Skip to main content

Biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Sustainable Approach

  • Chapter
  • First Online:
Sustainable Green Technologies for Environmental Management

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are aromatic hydrocarbons having two or more fused benzene rings. PAH are found in environment from natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, including toxicity, mutagenicity, and carcinogenicity. PAHs are thermodynamically more stable and resistant to microbial degradation due to their hydrophobic nature and their stabilization due to presence of multiple benzene rings and low aqueous solubility. Despite these properties, a variety of bacterial, fungal and algal species are reported for biodegradation. Most of studies involved in PAH microbial degradation is based on enzymes involved in PAH metabolism and their mineralization. Several bacteria have been found to degrade PAH such as Sphingomonas sp., Psedomonas sp., Alcaligens eutrophus, Burkhelderia sp. Mycobacterium, Rhodococcus, Nocardioides, Mycobacterium, Rhodococcus, Nocardioides and Novosphingobium, etc. There are several biochemical pathways and gene reported which are responsible for bacterial degradation of PAHs. Many fungi metabolize polycyclic aromatic hydrocarbons with enzymes that include lignin peroxidase, manganese peroxidase, laccase, cytochrome P450, and epoxide hydrolase. The products include trans-dihydrodiols, phenols, quinones, dihydrodiol epoxides, and tetraols, which may be conjugated to form glucuronides, glucosides, xylosides, and sulfates. The fungal and bacterial metabolites generally are less toxic than the parent hydrocarbons. Cultures of fungi that degrade polycyclic aromatic hydrocarbons may be useful for bioremediation of contaminated soils, sediments, and waters. Microalgae and eukaryotic algae sp. have been also reported for their bioaccumulation, biotransformation and degradation capability of PAH. While mechanism of biodegradation pathways from algae are not very specific and vary from species to species. In case of algal biodegradation of PAH it works more precisely in combination with bacterial co-culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Shafy, H., & Mansour, M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25, 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011.

    Article  Google Scholar 

  • Annweiler, E., Michaelis, W., & Meckenstock, R. (2001). Anaerobic cometabolic conversion of Benzothiophene by a sulfate-reducing enrichment culture and in a tar-oil-contaminated aquifer. Applied and Environmental Microbiology, 67, 5077–5083. https://doi.org/10.1128/aem.67.11.5077-5083.2001.

    Article  CAS  Google Scholar 

  • Balaji, V., Arulazhagan, P., & Ebenezer, P. (2014). Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds. Journal of Environmental Biology, 35(3), 521–529.

    CAS  Google Scholar 

  • Bansal, V., & Kim, K. (2015). Review of PAH contamination in food products and their health hazards. Environment International, 84, 26–38. https://doi.org/10.1016/j.envint.2015.06.016.

    Article  CAS  Google Scholar 

  • Bogan, B. W., & Lamar, R. T. (1996). Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes. Applied and Environmental Microbiology, 62, 1597–1603.

    CAS  Google Scholar 

  • Boonchan, S., Britz, M., & Stanley, G. (2000). Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Applied and Environmental Microbiology, 66, 1007–1019. https://doi.org/10.1128/aem.66.3.1007-1019.2000.

    Article  CAS  Google Scholar 

  • Cébron, A., Norini, M., Beguiristain, T., & Leyval, C. (2008). Real-time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from gram positive and gram negative bacteria in soil and sediment samples. Journal of Microbiological Methods, 73, 148–159. https://doi.org/10.1016/j.mimet.2008.01.009.

    Article  CAS  Google Scholar 

  • Cerniglia, C. (1992). Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 3, 351–368. https://doi.org/10.1007/bf00129093.

    Article  CAS  Google Scholar 

  • Cerniglia, C. (1993). Biodegradation of polycyclic aromatic hydrocarbons. Current Opinion in Biotechnology, 4, 331–338. https://doi.org/10.1016/0958-1669(93)90104-5.

    Article  CAS  Google Scholar 

  • Cerniglia, C., Van Baalen, C., & Gibson, D. (1980). Metabolism of naphthalene by the cyanobacterium Oscillatoria sp., strain JCM. Microbiology, 116, 485–494. https://doi.org/10.1099/00221287-116-2-485.

    Article  CAS  Google Scholar 

  • Christensen, N., Batstone, D., He, Z., et al. (2004). Removal of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge by anaerobic degradation. Water Science and Technology, 50, 237–244. https://doi.org/10.2166/wst.2004.0580.

    Article  CAS  Google Scholar 

  • Clemente, A., Anazawa, T., & Durrant, L. (2001). Biodegradation of polycyclic aromatic hydrocarbons by soil fungi. Brazilian Journal of Microbiology, 32, 255–261. https://doi.org/10.1590/s1517-83822001000400001.

    Article  CAS  Google Scholar 

  • Dhankher, O. P., Pilon-Smits, E. A. H., Meagher, R. B., & Doty, S. (2012). Biotechnological approaches for phytoremediation. In A. Atman & P. M. Hasegawa (Eds.), Plant biotechnology and agriculture, prospects for the 21st century (pp. 309–328). Amsterdam: Academic.

    Chapter  Google Scholar 

  • DHHS, U. (1995). Toxicological profile for polycyclic aromatic hydrocarbons. Atlanta: Agency for Toxic Substances and Disease Registry.

    Google Scholar 

  • El-Sheekh, M., Ghareib, M., & El-Souod, G. (2012). Biodegradation of phenolic and polycyclic aromatic compounds by some algae and cyanobacteria. Journal of Bioremediation & Biodegradation, 03. https://doi.org/10.4172/2155-6199.1000133.

  • Field, J. A., DeJong, E., Costa, G. F., & DeBont, J. A. M. (1992). Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Applied and Environmental Microbiology, 58, 2219–2226.

    CAS  Google Scholar 

  • Fuchs, G., Boll, M., & Heider, J. (2011). Microbial degradation of aromatic compounds- from one strategy to four. Nature Reviews. Microbiology, 9, 803–816. https://doi.org/10.1038/nrmicro2652.

    Article  CAS  Google Scholar 

  • Gan, S., Lau, E., & Ng, H. (2009). Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Journal of Hazardous Materials, 172, 532–549. https://doi.org/10.1016/j.jhazmat.2009.07.118.

    Article  CAS  Google Scholar 

  • Gehle, K. (2009). Case studies in environmental medicine toxicity of polycyclic aromatic hydrocarbons (PAHs). Agency for Toxic Substances and Disease Registry (ATSDR), 72, 1355–1358.

    Google Scholar 

  • Ghosal, D., Ghosh, S., Dutta, T., & Ahn, Y. (2016). Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01369.

  • Ghosh, S., & Syed, H. (2001, November 5–8). Influence of soil characteristics on bioremediation of petroleum-contaminated soil. Geological Society of America Annual Meeting. Boston, MA, USA.

    Google Scholar 

  • Gianfreda, L., Xu, F., & Bollag, J. (1999). Laccases: A useful group of oxidoreductive enzymes. Bioremediation Journal, 3, 1–26. https://doi.org/10.1080/10889869991219163.

    Article  CAS  Google Scholar 

  • Hammel, K. (1995). Mechanisms for polycyclic aromatic hydrocarbon degradation by ligninolytic fungi. Environmental Health Perspectives, 103, 41–43. https://doi.org/10.1289/ehp.95103s441.

    Article  CAS  Google Scholar 

  • Hammel, K. E., Green, B., & Gai, W. Z. (1991). Ring fission of anthracene by a eukaryote. Proceedings of the National Academy of Sciences, 88, 10605–10608.

    Article  CAS  Google Scholar 

  • Hammel, K. E., Gai, Z. G., Green, B., & Moen, M. A. (1992). Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Applied and Environmental Microbiology, 58, 1831–1838.

    Google Scholar 

  • Haritash, A., & Kaushik, C. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. Journal of Hazardous Materials, 169, 1–15. https://doi.org/10.1016/j.jhazmat.2009.03.137.

    Article  CAS  Google Scholar 

  • Hong, Y., Yuan, D., Lin, Q., & Yang, T. (2008). Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Marine Pollution Bulletin, 56, 1400–1405. https://doi.org/10.1016/j.marpolbul.2008.05.003.

    Article  CAS  Google Scholar 

  • Jinqi, L., & Houtian, L. (1992). Degradation of azo dyes by algae. Environmental Pollution, 75, 273–278. https://doi.org/10.1016/0269-7491(92)90127-v.

    Article  CAS  Google Scholar 

  • Jones, M., Rodgers-Vieira, E., Hu, J., & Aitken, M. (2014). Association of growth substrates and bacterial genera with benzo[a]pyrene mineralization in contaminated soil. Environmental Engineering Science, 31, 689–697. https://doi.org/10.1089/ees.2014.0275.

    Article  CAS  Google Scholar 

  • Kadri, T., Rouissi, T., Kaur Brar, S., et al. (2017). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. Journal of Environmental Sciences, 51, 52–74. https://doi.org/10.1016/j.jes.2016.08.023.

    Article  Google Scholar 

  • Kiehlmann, E., Pinto, L., & Moore, M. (1996). The biotransformation of chrysene to trans-1,2-dihydroxy-1,2-dihydrochrysene by filamentous fungi. Canadian Journal of Microbiology, 42, 604–608. https://doi.org/10.1139/m96-081.

    Article  CAS  Google Scholar 

  • Kobayashi, H., & Rittmann, B. (1982). Microbial removal of hazardous organic compounds. Environmental Science & Technology, 16, 170A–183A. https://doi.org/10.1021/es00097a002.

    Article  CAS  Google Scholar 

  • Kuppusamy, S., Thavamani, P., Venkateswarlu, K., et al. (2017). Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions. Chemosphere, 168, 944–968. https://doi.org/10.1016/j.chemosphere.2016.10.115.

    Article  CAS  Google Scholar 

  • Lee, H., Jang, Y., Lee, Y., et al. (2015a). Enhanced removal of PAHs by Peniophora incarnata and ascertainment of its novel ligninolytic enzyme genes. Journal of Environmental Management, 164, 10–18. https://doi.org/10.1016/j.jenvman.2015.08.036.

    Article  CAS  Google Scholar 

  • Lee, H., Yun, S., Jang, S., et al. (2015b). Bioremediation of polycyclic aromatic hydrocarbons in creosote-contaminated soil by Peniophora incarnata KUC8836. Bioremediation Journal, 19, 1–8. https://doi.org/10.1080/10889868.2014.939136.

    Article  CAS  Google Scholar 

  • Liang, Y., Gardner, D., Miller, C., et al. (2006). Study of biochemical pathways and enzymes involved in pyrene degradation by Mycobacterium sp. strain KMS. Applied and Environmental Microbiology, 72, 7821–7828. https://doi.org/10.1128/aem.01274-06.

    Article  CAS  Google Scholar 

  • Liang, L., Song, X., Kong, J., et al. (2014). Anaerobic biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a facultative anaerobe Pseudomonas sp. JP1. Biodegradation, 25, 825–833. https://doi.org/10.1007/s10532-014-9702-5.

    Article  CAS  Google Scholar 

  • Liebeg, E., & Cutright, T. (1999). The investigation of enhanced bioremediation through the addition of macro and micro nutrients in a PAH contaminated soil. International Biodeterioration & Biodegradation, 44, 55–64. https://doi.org/10.1016/s0964-8305(99)00060-8.

    Article  CAS  Google Scholar 

  • Lindquist, B., & Warshawsky, D. (1985a). Identification of the 11,12-dihydro-11,12-dihydroxybenzo(a)pyrene as a major metabolite produced by the green alga, Selenastrumcapricornutum. Biochemical and Biophysical Research Communications, 130, 71–75. https://doi.org/10.1016/0006-291x(85)90383-3.

    Article  CAS  Google Scholar 

  • Lindquist, B., & Warshawsky, D. (1985b). Stereospecificity in algal oxidation of the carcinogen benzo(a)pyrene. Experientia, 41, 767–769. https://doi.org/10.1007/bf02012587.

    Article  CAS  Google Scholar 

  • Lu, X., Zhang, T., Han-Ping Fang, H., et al. (2011). Biodegradation of naphthalene by enriched marine denitrifying bacteria. International Biodeterioration and Biodegradation, 65, 204–211. https://doi.org/10.1016/j.ibiod.2010.11.004.

    Article  CAS  Google Scholar 

  • Maillacheruvu, K., & Pathan, I. (2009). Biodegradation of naphthalene, phenanthrene, and pyrene under anaerobic conditions. Journal of Environmental Science and Health, Part A Environmental Science, 44, 1315–1326. https://doi.org/10.1080/10934520903212956.

    Article  CAS  Google Scholar 

  • Marco-Urrea, E., García-Romera, I., & Aranda, E. (2015). Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. New Biotechnology, 32, 620–628. https://doi.org/10.1016/j.nbt.2015.01.005.

    Article  CAS  Google Scholar 

  • Meckenstock, R., & Mouttaki, H. (2011). Anaerobic degradation of non-substituted aromatic hydrocarbons. Current Opinion in Biotechnology, 22, 406–414. https://doi.org/10.1016/j.copbio.2011.02.009.

    Article  CAS  Google Scholar 

  • Mihelcic, J. R., & Luthy, R. G. (1988). Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soil-water systems. Applied and Environmental Microbiology, 54(5), 1182–1187.

    CAS  Google Scholar 

  • Mineki, S., Suzuki, K., Iwata, K., et al. (2015). Degradation of polyaromatic hydrocarbons by fungi isolated from soil in Japan. Polycyclic Aromatic Compounds, 35, 120–128. https://doi.org/10.1080/10406638.2014.937007.

    Article  CAS  Google Scholar 

  • Mir-Tutusaus, J., Masís-Mora, M., Corcellas, C., et al. (2014). Degradation of selected agrochemicals by the white rot fungus Trametes versicolor. Science of the Total Environment, 500–501, 235–242. https://doi.org/10.1016/j.scitotenv.2014.08.116.

    Article  CAS  Google Scholar 

  • Mollea, C., Bosco, F., & Ruggeri, B. (2005). Fungal biodegradation of naphthalene: Microcosms studies. Chemosphere, 60, 636–643. https://doi.org/10.1016/j.chemosphere.2005.01.034.

    Article  CAS  Google Scholar 

  • Moody, J., Freeman, J., Doerge, D., & Cerniglia, C. (2001). Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Applied and Environmental Microbiology, 67, 1476–1483. https://doi.org/10.1128/aem.67.4.1476-1483.2001.

    Article  CAS  Google Scholar 

  • Moody, J., Freeman, J., Fu, P., & Cerniglia, C. (2004). Degradation of benzo[a]pyrene by Mycobacterium vanbaalenii PYR-1. Applied and Environmental Microbiology, 70, 340–345. https://doi.org/10.1128/aem.70.1.340-345.2004.

    Article  CAS  Google Scholar 

  • Morgan, P., Lewis, S., & Watkinson, R. (1991). Comparison of abilities of white-rot fungi to mineralize selected xenobiotic compounds. Applied Microbiology and Biotechnology, 34, 693–696. https://doi.org/10.1007/bf00167925.

    Article  CAS  Google Scholar 

  • Muñoz, R., Guieysse, B., & Mattiasson, B. (2003). Phenanthrene biodegradation by an algal-bacterial consortium in two-phase partitioning bioreactors. Applied Microbiology and Biotechnology, 61, 261–267. https://doi.org/10.1007/s00253-003-1231-9.

    Article  CAS  Google Scholar 

  • Narro, M. L., Cerniglia, C. E., VanBaalen, C., & Gibson, D. T. (1992a). Evidence for an NIH shift in oxidation of naphthalene by the marine cyanobacterium Oscillatoria sp. strain JCM. Applied and Environmental Microbiology, 58(4), 1360–1363.

    CAS  Google Scholar 

  • Narro, M. L., Cerniglia, C. E., VanBaalen, C., & Gibson, D. T. (1992b). Metabolism of phenanthrene by themarine cyanobacterium Agmenellum QuadruplicatumPR-6. Applied and Environmental Microbiology, 58, 1351–1359.

    CAS  Google Scholar 

  • Nieman, J. K., Sims, R. C., McLean, J. E., Sims, J. L., & Sorensen, D. L. (2001). Fate of pyrene in contaminated soil amended with alternate electron acceptors. Chemosphere, 44(5), 1265–1271.

    Article  CAS  Google Scholar 

  • Novotný, ÄŒ., Svobodová, K., Erbanová, P., et al. (2004). Ligninolytic fungi in bioremediation: Extracellular enzyme production and degradation rate. Soil Biology and Biochemistry, 36, 1545–1551. https://doi.org/10.1016/j.soilbio.2004.07.019.

    Article  CAS  Google Scholar 

  • Nzila, A. (2018). Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons under anaerobic conditions: Overview of studies, proposed pathways and future perspectives. Environmental Pollution, 239, 788–802.

    Article  CAS  Google Scholar 

  • Pothuluri, J. V., Selby, A., Evans, F. E., Freeman, J. P., & Cerniglia, C. E. (1994). Transformation of chrysene and other polycyclic aromatic hydrocarbon mixtures by the fungus Cunninghamellaelegans. Canadian Journal of Botany, 73, 1025–1033.

    Article  Google Scholar 

  • Qin, W., Zhu, Y., Fan, F., et al. (2017). Biodegradation of benzo(a)pyrene by Microbacterium sp. strain under denitrification: Degradation pathway and effects of limiting electron acceptors or carbon source. Biochemical Engineering Journal, 121, 131–138. https://doi.org/10.1016/j.bej.2017.02.001.

    Article  CAS  Google Scholar 

  • Safinowski, M., & Meckenstock, R. U. (2006). Methylation is the initial reaction in anaerobic naphthalene degradation by a sulfate reducing enrichment culture. Environmental Microbiology, 8(2), 347–352.

    Article  CAS  Google Scholar 

  • Sanglard, D. M., Leisola, S. A., & Fiechter, A. (1986). Role ofextracellular ligninases in biodegradation of benzo(a)pyrene byPhanerochaetechrysosponum. Enzyme and Microbial Technology, 8, 209–212.

    Article  CAS  Google Scholar 

  • Saraswathy, A., & Hallberg, R. (2002). Degradation of pyrene by indigenous fungi from a former gasworks site. FEMS Microbiology Letters, 210, 227–232.

    Article  CAS  Google Scholar 

  • Schoeny, R., Cody, T., Warshawsky, D., & Radike, M. (1988). Metabolism of mutagenic polycyclic aromatic hydrocarbons by photosynthetic algal species. Mutation Research, 197(2), 289–302.

    Article  CAS  Google Scholar 

  • Seo, J. S., Keum, Y. S., & Li, Q. X. (2009). Bacterial degradation of aromatic compounds. Int J Env Res Pub He, 6(1), 278–309.

    Article  CAS  Google Scholar 

  • Shen, H., Huang, Y., Wang, R., Zhu, D., Li, W., Shen, G., Wang, B., Zhang, Y., Chen, Y., Lu, Y., & Chen, H. (2013). Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environmental Science & Technology, 47(12), 6415–6424.

    Article  Google Scholar 

  • Silva, I. S., Grossman, M., & Durrant, L. R. (2009). Degradation of polycyclic aromatic hydrocarbons (2–7 rings) under microaerobic and very-low-oxygen conditions by soil fungi. International Biodeterioration and Biodegradation, 63, 224–229.

    Article  CAS  Google Scholar 

  • Steffen, K. T., Hatakka, A., & Hofrichter, M. (2003). Degradation ofbenzo[a]pyrene by the litter-decomposing basidiomyceteStrophariacoronilla: Role of manganese peroxidase. Applied and Environmental Microbiology, 69, 3957–3964.

    Article  CAS  Google Scholar 

  • Sutherland, J. B. (1992). Detoxification of polycyclic aromatic hydrocarbons by fungi. Journal of Industrial Microbiology, 9, 53–62.

    Article  CAS  Google Scholar 

  • Tang, X., He, L. Y., Tao, X. Q., Dang, Z., Guo, C. L., Lu, G. N., & Yi, X. Y. (2010). Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil. Journal of Hazardous Materials, 18, 1158–1162.

    Article  Google Scholar 

  • Tian, L., Ma, P., & Zhong, J. J. (2002). Kinetics and key enzyme activities of phenanthrene degradation by Pseudomonas mendocina. Process Biochemistry, 37, 1431–1437.

    Article  CAS  Google Scholar 

  • Tsai, J. C., Kumar, M., Chang, S. M., & Lin, J. G. (2009). Determination of optimal phenanthrene, sulfate and biomass concentrations for anaerobic biodegradation of phenanthrene by sulfate-reducing bacteria and elucidation of metabolic pathway. Journal of Hazardous Materials, 171(1–3), 1112–1119.

    Article  CAS  Google Scholar 

  • Vila, J., Tauler, M., & Grifoll, M. (2015). Bacterial PAH degradation in marine and terrestrial habitats. Current Opinion in Biotechnology, 33, 95–102.

    Article  CAS  Google Scholar 

  • Vyas, B. R. M., Bakowski, S., Å aÅ¡ek, V., & Matucha, M. (1994). Degradation of anthracene by selected white rot fungi. FEMS Microbiology Ecology, 14, 65–70.

    Article  CAS  Google Scholar 

  • Wang, X., Gong, Z., Li, P., et al. (2008). Degradation of pyrene and benzo(a)pyrene in contaminated soil by immobilized Fungi. Environmental Engineering Science, 25, 677–684. https://doi.org/10.1089/ees.2007.0075.

    Article  CAS  Google Scholar 

  • Wang, Y., Wan, R., Zhang, S., & Xie, S. (2012). Anthracene biodegradation under nitrate-reducing condition and associated microbial community changes. Biotechnology and Bioprocess Engineering, 17(2), 371–376.

    Article  Google Scholar 

  • Warshawsky, D., Cody, T., Radike, M., Reilman, R., Schumann, B., LaDow, K., & Schneider, J. (1995). Biotransformation of benzo[a]pyrene and other polycyclic aromatic hydrocarbons and heterocyclic analogs by several green algae and other algal species under gold and white light. Chemico-Biological Interactions, 97(2), 131–148.

    Article  CAS  Google Scholar 

  • Yadav, J. S., Doddapaneni, H., & Subramanian, V. (2006). P450ome ofthe white rot fungus Phanerochaetechrysosporium: Structure, evolution and regulation of expression of genomic P450 clusters. Biochemical Society Transactions, 34, 1165–1169.

    Article  CAS  Google Scholar 

  • Zhang, X., & Young, L. Y. (1997). Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia. Applied and Environmental Microbiology, 63(12), 4759–4764.

    CAS  Google Scholar 

  • Zhang, S., Ning, Y., Zhang, X., et al. (2015). Contrasting characteristics of anthracene and pyrene degradation by wood rot fungus Pycnoporus sanguineus H1. International Biodeterioration and Biodegradation, 105, 228–232. https://doi.org/10.1016/j.ibiod.2015.09.012.

    Article  CAS  Google Scholar 

  • Zheng, Z., & Obbard, J. P. (2002). Polycyclic aromatic hydrocarbonremoval from soil by surfactant solubilization andPhanerochaetechrysosporium oxidation. Journal of Environmental Quality, 31(6), 1842–1847.

    Article  CAS  Google Scholar 

  • Zhou, N., Fuenmayor, S., & Williams, P. (2001). Nag genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for Gentisate catabolism. Journal of Bacteriology, 183, 700–708. https://doi.org/10.1128/jb.183.2.700-708.2001.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, S., Kumar, M. (2019). Biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Sustainable Approach. In: Shah, S., Venkatramanan, V., Prasad, R. (eds) Sustainable Green Technologies for Environmental Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-2772-8_6

Download citation

Publish with us

Policies and ethics