undugoda LJS, Nilmini AHL, Nugara NNRN, Manage PM, Udayanga D. Phylloremediation approach to green air: phenanthrene degrading potential of Bacillus spp. inhabit the phyllosphere of ornamental plants in urban polluted areas. Int J Environ Sci Technol. 2023;20:13359–72. https://doi.org/10.1007/s13762-023-04883-z.

    Article  CAS  Google Scholar 

  22. Hentati D, Chebbi A, Loukil S, Kchaou S, Godon J-J, Sayadi S, et al. Biodegradation of fluoranthene by a newly isolated strain of Bacillus stratosphericus from Mediterranean seawater of the Sfax fishing harbour, Tunisia. Environ Sci Pollut Res. 2016;23:15088–100. https://doi.org/10.1007/s11356-016-6648-7.

    Article  CAS  Google Scholar 

  23. Marzuki I, Nisaa K, Asaf R, Paena M, Athirah A, Susianingsih E et al. Performance of marine sponge symbiont bacteria and bacterial isolates from seawater in pyrene biodegradation 2022. https://doi.org/10.20944/preprints202202.0129.v2.

  24. Al Farraj DA, Hadibarata T, Elshikh MS, Al Khulaifi MM, Kristanti RA. Biotransformation and degradation pathway of pyrene by filamentous soil fungus Trichoderma sp. F03. Water Air Soil Pollut. 2020;231:168. https://doi.org/10.1007/s11270-020-04514-0.

    Article  CAS  Google Scholar 

  25. Lin C, Gan L, Chen Z-L. Biodegradation of naphthalene by strain Bacillus fusiformis (BFN). J Hazard Mater. 2010;182:771–7. https://doi.org/10.1016/j.jhazmat.2010.06.101.

    Article  CAS  PubMed  Google Scholar 

  26. Vandera E, Kavakiotis K, Kallimanis A, Kyrpides N, Drainas C, Koukkou AI. Heterologous expression and characterization of two 1-hydroxy-2-naphthoic acid dioxygenases from Arthrobacter phenanthrenivorans. Appl Environ Microbiol. 2011;78:621–7. https://doi.org/10.1128/AEM.07137-11.

    Article  CAS  PubMed  Google Scholar 

  27. Cao J, Lai Q, Yuan J, Shao Z. Genomic and metabolic analysis of fluoranthene degradation pathway in Celeribacter indicus P73T. Sci Rep. 2015;5:7741. https://doi.org/10.1038/srep07741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jin J, Yao J, Liu W, Zhang Q, Liu J. Fluoranthene degradation and binding mechanism study based on the active-site structure of ring-hydroxylating dioxygenase in Microbacterium paraoxydans JPM1. Environ Sci Pollut Res. 2017;24:363–71. https://doi.org/10.1007/s11356-016-7809-4.

    Article  CAS  Google Scholar 

  29. Ali DC, Wang Z. Biodegradation of Hydrophobic polycyclic aromatic hydrocarbons. In: Inamuddin, Ahamed MI, Prasad R, editors. Microbial biosurfactants: Preparation, Properties and Applications. Singapore: Springer; 2021. pp. 117–46. https://doi.org/10.1007/978-981-15-6607-3_6.

    Chapter  Google Scholar 

  30. Khanna GP, Goyal D, Khanna S. Pyrene biodegradation by Bacillus spp. isolated from coal tar–contaminated soil. Bioremediat J. 2011;15:12–25. https://doi.org/10.1080/10889868.2010.547998.

    Article  CAS  Google Scholar 

  31. Partila AM. Biodegradation of polycyclic aromatic hydrocarbons in petroleum oil contaminating the environment. Cairo University, 2013. http://inis.iaea.org/search/search.aspx?orig_q=RN:46066353.

Download references

Acknowledgements

We would like to thank Advanced Instrumentation Research Facility (AIRF) Jawaharlal Nehru University, New Delhi for GC–MS analysis.

Funding

Experimental cost was funded by DST-SERB, Government of India, New Delhi and CSIR-New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

Experiments were designed by SS. VM and NM performed all the experiments under the guidance of SS. Manuscript was written by VM and edited by SS. AS designed the chemical structures and pathways. At last, all authors revised and finalized the manuscript for submission.

Corresponding author

Correspondence to Shaili Srivastava.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manyapu, V., Maheshwari, N., Sharma, A. et al. Polycyclic aromatic hydrocarbons degradation by free-air CO2 enriched (FACE) bacteria into low molecular easy to degrade organic compounds. Syst Microbiol and Biomanuf (2024). https://doi.org/10.1007/s43393-024-00259-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43393-024-00259-7

Keywords

Navigation