Skip to main content
Log in

Bioremediation of polycyclic aromatic hydrocarbons contaminated soils: recent progress, perspectives and challenges

  • Review
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The life of all creatures is supported directly or indirectly by soil, which is a significant environmental matrix. The soil has been polluted partly due to increased human activities and population growth, releasing several foreign substances and persistent contaminants. When toxic substances like polycyclic aromatic hydrocarbons (PAHs) are disposed of, the characteristics of the soil are changed, microbial biodiversity is impacted, and items are destroyed. Because of the mutagenicity, carcinogenicity, and toxicity of petroleum hydrocarbons, the restoration and cleanup of PAH-polluted areas represent a severe technological and environmental challenge for long-term growth and development. Although there are several ways to clean up PAH-contaminated soils, much attention is paid to intriguing bacteria, fungus, and their enzymes. Various factors influence PAH breakdown, including pH, temperature, airflow, moisture level, nutrient availability, and degrading microbial populations. This review discusses how PAHs affect soil characteristics and shows that secondary metabolite and carbon dioxide decomposition are produced due to microbial breakdown processes. Furthermore, the advantages of bioremediation strategies were assessed for correct evaluation and considered dependable on each legislative and scientific research level, as analyzed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets is not applicable in this manuscript, since it is a review article.

References

  • Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques–classification based on site of application: Principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 32(11), 1–8.

    CAS  Google Scholar 

  • Aziz, S. S. (2018). Bioremediation of environmental waste: A review. Univ Wah J Sci Technol, 2, 35–42.

    Google Scholar 

  • Abdel-Shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet, 25, 107–123.

    Google Scholar 

  • Alexander, M. (2000). Aging bioavailability, and over estimation of risk from environmental pollutants. Environ. Sci. Technol., 34, 4259–4265.

    CAS  Google Scholar 

  • Agnello, A. C., Bagard, M., van Hullebusch, E. D., Esposito, G., & Huguenot, D. (2016). Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bio augmentation and bio augmentation- assisted phytoremediation. Sci Total Environ, 563, 693–703.

    Google Scholar 

  • Ali, M., et al. (2023). Mechanisms of bio stimulant-enhanced biodegradation of PAHs and BTEX mixed contaminants in soil by native microbial consortium. Environmental Pollution, 318, 120831.

    CAS  Google Scholar 

  • Atlas, R.M., and Unterman, R. (1999). Bioremediation, in Manual of Industrial Microbiology and Biotechnology, 2nd Edn, eds A.C. Demain and J.E. Davies (Washington, DC: ASM Press), 666–681.

  • Atagana, H. I., Haynes, R. J., & Wallis, F. M. (2003). Optimization of soil physical and chemical conditions for the bioremediation of creosote-contaminated soil. Biodegradation, 14, 297–307. https://doi.org/10.1023/A:1024730722751

    Article  CAS  Google Scholar 

  • Bharagava, R. N., Saxena, G., & Mulla, S. I. (2020). Introduction to industrial wastes containing organic and inorganic pollutants and bioremediation approaches for environmental management. In G. Saxena & R. N. Bharagava (Eds.), Bioremediation of Industrial Waste for Environmental Safety (pp. 1–18). Springer.

    Google Scholar 

  • Boopathy, R. (2000). Factors limiting bioremediation technologies. Bioresour. Technol, 74(1), 63–67.

    CAS  Google Scholar 

  • Bentivegna, C. S., DeFelice, C. R., & Murphy, W. R. (2016). Excitation–emission matrix scan analysis of raw fish oil from coastal New Jersey menhaden collected before and after Hurricane Sandy. Mar Pollut Bull, 107(2), 442–452.

    CAS  Google Scholar 

  • Bubians, A., Giedraityte, G., & Kalediene, L. (2007). Protocatechuate 3,4-dioxygenase from thermophilic Geobacillus sp. strain’. Biologija, 18, 31–34.

    Google Scholar 

  • Boonchan, S., Britz, M. L., & Stanley, G. A. (1998). Surfactant-enhanced biodegradation of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia. Biotechnology Bioengineering, 59, 482–494.

    CAS  Google Scholar 

  • Beolchini, F., et al. (2022). Bioremediation of sediments contaminated with polycyclic aromatic hydrocarbons: The technological innovation patented review. International Journal of Environmental Science and Technology, 19(6), 5697–5720.

    CAS  Google Scholar 

  • Barbieri, P., Bestetti, G., Galli, E., & Zannoni, D. (2012). Microbiologia Ambientaleed Elementi di Biologia Microbica (pp. 218–388). Ambrosiana.

    Google Scholar 

  • Biache, C., Ghislain, T., Faure, P., & Mansuy-Huault, L. (2011). Low temperature oxidation of a coking plant soil organic matter and its major constituents: An experimental approach to simulate a long term evolution. Journal of Hazardous Materials, 188(1-3), 221–230.

    CAS  Google Scholar 

  • Brakstad, O. G., & Bonaunet, K. (2006). Biodegradation of petroleum hydrocarbons in sea water at low temperatures(0-5degreesC) and bacterial communities associated with degradation. Biodegradation, 17, 71–82.

    CAS  Google Scholar 

  • Bowlen, G.F., and Kosson, D.S. (1995).In situ processes for bioremediation of BTEX and petroleum fuel products, in Microbial Transformation and Degradation of Toxic Organic Chemicals, eds L.Y. Young and C.E. Cerniglia (New York, NY: Wiley-Liss), 514–544.

  • Bewley, R.J.F., and Webb, G. (2001). In situ bioremediation of groundwater contaminated with phenols, BTEX and PAHs using nitrate as electron acceptor. Land Contam. Reclam. 9, 335–347.

  • Bose, A., Rogers, D. R., Adams, M. M., Joye, S. B., & Girguis, P. R. (2013). Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments. Front. Microbiol., 4, 386.

    Google Scholar 

  • Chao, C. Y. H., et al. (2002). Quantification of polycyclic aromatic hydrocarbons and aliphatic hydrocarbons in air particulate samples in homes. Indoor and Built Environment., 11, 123–133.

    CAS  Google Scholar 

  • Cerniglia, C. E. (1992). Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 3, 351–368.

    CAS  Google Scholar 

  • Chen, Y., Zhang, J., Zhang, F., Liu, X., & Zhou, M. (2018). Contamination and health risk assessment of PAHs in farmland soils of the Yinma River Basin, China. Ecotoxicol Environ Saf, 156, 383–390.

    CAS  Google Scholar 

  • Costa, J. C. S., Sant Ana, A. C., Corio, P., & Temperini, M. L. A. (2006). Chemical analysis of polycyclic aromatic hydrocarbons by surface enhanced Raman spectroscopy. Talanta, 70(5), 1011–1016.

    CAS  Google Scholar 

  • Chen, J., Huang, Y. W., & Zhao, Y. (2015). Characterization of polycyclic aromatic hydrocarbons using Raman and surface-enhanced Raman spectroscopy. J Raman Spectrosc, 46(1), 64–69.

    CAS  Google Scholar 

  • Christensen, J. H., Hansen, A. B., Mortensen, J., & Andersen, O. (2005). Characterization and matching of oil samples using fluorescence spectroscopy and parallel factor analysis. Anal Chem, 77(7), 2210–2217.

    CAS  Google Scholar 

  • Carabajal, M. D., Arancibia, J. A., & Escandar, G. M. (2017). Excitation-emission fluorescence-kinetic data obtained by Fenton degradation. Determination of heavy-polycyclic aromatic hydrocarbons by four-way parallel factor analysis. Talanta, 165, 52–63.

    CAS  Google Scholar 

  • Casellas, M., Grifoll, M., Bayona, J. M., & Solanas, A. M. (1997). New metabolites in the degradation of fluorine by Arthrobacter sp. strain F101. Applied and environmental microbiology, 63, 819–826.

    CAS  Google Scholar 

  • Cheung, P. Y., & Kinkle, B. K. (2001). Mycobacterium diversity and pyrene mineralization in petroleum contaminated soils. Applied Environmental Microbiology, 67, 2222–2229.

    CAS  Google Scholar 

  • Carmichael, L. M., & Pfaender, F. K. (1997). The effect of inorganic and organic supplements on the microbial degradation of phenanthrene and pyrene in soils. Biodegradation, 8, 1–13.

    CAS  Google Scholar 

  • Dias, R. L., Ruberto, L., Calabró, A., Balbo, A. L., Del Panno, M. T., & Mac Cormack, W. P. (2015). Hydrocarbon removal and bacterial community structure in on-site biostimulated biopile systems designed for bioremediation of diesel-contaminated Antarctic soil. Polar biology, 38(5), 677–687.

    Google Scholar 

  • Du, W., Chen, Y., Zhu, X., Zhong, Q., Zhuo, S., Liu, W., … Tao, S. (2018). Wintertime air pollution and health risk assessment of inhalation exposure to polycyclic aromatic hydrocarbons in rural China. Atmospheric Environment, 191, 1–8.

    CAS  Google Scholar 

  • Drwal, E., Rak, A., & Gregoraszczuk, E. L. (2019). Polycyclic aromatic hydrocarbons (PAHs)—action on placental function and health risks in future life of newborns. Toxicology, 411, 133–142.

    CAS  Google Scholar 

  • Diletti, G., Scortichini, G., Scarpone, R., Gatti, G., Torreti, L., & Migliorati, G. (2005). Isotope dilution determination of polycyclic aromatic hydrocarbons in olive pomace oil by gas chromatography–mass spectrometry. J Chromatogr A, 1062(2), 247–254.

    CAS  Google Scholar 

  • Diaz-Moroles, N. E., Garza-Ulloa, H. J., Castro-Rios, R., Ramirez-Villarreal, E. G., Barbarin-Castillo, J. M., dela Luz Salazar-Cavazos, M., & Waksman-de Torres, N. A. (2007). Comparison of the performance of two chromatographic and three extraction techniques for the analysis of PAHs in sources of drinking water. J ChromatogrA Sci, 45(2), 57–62.

    CAS  Google Scholar 

  • DeBruyn, J. M., Mead, T. J., & Sayler, G. S. (2012). Horizontal transfer of PAH catabolism genes in Mycobacterium: Evidence from comparative genomics and isolated pyrene-degrading bacteria. Environ SciTechnol, 46(1), 99–106.

    CAS  Google Scholar 

  • Denef, V. J., Patrauchan, M. A., Florizone, C., Park, J., Tsoi, T. V., Verstraete, W., Tiedje, J. M., & Eltis, L. D. (2005). Growth substrate-and phase-specific expression of biphenyl, benzoate, and C1 metabolic pathways in Burkholderia xenovorans LB400. Journal of bacteriology, 187, 7996–8005.

    CAS  Google Scholar 

  • Dean-Ross, D., Moody, J., & Cerniglia, C. E. (2002). Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment. FEMS Microbiology and Ecology, 41, 17.

    Google Scholar 

  • Dabestani, R., Reszka, K. J., & Sigman, M. E. (1998). Surface catalyzed electron transfer from polycyclic aromatic hydrocarbons (PAH) to methyl viologendication: Evidence for ground-state charge transfer complex formation on silica gel. Journal of Photochemistry and Photobiology A: Chemistry, 117(3), 223–233.

    CAS  Google Scholar 

  • Ei-Sheekh, M. M., Ghareib, M. M., & El-Souod, G. W. (2012). Biodegradation of phenolic and polycyclic aromatic compounds by some algae and cyanobacteria. J BioremedBiodegrad, 3(133), 2.

    Google Scholar 

  • Fortnagel, P., Harms, H., Wittich, R. M., Krohn, S., Meyer, H., Sinnwell, V., Wilkes, H., & Francke, W. (1990). Metabolism of dibenzofuran by Pseudomonas sp. strain HH69 and the mixed culture HH27. Applied Environmental Microbiology, 56, 1148–1156.

    CAS  Google Scholar 

  • Feitkenhauer, H., Muller, R., & Markl, H. (2003). Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 60-70degreesC by Thermus and Bacillus spp. Biodegradation, 14, 367–372.

    CAS  Google Scholar 

  • Floodgate, G. (1984).The fate of petroleum in marine eco systems, in Petroleum Microbiology, ed. R.M. Atlas (New York, NY: Macmillion), 355–398.

  • Gao, P., da Silva, E., Hou, L., Denslow, N. D., Xiang, P., & Ma, L. Q. (2018). Human exposure to polycyclic aromatic hydrocarbons: Metabolomics perspective. Environment international, 119, 466–477.

    CAS  Google Scholar 

  • Gu, X., Tian, S., Zhou, Q., Adkins, J., Gu, Z., Li, X., & Zheng, J. (2013). SERS detection of polycyclic aromatic hydrocarbons on a bowl-shaped silver cavity substrate. RSC Adv, 3(48), 25989–25996.

    CAS  Google Scholar 

  • Guerrini, L., Garcia-Ramos, J. V., Domingo, C., & Sanchez-Cortes, S. (2009). Nanosensors based on viologen functionalized silver nanoparticles: Few molecules surface-enhanced Raman spectroscopy detection of polycyclic aromatic hydrocarbons in interparticle hot spots. Anal Chem, 81(4), 141825.

    Google Scholar 

  • Garcia-Delgado, C., Yunta, F., & Eymar, E. (2013). Methodology for polycyclic aromatic hydrocarbons extraction from either fresh or dry spent mushroom compost and quantification by high-performance liquid chromatography–photodiode array detection. Commun Soil Sci Plant Anal, 44(1–4), 817–825.

    CAS  Google Scholar 

  • Ghosal, D., Ghosh, S., Dutta, T. K., & Ahn, Y. (2016). Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol, 7, 1369.

    Google Scholar 

  • Guo, W., Li, D., Tao, Y., Gao, P., & Hu, J. (2008). Isolation and description of a stable carbazole-degrading microbial consortium consisting of Chryseobacterium sp. NCY and Achromobacter sp. NCW. Current Microbiology, 57, 251.

    CAS  Google Scholar 

  • Grifoll, M., Selifonov, S. A., & Chapman, P. J. (1994). Evidence for a novel pathway in the degradation of fluorine by Pseudomonas sp. strain F274. Applied Environmental Microbiology, 60, 2438–2449.

    CAS  Google Scholar 

  • Gu, C., Li, H., Teppen, B. J., & Boyd, S. A. (2008). Octachlorodibenzodioxin formation on Fe(III)-montmorillonite clay. Environmental Science & Technology, 42(13), 4758–4763.

    CAS  Google Scholar 

  • Haritash, A. K., & Kaushik, C. P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J Hazard Mater, 169(1–3), 1–15.

    CAS  Google Scholar 

  • Hedlund, B. P., Geiselbrecht, A. D., & Staley, J. T. (2001). Marinobacter strain NCE312 has a Pseudomonas-like naphthalene dioxygenase. FEMS Microbiology Letter., 201, 47–51.

    CAS  Google Scholar 

  • Habe, H., Chung, J. S., Lee, J. H., Kasuga, K., Yoshida, T., Nojiri, H., & Omori, T. (2001). Degradation of chlorinated di benzofurans and dibenzo-p-dioxins by two types of bacteria having angular dioxygenases with different features. Applied Environmental Microbiology, 67, 3610–3617.

    CAS  Google Scholar 

  • Imrigha, N. A., Sanagi, M. M., & Sharef, S. Y. (2022). Determination of polycyclic aromatic hydrocarbons in water using dispersive liquid-liquid microextraction-gas chromatography-mass spectrometric. Journal of Pure & Applied Sciences, 21(2), 68–71.

    Google Scholar 

  • Inoue, K., Habe, H., Yamane, H., & Nojiri, H. (2006). Characterization of novel carbazole catabolism genes from gram positive carbazole degrader Nocardioides aromaticivorans IC177. Applied Environmental Microbiology, 72, 3321–3329.

    CAS  Google Scholar 

  • Johnsen, A. R. (2007). Strong impact on the polycyclic aromatic hydrocarbon (PAH)-degrading community of a PAH-polluted soil but marginal effect on PAH degradation when priming with bioremediated soil dominated by mycobacteria. Applied and environmental microbiology, 73(5), 1474–1480.

    CAS  Google Scholar 

  • Jia, H. Z., Li, L., Chen, H. X., Zhao, Y., Li, X. Y., & Wang, C. Y. (2015). Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light. Journal of Hazardous Materials, 287, 16–23.

    CAS  Google Scholar 

  • Kumar, S., Negi, S., & Maiti, P. (2017). Biological and analytical techniques used for detection of polyaromatic hydrocarbons. Environ SciPollut Res, 24(33), 25810–25827.

    CAS  Google Scholar 

  • Kuppusamy, S., Thavamani, P., Venkateswarlu, K., Lee, Y. B., Naidu, R., & Megharaj, M. (2017). Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions. Chemosphere, 168, 944–968.

    CAS  Google Scholar 

  • Kang, H., Wang, H., Kim, S. Y., Kim, Y. M., Kim, E., Kim, Y. S., Kim, S. K., Cerniglia, C. E., Shuttleworth, K. L., & Zylstra, G. J. (2003). Degradation of phenanthrene and naphthalene by a Burkholderia species strain. Canadian Journal of Microbiology, 49(2), 139–144.

    CAS  Google Scholar 

  • Kazunga, C., & Aitken, M. D. (2000). Products from the incomplete metabolism of pyrene by polycyclic aromatic hydrocarbon-degrading bacteria’. Applied and Environmental Microbiology, 66, 1917–1922.

    CAS  Google Scholar 

  • Kumar, A., Bisht, B. S., Joshi, V. D., & Dhewa, T. (2011). Review on bioremediation of polluted environment: A management tool. International Journal of Environment Science, 1, 1079–1093.

    Google Scholar 

  • Krivobok, S., Kuony, S., Meyer, C., Louwagie, M., Willison, J. C., & Jouanneau, Y. (2003). Dentification of pyrene-induced proteins in Mycobacterium sp. strain 6PY1: Evidence for two ring-hydroxylating dioxygenase. Journal of Bacteriology, 185, 3828–3841.

    CAS  Google Scholar 

  • Kim, Y. H., & Freeman, J. P. (2005). Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1. Applied Environmental Microbiology, 67, 275–285.

    CAS  Google Scholar 

  • Kanaly, R. A., Harayama, S., & Watanabe, K. (2002). Rhodanobacter sp. Strain BPC-1 in a benzo[a]pyrenemineralizing bacterial consortium. Applied Environmental Microbiology, 68, 5826–5833.

    CAS  Google Scholar 

  • Kirimura, K., Furuya, T., Sato, R., Ishii, Y., Kino, K., & Usami, S. (2002). Biodesulfurization of naphthothiophene and benzothiophene through selective cleavage of carbon-sulfur bonds by Rhodococcus sp. strain WUK2R. Applied Environmental Microbiology, 68, 3867–3872.

    CAS  Google Scholar 

  • Kawahara, S. C., Tsuzuki, S., & Uchimaru, T. (2005). Lewis acidity/basicity of pi-electron systems: Theoretical study of a molecular interaction between a pi system and a Lewis acid/base. Chemistry (WeinheimanderBergstrasse, Germany), 11(15), 4458–4464.

    CAS  Google Scholar 

  • Lu, W., Li, Y., Li, R., Shuang, S., Dong, C., & Cai, Z. (2016). Facile synthesis of N-doped carbon dots as a new matrix for detection of hydroxy-polycyclic aromatic hydrocarbons by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. ACS Appl Mater Interfaces, 8(20), 1297684.

    Google Scholar 

  • Lamani X, Horst S, Zimmermann T, Schmidt TC. (2015). Determination of aromatic amines in human urine using comprehensive multidimensional gas chromatography mass spectrometry (GCxGCqMS). Anal Bioanal Chem. 407(1):241–252.

  • Luo, R., & Schrader, W. (2022). Development of a non-targeted method to study petroleum polyaromatic hydrocarbons in soil by ultrahigh resolution mass spectrometry using multiple ionization methods. Polycyclic Aromatic Compounds, 42(2), 643–658.

    CAS  Google Scholar 

  • Lei, A. P., Hu, Z. L., Wong, Y. S., & Tam, N. F. Y. (2007). Removal of fluoranthene and pyrene by different micro algal species. Biores Technol, 98(2), 273–280.

    CAS  Google Scholar 

  • Lily, M. K., Bahuguna, A., Dangwal, K., & Garg, V. (2010). Optimization of an inducible, chromosomally encode benzo [a] pyrene (BaP) degradation pathway in Bacillus subtilis BMT4i (MTCC 9447). Annals of Microbiology, 60, 51–58.

    CAS  Google Scholar 

  • Lee, S. E., Seo, J. S., Keum, Y. S., Lee, K. J., & Li, Q. X. (2007). Fluoranthene metabolism and associated proteins in Mycobacterium sp. JS14. Proteomics, 7, 2059–2069.

    CAS  Google Scholar 

  • Liyanapatirana, C., Gwaltney, S. R., & Xia, K. (2010). Transformation of triclosan by Fe(III)-saturated montmorillonite. Environmental Science & Technology, 44(2), 668–674.

    CAS  Google Scholar 

  • Luthy, R. G., Ramaswami, A., & Ghosal, S. (1993). Interfacial films in coal tar nonaqueous-phase liquid-water systems. Environmental Science & Technology, 27, 2914–2918. https://doi.org/10.1021/es00049a035

    Article  CAS  Google Scholar 

  • Moorthy, B., Chu, C., & Carlin, D. J. (2015). Polycyclic aromatic hydrocarbons: From metabolism to lung cancer. Toxicological Sciences, 145(1), 5–15.

    CAS  Google Scholar 

  • Miege, C., Dugay, J., & Hennion, M. C. (1998). Optimization and validation of solvent and supercritical-fluid extractions for the trace-determination of polycyclic aromatic hydrocarbons in sewage sludges by liquid chromatography coupled to diode-array and fluorescence detection. J Chromatogr A, 823(1–2), 219–230.

    CAS  Google Scholar 

  • Mahmoudpour, M., Mohtadinia, J., Mousavi, M. M., Ansarin, M., & Nemati, M. (2017). Application of the microwave-assisted extraction and dispersive liquid–liquid microextraction for the analysis of PAHs in smoked rice. Food Anal Methods., 10(1), 277–286.

    Google Scholar 

  • Miller, C. D., Hall, K., Liang, Y. N., Nieman, K., Sorensen, D., Issa, B., Anderson, A. J., & Sims, R. C. (2004). ‘Isolation and characterization of polycyclic aromatic hydrocarbon-degrading Mycobacterium isolates from soil. Microbiology and. Ecology., 48, 230–238.

    CAS  Google Scholar 

  • Matsubara, T., Ohshiro, T., Nishina, Y., & Izumi, Y. (2001). Purification, characterization and over expression of flavin reductase involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1. Applied Environmental Microbiology, 67, 1179–1184.

    CAS  Google Scholar 

  • Mallick, S., Chatterjee, S., & Dutta, T. K. (2007). A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp. strain PN/Y via meta-cleavage of 2-hydroxy-1-naphthoic acid: formation of trans-2, 3- dioxo-5-(2′-hydroxyphenyl)-pent-4-enoic acid. Microbiology, 153, 2104–2115.

    CAS  Google Scholar 

  • Müller, R., Antranikian, G., Maloney, S., and Sharp, R. (1998). Thermophilic degradation of environmental pollutants, in Biotechnology of Extremophiles. Advances in Biochemical Engineering/Bio-technology, Vol. 61, ed. G. Antranikian (Berlin: Springer),155–169.

  • Megharaj, M., Wittich, R. W., Blanco, E., Pieper, D. H., & Timmis, K. N. (2002). Superior survival and degradation of dibenzo-p-dioxin and dibenzofuran in soil by soil-adapted Sphingomonassp.strainRW1. Appl. Microbiol. Biotechnol., 48, 109–114.

    Google Scholar 

  • Nduka, J., Umeh, L., Okerulu, I., Umedum, L., & Okoye, H. (2012). Utilization of different microbes in bioremediation of hydrocarbon contaminated soils stimulated with inorganic and organic fertilizers. J Pet Environ Biotechnol, 3, 1–9.

    Google Scholar 

  • Nassar, H. F., Tang, N., Kameda, T., Toriba, A., Khoder, M. I., & Hayakawa, K. (2011). Atmospheric concentrations of polycyclic aromatic hydrocarbons and selected nitrated derivatives in Greater Cairo, Egypt. Atmos Environ, 45(39), 7352–7359.

    CAS  Google Scholar 

  • Nelson, E. C., Ghoshal, S., Edwards, J. C., Marsh, G. X., & Luthy, R. G. (1996). Chemical characterization of coaltar-water interfacial films. Environ. Sci. Technol., 30, 1014–1022.

    CAS  Google Scholar 

  • Odencrantz, J. E., Johnson, J. G., & Koenigsberg, S. S. (1996). Enhanced intrinsic bioremediation of hydrocarbons using an oxygen-releasing compound. Autumn (Fall), 6, 99–114.

    Google Scholar 

  • Pumphrey, G. M., & Madsen, E. L. (2007). Naphthalene metabolism and growth inhibition by naphthalene in Polaromonas naphthalenivorans strain CJ2. Microbiology, 153, 3730–3738.

    CAS  Google Scholar 

  • Pinyakong, O., Habe, H., Yoshida, T., Nojiri, H., & Omori, T. (2003). Identification of three novel salicylate 1-hydroxylases involved in the phenanthrene degradation of Sphingomonas sp. strain P2. Biochemistry and Biophysics. Research Community, 301, 350–357.

    CAS  Google Scholar 

  • Rose, M., White, S., Macarthur, R., Petch, R. G., Holland, J., & Damant, A. P. (2007). Single-laboratory validation of a GC/MS method for the determination of 27 polycyclic aromatic hydrocarbons (PAHs) in oils and fats. Food AdditContam, 24(6), 635–651.

    CAS  Google Scholar 

  • Rehmann, K., Hertkorn, N., & Kettrup, A. A. (2001). Fluoranthene metabolism in Mycobacterium sp. strain KR20: Identity of pathway intermediates during degradation and growth. Microbiology., 147, 2783–2794.

    CAS  Google Scholar 

  • Resnick, S. M., & Gibson, D. T. (1996). Regio- and stereospecific oxidation of fluorene, dibenzofuran, and dibenzothiophene by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. Applied Environmental Microbiology, 62, 4073–4080.

    CAS  Google Scholar 

  • Romero, M. C., Cazau, M. C., Giorgieri, S., & Arambarri, A. M. (1998). ‘Phenanthrene degradation by microorganisms isolated from a contaminated stream. Environmental Pollution, 101, 355–359.

    CAS  Google Scholar 

  • Rani, N.; Sharma, H.R.; Kaushik, A.; Sagar, A. (2018). Bioremediation of mined waste land. In Handbook of Environmental Materials Management; Springer International Publishing: Berlin/Heidelberg, Germany; pp. 1–25.

  • Rooney, J. J., & Pink, R. C. (1988). Formation and stability of hydrocarbon radical-ions on a silica-alumina surface. Transactions of the Faraday Society, 58, 1632–1641.

    Google Scholar 

  • Steffens J, Landulfo E, Courrol LC, Guardani R.(2011). Application of fluorescence to the study of crude petroleum. J Fluoresc, 1;21(3):859–64.

  • Seo, J. S., Keum, Y. S., Hu, Y., Lee, S. E., & Li, Q. X. (2006). Phenanthrene degradation in Arthrobacter sp. P1-1: initial 1, 2-,3, 4-and 9, 10- dioxygenation, and meta-and ortho-cleavages of naphthalene-1, 2-diol after its formation fromnaphthalene-1, 2-dicarboxylic acid and hydroxyl naphthoic acids. Chemosphere, 65, 2388–2394.

    CAS  Google Scholar 

  • Samanta, S. K., Chakraborti, A. K., & Jain, R. K. (1999). Degradation of phenanthrene by different bacteria: Evidence for novel transformation sequences involving the formation of 1-naphthol. Applied Microbiology and Biotechnology, 53(1), 98–107.

    CAS  Google Scholar 

  • Schneider, J., Grosser, R., Jayasimhulu, K., Xue, W., & Warshawsky, D. (1996). Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp. Strain RJGII- 135, isolated from a former coal gasification site. Applied Environmental Microbiology, 62, 13–19.

    CAS  Google Scholar 

  • Sepic, E., Bricelj, M., & Leskovsek, H. (1998). Degradation of fluoranthene by Pasteurella sp. IFA and Mycobacterium sp. PYR-1: Isolation and identification of metabolites. Journal of Applied Microbiology, 85, 746–754.

    CAS  Google Scholar 

  • Semple, K. T., Morriss, A. W. J., & Paton, G. I. (2003). Bioavailability of hydrophobic organic contaminants in soils :fundamental concepts and techniques for analysis. Eur. J. Soil Sci., 54, 809–818.

    CAS  Google Scholar 

  • Singh, S., & Haritash, A. (2019). Polycyclic aromatic hydrocarbons: Soil pollution and remediation. Int. J. Environ. Sci. Technol, 16, 6489–6512.

    Google Scholar 

  • Tarpani, L., Vocci, A., Selvaggi, R., Pellegrino, R., Ruspolini, F., Taglieri, L., & Latterini, L. (2011). Solid-phase analysis of polycyclic aromatic hydrocarbons by fluorimetric methods. Appl Spectrosc, 65(12), 1342–1347.

    CAS  Google Scholar 

  • Tetteh, E.K.; Rathilal, S.; Naidoo, D.B. (2020). Photocatalytic degradation of oily waste and phenol from a local South Africa oil refinery wastewater using response methodology. Scientific Reports,  10, 8850.

  • Uyttebroek, M., Breugelmans, P., Janssen, M., Wattiau, P., Joffe, B., Karlson, U., Ortega-Calvo, J. J., Bastiaens, L., Ryngaert, A., Hausner, M., & Springael, D. (2006). Distribution of the Mycobacterium community and polycyclic aromatic hydrocarbons (PAHs) among different size fractions of a long-term PAH contaminated soil. Environ Microbiol, 8(5), 836–847.

    CAS  Google Scholar 

  • Ukiwe, L. N., et al. (2013). Polycyclic aromatic hydrocarbons degradation techniques. International Journal of Chemistry, 5(4), 43–55.

    Google Scholar 

  • Van Hamme, J., Singh, A., & Ward, O. (2003). Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews, 67, 503–549.

    Google Scholar 

  • Varjani, S. J. (2017). Microbial degradation of petroleum hydrocarbons. Bioresour. Technol., 223, 277–286.

    CAS  Google Scholar 

  • Wang, J., Zhang, X., Ling, W., Liu, R., Liu, J., Kang, F., & Gao, Y. (2017). Contamination and health risk assessment of PAHs in soils and crops in industrial areas of the Yangtze River Delta region, China. Chemosphere, 168, 976–987.

    CAS  Google Scholar 

  • Wang, Y. B., Liu, C. W., Kao, Y. H., & Jang, C. S. (2015). Characterization and risk assessment of PAH-contaminated river sediment by using advanced multivariate methods. Science of the Total Environment, 524, 63–73.

    Google Scholar 

  • Weissenfels, W. D., Beyer, M., & Klein, J. (1990). Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures. Applied Microbiology and Biotechnology, 32, 479–484.

    CAS  Google Scholar 

  • Wang, B., Lai, Q., Cui, Z., Tan, T., & Shao, Z. (2008). A pyrene-degrading consortium from deep-sea sediment of the West Pacific and its key member Cycloclasticus sp. P1. Environmental microbiology, 10, 1948–1963.

    CAS  Google Scholar 

  • Yang, J., Yu, F., Yu, Y., Zhang, J., Wang, R., Srinivasulu, M., & Vasenev, V. I. (2017). Characterization, source apportionment, and risk assessment of polycyclic aromatic hydrocarbons in urban soil of Nanjing, China. Journal of Soils and Sediments, 17, 1116–1125.

    CAS  Google Scholar 

  • Yang, R., Zhao, N., Xiao, X., Yu, S., Liu, J., & Liu, W. (2016). Determination of polycyclic aromatic hydrocarbons by four-way parallel factor analysis in presence of humic acid. Spectrochim Acta Part A MolBio Mol Spectrosc, 152, 384–390.

    CAS  Google Scholar 

  • Yang, Y., Zhang, N., Xue, M., & Tao, S. (2010). Impact of soil organic matter on the distribution of polycyclic aromatic hydrocarbons (PAHs) in soils. Environ Pollut, 158(6), 2170–2174.

    CAS  Google Scholar 

  • Yakimov, M. M., Timmis, K. N., & Golyshin, P. N. (2007). Obligate oil-degrading marine bacteria. CurrOpinBiotechnol, 18(3), 257–266.

    CAS  Google Scholar 

  • Yamazoe, A., Yagi, O., & Oyaizu, H. (2004). Degradation of polycyclic aromatic hydrocarbons by a newly isolated dibenzofuran-utilizing Janibacter sp. strain YY-1. Applied Environmental Microbiology, 65, 211–218.

    CAS  Google Scholar 

  • Zhang, X., Yang, J., Wang, X., Li, C., Peng, T., & Miao, Q.,& Lu, X. (2022). A facile molecularly imprinted column coupled to GC-MS/MS for sensitive and selective determination of polycyclic aromatic hydrocarbons and study on their migration in takeaway meal boxes. Talanta, 243, 123385.

    CAS  Google Scholar 

  • Zhou, N. Y., Al-Dulayymi, J., Baird, M. S., & Williama, P. A. (2002). Salicylate 5- hydroxylase from Ralstonia sp. strainU2: A monooxygenase with close relationships to and shared electron transport proteins with naphthalene dioxygenase. Journal of Bacteriology, 184, 1547–1555.

    CAS  Google Scholar 

  • Zhang, X., Yu, T., Li, X., Yao, J., Liu, W., Chang, S., & Chen, Y. (2019). The fate and enhanced removal of polycyclic aromatic hydrocarbons in wastewater and sludge treatment system: A review. Crit. Rev. Environ. Sci. Technol, 49, 1425–1475.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Management of Vellore Institute of Technology, Vellore, India, Vice-Chancellor, Management, and Dean of SBST. We are also thankful to all our laboratory colleagues and research staff members for their constructive advice and help.

Author information

Authors and Affiliations

Authors

Contributions

S.K: conceptualization; writing, original draft; validation; visualization.

M.R: investigation; writing, original draft; validation; visualization; supervision; project administration

Corresponding author

Correspondence to Rameshpathy Manian.

Ethics declarations

Ethics approval

All authors have read understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

K, S., Manian, R. Bioremediation of polycyclic aromatic hydrocarbons contaminated soils: recent progress, perspectives and challenges. Environ Monit Assess 195, 1441 (2023). https://doi.org/10.1007/s10661-023-12042-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-12042-7

Keywords

Navigation