Skip to main content
Log in

An overview on remediation technologies for polycyclic aromatic hydrocarbons in contaminated lands: a critical approach

  • Review
  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are bonded organic compounds with numerous structures with different toxicity levels. They can be of low molecular weight with 2–3 rings or high molecular weight with more than four rings and are persistent in nature. They possess high molecular weight and boiling point, hydrophobic with minimal solubility in water, and lipophilic with high solubility in organic solvents. With the gain in molecular weight, their susceptibility to oxidation–reduction decreases. They are generated during incomplete combustion of organic materials. They can be natural, such as forest fires, or artificial agents, such as coal, oil, wood burning, smoke, and auto-emissions. Due to strong molecular bonds and structural complexity, PAHs are highly malignant under normal conditions. They cause environmental damage due to improper handling and disposal in the surrounding air, water, soil, etc. PAH contamination is highly toxic because of mutagenic and potentially immune toxicants, often resulting in higher workplace casualties. Various physical, biological, and chemical processes remediate the PAHs in contaminated land. Indigenous microbial communities can effectively degrade it in-situ or ex-situ conditions. The degradation process depends on the type of microorganism, its life cycle, PAH substrate, pH, temperature, pressure, and the reaction mechanism. The present article discusses current literature, chemistry, natural and anthropogenic sources of generation, impacts on the environment, biota, etc., merits of physical, biological, and chemical remediation mechanisms with emphasis on microbial degradation, and novel options of technology intermix suitable for sustainable remediation outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Adapted from Mallah et al., 2022)

Fig. 3

(Adapted from Kim et al., 2013)

Fig. 4
Fig. 5

(Adapted from Das et al., 2020)

Fig. 6

Similar content being viewed by others

Data availability

Dr. S.K. Singh was involved in final drafting and revising the article critically for important intellectual content. Dr. R.K. Singh contributed to concept, design, acquisition, analysis and interpretation of data. All authors have read the final manuscript and agreed for to be submitted for publication. The authors have accepted authorship sequence and designated Dr. S.K. Singh as corresponding author for the submission.

References

  • Abdel-Shafy, H.-I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25, 107–123.

    Article  Google Scholar 

  • ACGIH (American Conference of Governmental Industrial Hygienists). (2005). Polycyclic aromatic hydrocarbons (PAHs) biologic exposure indices (BEI), Cincinnati. Ohio (USA). Retrieved November 9, 2022 from https://www.acgih.org/polycyclic-aromatic-hydrocarbons-pahs/.

  • Alhamdow, A., Lindh, C., Albin, M., Gustavsson, P., Tinnerberg, H., & Broberg, K. (2017). Early markers of cardiovascular disease are associated with occupational exposure to polycyclic aromatic hydrocarbons. Scientific Reports, 7, 9426. https://doi.org/10.1038/s41598-017-09956-x

    Article  CAS  Google Scholar 

  • Al-Mailem, D. M., Al-Deieg, M., Eliyas, M., & Radwan, S. S. (2017). Biostimulation of indigenous microorganisms for bioremediation of oily hypersaline microcosms from the Arabian Gulf Kuwaiti coasts. Journal of Environment Management, 193, 576–583. https://doi.org/10.1016/j.jenvman.2017.02.054

    Article  CAS  Google Scholar 

  • Amezcua-Allieri, M. A., Ávila-Chávez, M. A., Trejo, A., & Meléndez-Estrada, J. (2012). Removal of polycyclic aromatic hydrocarbons from soil: A comparison between bio-removal and supercritical fluids extraction. Chemosphere, 86, 985–993.

    Article  CAS  Google Scholar 

  • Anderson, T. A., Guthrie, E. A., & Walton, B. T. (1993). Bioremediation in the rhizosphere: Plant roots and associated microbe’s clean contaminated soil. Environment Science & Technology, 27, 2630–2636.

    Article  CAS  Google Scholar 

  • Antizar-Ladislao, B., Lopez-Real, J., & Beck, A. J. (2006). Degradation of polycyclic aromatic hydrocarbons (PAHs) in an aged coal tar contaminated soil under vessel composting conditions. Environmental Pollution, 141(3), 459–468.

    Article  CAS  Google Scholar 

  • Arias, A. H., Souissi, A., Glippa, O., Roussin, M., Dumoulin, D., Net, S., Ouddane, B., & Souissi, S. (2017). Removal and biodegradation of phenanthrene, fluoranthene, and pyrene by the marine algae Rhodomonas baltica enriched from North Atlantic Coasts. Bulletin of Environmental Contamination & Toxicology, 98(3), 392–399. https://doi.org/10.1007/s00128-016-1967-4

    Article  CAS  Google Scholar 

  • Armstrong, B. G., Hutchinson, E., Unwin, J., & Fletcher, T. (2004). Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: A review and meta-analysis. Environmental Health Perspectives, 112(9), 970–978.

    Article  CAS  Google Scholar 

  • Arulazhagan, P., Al-Shekri, K., Huda, Q., Godon, J.-J., Basahi, J. M., & Jeyakumar, D. (2017). Biodegradation of polycyclic aromatic hydrocarbons by an acidophilic Stenotrophomonas maltophilia strain AJH1 isolated from a mineral mining site in Saudi Arabia. Extremophiles, 21, 163–174. https://doi.org/10.1007/s00792-016-0892-0

    Article  CAS  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Diseases Registry). (1995). Toxicological Profile for polycyclic aromatic hydrocarbons (PAHs). Atlanta, GA, U.S. Retrieved December 20, 2022 from https://www.atsdr.cdc.gov/toxprofiles/tp69.pdf.

  • Atwater, J. W., & Mavinic, D. S. (1983). Determination of trace organic compounds in Canadian coal wastewaters-preliminary report, Canada. Retrieved April 19, 2022 from https://www.osti.gov/etdeweb/biblio/5504983.

  • Bach, P. B., Kelley, M. J., Tate, R. C., & McCrory, D. C. (2003). Screening for lung cancer: A review of the current literature. Chest, 123, 72–82.

    Article  Google Scholar 

  • Baldantoni, D., Morelli, R., Bellino, A., Prati, M. V., Alfani, A., & De Nicola, F. (2017). Anthracene and benzo (a) pyrene degradation in soil is favored by compost amendment: Perspectives for a bioremediation approach. Journal of Hazardous Materials, 339, 395–400. https://doi.org/10.1016/j.jhazmat.2017.06.043

    Article  CAS  Google Scholar 

  • Banerjee, D. K., Fedorak, P. M., Hashimoto, A., Masliyah, J. H., Pickard, M. A., & Gray, M. R. (1995). Monitoring the biological treatment of anthracene-contaminated soil in a rotating-drum bioreactor. Applied Microbiology & Biotechnology, 43, 521–528.

    Article  CAS  Google Scholar 

  • Banks, M. K., Lee, E., & Schwab, A. P. (1999). Evaluation of dissipation mechanisms for benzopyrene in the rhizosphere of tall fescue. Journal of Environmental Quality, 28, 294–298.

    Article  CAS  Google Scholar 

  • Beauregard, D. (1993). Locating and estimating air emissions from sources of Toluene. Final Report, Emission Inventory Branch Technical Support Division, Office of Air Quality Planning and Standards, USEPA, NC, USA. Retrieved December 26, 2022 from https://www3.epa.gov/ttnchie1/le/toluene.pdf.

  • Beltrán, F. J., Ovejero, G. A., & Rivas, J. (1996). Oxidation of polynuclear aromatic hydrocarbons in water. 4. Ozone combined with hydrogen peroxide. Industrial & Engineering Chemistry Research, 35(3), 883–890.

    Article  Google Scholar 

  • Birolli, W. G., Santos, D. D. A., Alvarenga, N., Garcia, A. C., Romão, L. P., & Porto, A. L. (2018). Biodegradation of anthracene and several PAHs by the marine-derived fungus Cladosporium sp. CBMAI 1237. Marine Pollution Bulletin, 129, 525–533. https://doi.org/10.1016/j.marpolbul.2017.10.023

    Article  CAS  Google Scholar 

  • Bisht, S., Pandey, P., Bhargava, B., Sharma, S., Kumar, V., & Sharma, K. (2015). Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Brazilian Journal of Microbiology, 46(1), 7–21.

    Article  CAS  Google Scholar 

  • Boer, J. D., & Wagelmans, M. (2016). Polycyclic Aromatic hydrocarbons in soil-practical options for remediation. Clean: Soil, Air, Water, 44, 647–653.

    Google Scholar 

  • Bonfá, M. R., Grossman, M. J., Mellado, E., & Durrant, L. R. (2011). Biodegradation of aromatic hydrocarbons by Haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water. Chemosphere, 84, 1671–1676. https://doi.org/10.1016/j.chemosphere.2011.05.005

    Article  CAS  Google Scholar 

  • Brown, G. S., Barton, L. L., & Thomson, B. M. (2003). Permanganate oxidation of sorbed polycyclic aromatic hydrocarbons. Waste Management, 23(8), 737–740.

    Article  CAS  Google Scholar 

  • CCME (Canadian Council of Ministers of the Environment). (2010a). Carcinogenic and other PAHs. Canadian environmental quality guidelines (1999, 2000), Vaughan St Winnipeg MB R3C 1T5, Canada. Retrieved June 20, 2022 from http://www.ccme.ca.

  • CCME (Canadian Council of Ministers of the Environment). (2010b). Canadian Soil Quality Guidelines for Carcinogenic and other Polycyclic Aromatic Hydrocarbons (Environmental and Human Health Effects), Scientific Criteria Document, PN 1445 ISBN 978-1-896997-94-0 PDF. Retrieved December 26, 2022 from http://www.ec.gc.ca/ceqg-rcqe.

  • Cerniglia, C. E. (1992). Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 3(2), 351–368.

    Article  CAS  Google Scholar 

  • Cerniglia, C. E., Sutherland, J. B., Crow, S. A., & Winkelmann, G. (1992). Fungal metabolism of aromatic hydrocarbons. In G. Winkelmanns (Ed.), Microbial degradation of natural products (pp. 193–217). VCH Verlagsgesellschaft.

    Google Scholar 

  • Chen, Y. C., & Banks, M. K. (2004). Bacterial community evaluation during establishment of tall fescue (Festuca arundinacea) in soil contaminated with pyrene. International Journal of Phytoremediation, 6, 227–238.

    Article  Google Scholar 

  • Chimjarn, S., Delhomme, O., & Millet, M. (2021). Temporal distribution and gas/particle partitioning of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere of Strasbourg, France. Atmosphere. https://doi.org/10.3390/atmos12030337

    Article  Google Scholar 

  • Chrysochou, E., Kanellopoulos, P. G., Koukoulakis, K. G., Sakellari, A., Karavoltsos, S., Minaidis, M., & Bakeas, E. (2021). Heart failure and PAHs, OHPAHs, and trace elements levels in human serum: Results from a preliminary pilot study in Greek population and the possible impact of air pollution. Molecules, 26, 3207. https://doi.org/10.3390/molecules26113207

    Article  CAS  Google Scholar 

  • Clark, J. D., III., Serdar, B., Lee, D. J., Kristopher Arheart, K., Wilkinson, J. D., & Fleming, L. E. (2012). Exposure to polycyclic aromatic hydrocarbons and serum inflammatory markers of cardiovascular disease. Environmental Research, 117, 132–137. https://doi.org/10.1016/j.envres.2012.04.012

    Article  CAS  Google Scholar 

  • Clements, W. H., Oris, J. T., & Wissing, T. E. (1994). Accumulation and food chain transfer of fluoranthene and benzo[a]pyrene in Chironomus riparius and Lepomis macrochirus. Archives of Environmental Contamination and Toxicology, 26, 261–266.

    Article  CAS  Google Scholar 

  • Commins, B. T. (1969). Formation of polycyclic aromatic hydrocarbons during pyrolysis and combustion of hydrocarbons. Atmospheric Environment, 3, 565–572.

    Article  CAS  Google Scholar 

  • Das, S. K. (2014). Recent developments in clean up techniques of pesticide residue analysis for toxicology study: A critical review. Universal Journal of Agricultural Research, 2(6), 198–202.

    Article  Google Scholar 

  • Das, S. K., Ghosh, G. K., & Avasthe, R. K. (2020). Biochar application for environmental management and toxic pollutant remediation. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-01078-1

    Article  Google Scholar 

  • Das, S. K., Mukherjee, I., & Roy, A. (2017). Flubendiamide as new generation insecticide in plant toxicology: A policy paper. Advances in Clinical Toxicology, 2(2), 000122.

    Google Scholar 

  • Dastgheib, S. M. M., Amoozegar, M. A., Khajeh, K., Shavandi, M., & Ventosa, A. (2012). Biodegradation of polycyclic aromatic hydrocarbons by a halophilic microbial consortium. Applied Microbiology & Biotechnology, 95, 789–798. https://doi.org/10.1007/s00253-011-3706-4

    Article  CAS  Google Scholar 

  • Davies, I. W., Harrison, R. M., Perry, R., Ratnayaka, D., & Wellings, R. A. (1976). Municipal incinerators as source of polynuclear aromatic hydrocarbons in environment. Environment Science & Technology, 10, 451–453.

    Article  CAS  Google Scholar 

  • De Llasera, M. P. G., de Jesús Olmos-Espejel, J., Díaz-Flores, G., & Montaño-Montiel, A. (2016). Biodegradation of benzo (a) pyrene by two freshwater microalgae Selenastrum capricornutum and Scenedesmus acutus: A comparative study useful for bioremediation. Environmental Science & Pollution Research, 23, 3365–3375. https://doi.org/10.1007/s11356-015-5576-2

    Article  CAS  Google Scholar 

  • Dell’omo, M., & Lauwerys, R. R. (1993). Adducts to macromolecules in the biological monitoring of workers exposed to polycyclic aromatic hydrocarbons. Critical Reviews in Toxicology, 23, 111–126.

    Article  Google Scholar 

  • Dewangan, S., Pervez, S., Chakrabarty, R., & Zielinska, B. (2014). Uncharted sources of particle bound polycyclic aromatic hydrocarbons from South Asia: Religious/ritual burning practices. Atmospheric Pollution Research, 5, 283–291.

    Article  Google Scholar 

  • Diggs, D. L., Huderson, A. C., Harris, K. L., Myers, J. N., Banks, L. D., Rekhadevi, P. V., Niaz, M. S., & Ramesh, A. (2011). Polycyclic aromatic hydrocarbons and digestive tract cancers: A perspective. Journal of Environment Science & Health Part c: Environmental Carcinogenesis & Ecotoxicology Reviews, 29(4), 324–357.

    Article  CAS  Google Scholar 

  • Douben, P. E. T. (2003). PAHs: An eco-toxicological perspective. Wiley.

    Book  Google Scholar 

  • Dubowsky, S. D., Wallace, L. A., & Buckley, T. J. (1999). The contribution of traffic to indoor concentrations of polycyclic aromatic hydrocarbons. Journal of Exposure Science & Environmental Epidemiology, 9, 312–321.

    Article  CAS  Google Scholar 

  • Eisler, R. (1987). Polycyclic aromatic hydrocarbon hazards to fish, wildlife, and invertebrates: A synoptic review. US Fish and Wildlife Service Biological Report, 85(1.11). 81. Retrieved October 13, 2022 from https://pubs.er.usgs.gov/publication/5200072.

  • Eker, G., & Hatipoglu, M. (2018). Effect of UV wavelength, temperature and photocatalyst on removal of PAHs from industrial soil with photodegradation applications. Environmental Technology, 40(28), 3793–3803. https://doi.org/10.1080/09593330.2018.1491635

    Article  CAS  Google Scholar 

  • Eker, G., & Sengul, B. (2020). Removal of polycyclic aromatic hydrocarbons (PAHs) from industrial soil with solar and UV light. Polycyclic Aromatic Compounds, 40(4), 1238–1250. https://doi.org/10.1080/10406638.2018.1539018

    Article  CAS  Google Scholar 

  • El Mahboubya, A., Ezaierb, Y., Mechnoua, I., Rajia, Y., & Zyadea, S. (2023). Elaboration and characterization of organo-ghassoul (Moroccan Clay) as an adsorbent using cationic surfactant for anionic dye adsorption. Physical Chemistry Research, 11(4), 913–928. https://doi.org/10.22036/pcr.2022.365510.2221

    Article  CAS  Google Scholar 

  • EU (European Union). (2001). Directive 2001/80/EC of the European Parliament & of the Council on the limitation of emissions of certain pollutants into the air from large combustion plants. Retrieved December 20, 2022 from https://eur-lex.europa.eu/legal-ontent/EN/TXT/?uri=uriserv:OJ.L_.2001.309.01.0001.01.ENG.

  • Fischer, P. H., Hoek, G., Van Reeuwijk, H., Briggs, D. J., Lebret, E., Van Wijnen, J. H., Kingham, S., & Elliott, P. E. (2000). Traffic-related differences in outdoor and indoor concentrations of particles and volatile organic compounds in Amsterdam. Atmospheric Environment, 34, 3713–3722.

    Article  CAS  Google Scholar 

  • Gadi, R., Singh, D. P., Mandal, T. K., Saud, T., & Saxena, M. (2012). Emission estimates of particulate PAH from biomass fuels used in Delhi, India. Human and Ecological Risk Assessment, 18, 871–887.

    Article  CAS  Google Scholar 

  • Garcia-Suastegui, W. A., Huerta-Chagoya, A., Carrasco-Colın, K. L., Pratt, M. M., John, K., Petrosyan, P., Rubio, J., Poirier, M. C., & Gonsebatt, M. E. (2011). Seasonal variations in the levels of PAH-DNA adducts in young adults living in Mexico City. Mutagenesis, 26, 385–391.

    Article  CAS  Google Scholar 

  • Gibson, D. T., & Subramanian, V. (1984). Microbial degradation of aromatic hydrocarbons. In D. T. Gibson (Ed.), Microbial degradation of organic compounds (pp. 181–252). Marcel Dekker, Inc.

    Google Scholar 

  • Gong, Z., Alef, K., Wilke, B.-M., & Li, P. (2007). Activated carbon adsorption of PAHs from vegetable oil used in soil remediation. Journal of Hazardous Materials, 143, 372–378.

    Article  CAS  Google Scholar 

  • Guarino, G., Zuzolo, D., Marziano, M., Conte, B., Baiamonte, G., Morra, L., Benotti, D., Gresia, D., Stacul, E. R., Cicchella, D., & Sciarrillo, R. (2019). Investigation and assessment for an effective approach to the reclamation of polycyclic aromatic hydrocarbon (PAHs) contaminated site: SIN Bagnoli, Italy. Scientific Reports, 9, 11522. https://doi.org/10.1038/s41598-019-48005-7

    Article  CAS  Google Scholar 

  • Guieysse, B., & Mattiasson, B. (1999). Fast remediation of coal-tar-related compounds in biofilm bioreactors. Applied Microbiology and Biotechnology, 52(4), 600–607.

    Article  CAS  Google Scholar 

  • Gunter, M. J., Divi, R. L., Kulldorff, M., Vermeulen, R., Haverkos, K. J., Kuo, M. M., Strickland, P., Poirier, M. C., Rothman, N., & Sinha, R. (2007). Leukocyte polycyclic aromatic hydrocarbon-DNA adduct formation and colorectal adenoma. Carcinogenesis, 28, 1426–1429.

    Article  CAS  Google Scholar 

  • Gupte, A., Tripathi, A., Patel, H., Rudakiya, D., & Gupte, S. (2016). Bioremediation of polycyclic aromatic hydrocarbon (PAHs): A perspective. The Open Biotechnology Journal, 10(Suppl-2, M9), 363–378.

    Article  CAS  Google Scholar 

  • Gustavsson, P., Jansson, C., & Hogstedt, C. (2013). Incidence of myocardial infarction in Swedish chimney sweeps 1991–2005: A prospective cohort study. Occupational Environmental Medicine, 70, 505–507. https://doi.org/10.1136/oemed-2013-101371

    Article  Google Scholar 

  • Haleyur, N., Shahsavari, E., Mansur, A. A., Koshlaf, E., Morrison, P. D., Osborn, A. M., & Ball, A. S. (2016). Comparison of rapid solvent extraction systems for the GC–MS/MS characterization of polycyclic aromatic hydrocarbons in aged, contaminated soil. MethodsX, 3, 364–370.

    Article  Google Scholar 

  • He, Y., Hu, X., Jiang, J., Zhang, J., & Liu, F. (2022). Remediation of PAHs contaminated industrial soils by hypochlorous acid: Performance and mechanisms. RSC Advances, 12, 10825.

    Article  CAS  Google Scholar 

  • Heitkamp, M. A., & Cerniglia, C. E. (1987). The effects of chemical structure and exposure on the microbial degradation of polycyclic aromatic hydrocarbons in freshwater and estuarine ecosystems. Environmental Toxicology and Chemistry, 6, 535–546.

    Article  CAS  Google Scholar 

  • Henner, P., Schiavon, M., Morel, J. L., & Lichtfouse, E. (1997). Polycyclic aromatic hydrocarbon (PAH) occurrence and remediation methods. Analusis, 25, M56–M59.

    CAS  Google Scholar 

  • Holme, J. A., Brinchmann, B. C., Refsnes, M., Låg, M., & Øvrevik, J. (2019). Potential role of polycyclic aromatic hydrocarbons as mediators of cardiovascular effects from combustion particles. Environmental Health. https://doi.org/10.1186/s12940-019-0514-2

    Article  Google Scholar 

  • Hu, T., Zhang, J., Xing, X., Zhan, C., Zhang, L., Liu, H., Liu, T., Zheng, J., Yao, R., & Junji, C. (2018). Seasonal variation and health risk assessment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons in a classic agglomeration industrial city, central China. Air Quality, Atmosphere & Health. https://doi.org/10.1007/s11869-018-0575-3

    Article  Google Scholar 

  • Huang, R., Tian, W., Liu, Q., Yu, H., Jin, X., Zhao, Y., Zhau, Y., & Feng, G. (2016). Enhanced biodegradation of pyrene and indeno (1, 2, 3-cd) pyrene using bacteria immobilized in cinder beads in estuarine wetlands. Marine Pollution Bulletin, 102, 128–133. https://doi.org/10.1016/j.marpolbul.2015.11.044

    Article  CAS  Google Scholar 

  • IARC (International Agency for Research in Cancer). (1990). Monographs on the evaluation of carcinogenic risks to humans, (49) (pp. 119–172). IARC, Lyon, France. Retrieved December 26, 2022 from https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Chromium-Nickel-And-Welding-1990.

  • ICMR (Indian Council of Medical Research) Bulletin. (2001). Indoor air pollution in India: A major environmental and public health concern, 31(5), New Delhi. Retrieved June, 10, 2022 from https://icmr.nic.in/bumay01.pdf.

  • IPCS (International Program on Chemical Safety). (1998). Selected non-heterocyclic polycyclic aromatic hydrocarbons. Retrieved November 20, 2022 from http://www.inchem.org/documents/ehc/ehc/ehc202.htm.

  • Jansson, C., Alderling, M., Hogstedt, C., & Gustavsson, P. (2012). Mortality among Swedish chimney sweeps (1952–2006): An extended cohort study. Occupational Environmental Medicine, 69, 41–47. https://doi.org/10.1136/oem.2010.064246

    Article  Google Scholar 

  • Jiang, L., Yuan, X., Zeng, G., Liang, J., Chen, X., Yu, H., Wang, H., Wu, Z., Zhang, J., & Xiong, T. (2018). In-situ synthesis of direct solid-state dual Z-scheme WO3/g-C3N4/Bi2O3 photocatalyst for the degradation of refractory pollutant. Applied Catalysis B Environmental, 227, 376–385.

    Article  CAS  Google Scholar 

  • Jiang, L., Yuan, X., Zeng, G., Wu, Z., Liang, J., Chen, X., Leng, L., Wang, H., & Wang, H. (2017). Metal-free efficient photocatalyst for stable visible-light photocatalytic degradation of refractory pollutant. Applied Catalysis B Environmental, 221, 715–725.

    Article  Google Scholar 

  • John, K., Ragavan, N., Pratt, M. M., Singh, P. B., Al-Buheissi, S., Matanhelia, S. S., Phillips, D. H., Poirier, M. C., & Martin, F. L. (2009). Quantification of phase I/II metabolizing enzyme gene expression and polycyclic aromatic hydrocarbon-DNA adduct levels in human prostate. Prostate, 69, 505–519.

    Article  Google Scholar 

  • Jong, W. H., Kroese, E. D., Vos, J. G., & Loveren, H. V. (1999). Detection of immunotoxicity of benzo[a]pyrene in a subacute toxicity study after oral exposure in rats. Toxicological Sciences, 50(2), 214–220.

    Article  Google Scholar 

  • Kanaly, R. A., & Harayama, S. (2000). Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. Journal of Bacteriology, 182(8), 2059–2067. https://doi.org/10.1128/jb.182.8.2059-2067.2000

    Article  CAS  Google Scholar 

  • Keith, L. H. (1979). Priority pollutants: I. A perspective view. Environmental Science & Technology Special Report. https://doi.org/10.1021/es60152a601

    Article  Google Scholar 

  • Kim, K.-H., Jahan, S. A., Kabir, E., & Brown, R. J. C. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment International, 60, 71–80.

    Article  CAS  Google Scholar 

  • Kumar, B., Tyagi, J., Verma, V. K., Gaur, R., & Sharma, C. S. (2014). Concentrations, source identification and health risk of selected priority polycyclic aromatic hydrocarbons in residential street soils. Advances in Applied Science Research, Pelagia Research Library, 5(3), 130–139.

    Google Scholar 

  • Kuppusamy, S., Palanisamy, T., Meghraj, M., Venkateswarlu, K., & Naidu, R. (2016a). In-situ remediation approaches for the management of contaminated sites: A comprehensive overview. Review on Environmental Contamination and Technology, 236, 1–115.

    CAS  Google Scholar 

  • Kuppusamy, S., Thavamani, P., Venkateswarlu, K., Lee, Y. B., Naidu, R., & Megharaj, M. (2016b). Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions. Chemosphere. https://doi.org/10.1016/j.chemosphere.2016.10.115

    Article  Google Scholar 

  • Lane, D. A. (1989). The fate of polycyclic aromatic compounds in the atmosphere and during sampling. In T. Vo-Dinh (Ed.), Chemical analysis of polycyclic aromatic compounds (pp. 31–58). Wiley.

    Google Scholar 

  • Lannerö, E., Wickman, M., & van Hage, M. (2008). Exposure to environmental tobacco smoke and sensitization in children. Thorax, 63, 172–176.

    Article  Google Scholar 

  • Lao, R. C., Thomas, R. S., Oja, H., & Dubois, L. (1973). Application of a gas chromatograph-mass spectrophotometer-data processor combination to the analysis of the polycyclic aromatic hydrocarbon content of air borne pollutant. Analytical Chemistry, 45(6), 908–915.

    Article  CAS  Google Scholar 

  • Larsen, J. C., & Larsen, P. B. (1998). Chemical carcinogens. In R. E. Hester, R. M. Harrison, J. C. Larsen, & P. B. Larsen (Eds.), Air pollution and health (pp. 33–56). The Royal Society of Chemistry.

    Google Scholar 

  • Latif, I. K., Karim, A. J., Zuki, A. B. Z., Zamri-Saad, M., Niu, J. P., & Noordin, M. M. (2010). Pulmonary modulation of benzo[a]pyrene-induced hemato- and hepatotoxicity in broilers. Poultry Science, 89(7), 1379–1388.

    Article  CAS  Google Scholar 

  • Lau, C., Fiedler, H., Hutzinger, O., Schwind, K. H., & Hosseinpour, J. (1997). Levels of selected organic compounds in materials for candle production and human exposure to candle emissions. Chemosphere, 34(5–7), 1623–1630. https://doi.org/10.1016/s0045-6535(97)00458-x

    Article  CAS  Google Scholar 

  • Lau, E. V., Gan, S., & Ng, H. K. (2010). Extraction techniques for polycyclic aromatic hydrocarbons in soils. International Journal of Analytical Chemistry. https://doi.org/10.1155/2010/398381

    Article  Google Scholar 

  • Leachi, H. F. L., Marziale, M. H. P., Martins, J. T., Aroni, P., Galdino, M. J. Q., & Ribeiro, R. P. (2020). Polycyclic aromatic hydrocarbons and development of respiratory and cardiovascular diseases in workers. Revista Brasiliera De Enfermagem, 73(3), e20180965. https://doi.org/10.1590/0034-7167-2018-0965

    Article  Google Scholar 

  • Ledakowicz, S. A., Miller, J. S., & Olejnik, D. (2014). Oxidation of PAHs in water solution by ozone combined with ultraviolet radiation. International Journal of Photoenergy, 3(1), 95–101.

    Google Scholar 

  • Lee, M. L., Novotny, M., & Bartle, K. D. (1976). Gas chromatography/mass spectrometric and nuclear magnetic resonance determination of polynuclear aromatic hydrocarbons in airborne particulates. Analytical Chemistry, 48(11), 1566–1572. https://doi.org/10.1021/ac50005a037

    Article  CAS  Google Scholar 

  • Lee, P. H., Ong, S. K., Golchin, J., & Nelson, G. L. (2001). Use of solvents to enhance PAH biodegradation of coal tar contaminated soils. Water Research, 35(6), 3941–3949.

    Article  CAS  Google Scholar 

  • Lee, S.D. & Grant, L. (1981). Health and ecological assessment of polynuclear aromatic hydrocarbons. Pathotox. Publications (pp. 364), Park Forest South, Illinois.

  • Li, C.-S., & Ro, Y.-S. (2000). Indoor characteristics of polycyclic aromatic hydrocarbons in the urban atmosphere of Taipei. Atmospheric Environment, 34(4), 611–620.

    Article  CAS  Google Scholar 

  • Li, J., Pignatello, J. J., Smets, B. F., Grasso, D., & Monserrate, E. (2005). Bench-scale evaluation of in-situ bioremediation strategies for soil at a former manufactured gas plant site. Environmental Toxicology & Chemistry, 24(3), 741–749. https://doi.org/10.1897/04-247r.1

    Article  CAS  Google Scholar 

  • Liu, D., Xu, Y., Chaemfa, C., Tian, C., Li, J., Luo, C., & Zhang, G. (2014). Concentrations, seasonal variations, and outflow of atmospheric polycyclic aromatic hydrocarbons (PAHs) at Ningbo site, Eastern China. Atmospheric Pollution Research, 5, 203–209.

    Article  Google Scholar 

  • Lors, C., Damidot, D., Ponge, J.-F., & Périé, F. (2012). Comparison of a bioremediation process of PAHs in a PAH-contaminated soil at field and laboratory scales. Environmental Pollution, 165, 11–17. https://doi.org/10.1016/j.envpol.2012.02.004

    Article  CAS  Google Scholar 

  • Lors, C., & Mossmann, J.-R. (2005). Characteristics of PAHs intrinsic degradation in two coke factory soils. Polycyclic Aromatic Compounds, 25(1), 67–85. https://doi.org/10.1080/10406630590892548

    Article  CAS  Google Scholar 

  • Lu, P.-Y., Metcalf, R. L., Plummer, N., & Mandel, D. (1977). The environmental fate of three carcinogens: Benzo-(a)-pyrene, benzidine, and vinyl chloride evaluated in laboratory model ecosystems. Archives of Environmental Contamination & Toxicology, 6, 129–142. https://doi.org/10.1007/BF02097756

    Article  CAS  Google Scholar 

  • Mallah, M. A., Changxing, L., Mallah, M. A., Noreen, S., Liu, Y., Saeed, M., Xi, H., Ahmed, B., Feng, F., Mirjat, A. A., Wang, W., Jabar, A., Naveed, M., Li, J.-H., & Zhang, Q. (2022). Polycyclic aromatic hydrocarbon and its effects on human health: An over view. Chemosphere, 296, 133948. https://doi.org/10.1016/j.chemosphere.133948

    Article  CAS  Google Scholar 

  • Mallah, M. A., Mallah, M. A., Liu, Y., Xi, H., Wang, W., Feng, F., & Zhang, Q. (2021). Relationship between polycyclic aromatic hydrocarbons and cardiovascular diseases: A systematic review. Frontiers in Public Health, 9, 763706. https://doi.org/10.3389/fpubh.2021.763706

    Article  Google Scholar 

  • Mcclean, M. D., Osborn, L. V., Snawder, J. E., Olsen, L. D., Kriech, A. J., Sjödin, A., Li, Z., Smith, J. P., Sammons, D. L., Herrick, R. F., & Cavallari, J. M. (2012). Using urinary biomarkers of polycyclic aromatic compound exposure to guide exposure-reduction strategies among asphalt paving workers. The Annals of Occupational Hygiene, 56(9), 1013–1024. https://doi.org/10.1093/annhyg/mes058

    Article  CAS  Google Scholar 

  • Mcclean, M. D., Rinehart, R. D., Ngo, L., & Eisen, E. A. (2004). Urinary 1-hydroxypyrene and polycyclic aromatic hydrocarbon exposure among asphalt paving workers. The Annals of Occupational Hygiene, 48(6), 565–578.

    CAS  Google Scholar 

  • Mehetre, G. T., Dastager, S. G., & Dharne, M. S. (2019). Biodegradation of mixed polycyclic aromatic hydrocarbons by pure and mixed cultures of biosurfactant producing thermophilic and thermos-tolerant bacteria. Science of the Total Environment, 679, 52–60. https://doi.org/10.1016/j.scitotenv.2019.04.376

    Article  CAS  Google Scholar 

  • Mirzaee, E. (2022). Removal of Polycyclic Aromatic Hydrocarbons (PAHs) from contaminated media using magnetized activated carbon composites. Ph.D. thesis. Dept. of Civil Engineering, University of Toronto, Ontario, Canada. Retrieved 27 December, 2022 from https://ruor.uottawa.ca/bitstream/10393/43621/1/Mirzaee_Ehsan_2022_Thesis.pdf.

  • Mitra, S., & Ray, B. (1995). Patterns and sources of polycyclic aromatic hydrocarbons and their derivatives in indoor air. Atmospheric Environment, 29(22), 3345–3356. https://doi.org/10.1016/1352-2310(95)00214-J

    Article  CAS  Google Scholar 

  • Miura, K., Shimada, K., Sugiyama, T., Sato, K., Takami, A., Chan, C. K., Kim, I. S., Kim, Y. P., Lin, N.-H., & Hatakeyama, S. (2019). Seasonal and annual changes in PAH concentrations in a remote site in the Pacific Ocean. Scientific Reports. https://doi.org/10.1038/s41598-019-47409-9

    Article  Google Scholar 

  • Moore, J. W., & Ramamoorty, S. (1984). Aromatic hydrocarbon polycyclic. In: Organic chemicals in natural waters: Applied monitoring and impact assessment (pp. 67–87). New York: Springer.

  • Morelli, I. S., Saparrat, M. C. N., Panno, M. T. D., Coppotelli, B. M., & Arrambari, A. (2013). Bioremediation of PAH-contaminated soil by Fungi. In E. M. Goltapeh, Y. R. Danesh, & A. Varma (Eds.), Fungi as bioremediators. Soil biology series (Vol. 32, pp. 159–179). Berlin: Springer.

    Chapter  Google Scholar 

  • Morville, S., Delhomme, O., & Millet, M. (2011). Seasonal and diurnal variations of atmospheric PAH concentrations between rural, suburban, and urban areas. Atmospheric Pollution Research, 2, 366–373.

  • Mueller, J. G., Devereux, R., Santavy, D. L., Lantz, S. E., Willis, S. G., & Pritchard, P. H. (1997). Phylogenetic and physiological comparisons of PAH-degrading bacteria from geographically diverse soils. Anton Van Leeuwenhoek, 71, 329–343. https://doi.org/10.1023/A:1000277008064

    Article  CAS  Google Scholar 

  • Navarro, R. R., Ichikawa, H., Morimoto, K., & Tatsumi, K. (2009). Enhancing the release and plant uptake of PAHs with a water-soluble purine alkaloid. Chemosphere, 76(8), 1109–1113. https://doi.org/10.1016/j.chemosphere.2009.04.021

    Article  CAS  Google Scholar 

  • Neff, J.M. (1980). Polycyclic aromatic hydrocarbons in the aquatic environment. sources, fate, and biological effects. Biological Conservation, 18(1).

  • NIOSH (National Institute of Occupational Safety & Health). (2010). Centers for diseases control and prevention (CDC), coal tar pitch volatiles, USA. Retrieved December 28, 2022 from https://www.cdc.gov/niosh/idlh/65996932.html (updated 2014).

  • NOAA (National Oceanic & Atmospheric Administration). (1999). NOAA screening quick reference tables (SQuiRTs), HAZMAT REPORT 99-1 and updated Feb 2004. Coastal Protection and Restoration Division, Seattle, Washington. Retrieved December 26, 2022 from https://repository.library.noaa.gov/view/noaa/8310.

  • NRCC (National Research Council of Canada). (1983). Polycyclic aromatic hydrocarbons in the aquatic environment: Formation, sources, fate and effects on aquatic biota. Report No. 18981. 209. Retrieved December 20, 2022 from https://www.worldcat.org/title/polycyclic-aromatic-hydrocarbons-in-the-aquatic-environment-formation-sources-fate-and-effects-on-aquatic-biota/oclc/10894672.

  • Ojha, N., Mandal, S. K., & Das, N. (2019). Enhanced degradation of indeno (1, 2, 3-cd) pyrene using Candida tropicalis NN4 in presence of iron nanoparticles and produced biosurfactant: A statistical approach. 3 Biotech. https://doi.org/10.1007/s13205-019-1623-x

    Article  Google Scholar 

  • Okere, U. V., & Semple, K. T. (2012). Biodegradation of PAHs in pristine soils from different climatic regions. Journal of Bioremediation & Biodegradation, S1, 006. https://doi.org/10.4172/2155-6199.S1-006

    Article  Google Scholar 

  • Olea, F. E. S. (2020). Towards the development of a sustainable low-cost bio-active amendment for the in-situ remediation of urban brownfield top soil contaminated with Lead (Pb) and Polycyclic aromatic hydrocarbons (PAH). Scottish Universities Environmental Research Centre College of Science and Engineering, University of Glasgow, UK. Retrieved July 23, 2020 from https://theses.gla.ac.uk/.

  • Olsson, A. C., Fevotte, J., Fletcher, T., Cassidy, A., Mannetje, A., Zaridze, D., Szeszenia-Dabrowsks, N., Rudnai, P., Lissowska, J., Fabianova, E., Mates, D., Bencko, V., Foretova, L., Janout, V., Brennan, P., & Bofetta, P. (2010). Occupational exposure to polycyclic aromatic hydrocarbons and lung cancer risk: A multicenter study in Europe. Occupational & Environmental Medicine, 67(2), 98–103. https://doi.org/10.1136/oem.2009.046680

    Article  CAS  Google Scholar 

  • Oluseyi, T., Olayinka, K., Alo, B., & Smith, R. M. (2011). Comparison of extraction and clean-up techniques for the determination of polycyclic aromatic hydrocarbons in contaminated soil samples. African Journal of Environmental Science and Technology, 5(7), 482–493.

    CAS  Google Scholar 

  • Pandey, P., Patel, D. K., Khan, A. H., Barman, S. C., Murthy, R. C., & Kisku, G. C. (2013). Temporal distribution of fine particulates (PM2.5, PM10), potentially toxic metals, PAHs and Metal-bound carcinogenic risk in the population of Lucknow City, India. Journal of Environment Science & Health, Part A Toxic/hazardous Substances and Environmental Engineering, 48(7), 730–745. https://doi.org/10.1080/10934529.2013.744613

    Article  CAS  Google Scholar 

  • Parrish, Z. D., Banks, M. K., & Schwab, A. P. (2005). Effect of root death and decay on dissipation of polycyclic aromatic hydrocarbons in the rhizosphere of yellow sweet clover and tall fescue. Journal Environmental Quality, 34(1), 207–216. https://doi.org/10.2134/jeq2005.0207

    Article  CAS  Google Scholar 

  • Patel, A. B., Mahala, K., Jain, K., & Madamwar, D. (2018). Development of mixed bacterial cultures DAK11 capable for degrading mixture of polycyclic aromatic hydrocarbons (PAHs). Bioresource Technology, 253, 288–296. https://doi.org/10.1016/j.biortech.2018.01.049

    Article  CAS  Google Scholar 

  • Patel, A. B., Shaikh, S., Jain, K. R., Desai, C., & Madamwar, D. (2020). Polycyclic aromatic hydrocarbons: Sources, toxicity, and remediation approaches. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2020.562813

    Article  Google Scholar 

  • Peng, X., Xu, P. F., Du, H., Tang, Y., Meng, Y., Yuan, I., & Sheng, I. P. (2018). Degradation of polycyclic aromatic hydrocarbons: A review. Applied Ecology and Environmental Research, 16(5), 6419˗6440. https://doi.org/10.15666/aeer/1605_64196440.

  • Pérez, M., Torrades, F., Domènech, X., & Peral, J. (2002). Fenton and photo-fenton oxidation of textile effluents. Water Research, 36(11), 2703.

    Article  Google Scholar 

  • Phillips, D. H. (1983). Fifty years of benzo[a]pyrene. Nature, 303, 468–472. https://doi.org/10.1038/303468a0

    Article  CAS  Google Scholar 

  • Pradhan, S. P., Conrad, J. R., Paterek, J. R., & Srivastava, V. J. (1998). Potential of Phytoremediation for treatment of PAHs in soil at MGP sites. Soil and Sediment Contamination-an International Journal, 7(4), 467–480. https://doi.org/10.1080/10588339891334401

    Article  CAS  Google Scholar 

  • Raiyani, C. V., Jani, J. P., Desai, N. M., Shah, S. H., Shah, P. G., & Kashyap, S. K. (1993). Assessment of indoor exposure to polycyclic aromatic hydrocarbons for urban poor using various types of cooking fuels. Bulletin of Environmental Contamination & Toxicology. https://doi.org/10.1007/BF00194673

    Article  Google Scholar 

  • Rajput, N., & Lakhani, A. (2010). Measurements of polycyclic aromatic hydrocarbons in an urban atmosphere of Agra, India. Atmósfera, 23(2), 165–183.

    CAS  Google Scholar 

  • Ramos, D. T., de Silva, M. L., Carlos, W. N., Alvarez, P. J. J., & Corseuil, H. X. (2014). Assessment of microbial communities associated with fermentative-methanogenic biodegradation of aromatic hydrocarbons in groundwater contaminated with a bio-diesel blend (B20). Biodegradation, 25(5), 681–689. https://doi.org/10.1007/s10532-014-9691-4

    Article  CAS  Google Scholar 

  • Ranjan, R. K., Routh, J., Ramanathan, A. L., & Klump, J. (2012). Polycyclic aromatic hydrocarbons finger prints in the Pichavaram mangrove-estuarine sediments, southeastern India. Organic Geochemistry, 53, 88–94. https://doi.org/10.1016/j.orggeochem.2012.08.007

    Article  CAS  Google Scholar 

  • Renner, R. (1999). EPA to strengthen persistent, bio-accumulative, and toxic pollutant controls-mercury first to be targeted. Environmental Science & Technology, 33(3), 62A. https://doi.org/10.1021/es992653p

    Article  CAS  Google Scholar 

  • Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. T. (1993). Sources of fine organic aerosol. 5. Natural-gas home appliances. Environmental Science & Technology, 27(13), 2736–2744. https://doi.org/10.1021/es00049a012

    Article  CAS  Google Scholar 

  • Rubio-Clemente, A., Torres-Palma, R. A., & Peñuela, G. A. (2014). Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: A review. Science of the Total Environment, 478(8), 201–225.

    Article  CAS  Google Scholar 

  • Saksena, S. (1999). Integrated exposure assessment of airborne pollutants in an urban community using biomass and kerosene cooking fuel. Ph.D. Thesis, Centre for Environmental Science and Engineering, Indian Institute of Technology, Bombay, 220.

  • Saparrat, M. C. N., Morelli, I. S., Panno, M. T. D., Coppotelli, B. M., & Arrambari, A. (2013). Bioremediation of PAH Contaminated soil by fungi. In E. M. Goltapech, Y. R. Danesh, & A. Varma (Eds.), Fungi as bioremediators. Soil biology series (Vol. 32, pp. 159–179). Berlin: Springer.

    Chapter  Google Scholar 

  • Satouh, S., Martín, J., Orta, M. D. M., Medina-Carrasco, S., Messikh, N., Bougdah, N., Santos, J. L., Aparicio, I., & Alonso, E. (2021). Adsorption of polycyclic aromatic hydrocarbons by natural, synthetic and modified clays. Environments, 8, 124. https://doi.org/10.3390/environments8110124

    Article  Google Scholar 

  • Schneider, J., Grosser, R., Jayasimhulu, K., Xue, W., & Warshawsky, D. (1996). Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Applied & Environmental Microbiology, 62(4), 13–19. https://doi.org/10.1128/aem.62.4.1491-1491d.1996

    Article  CAS  Google Scholar 

  • Sharma, A., Singh, S. B., Sharma, R., Chaudhary, P., Pandey, A. K., Ansari, R., Vasudevan, V., Arora, A., Singh, S., Saha, S., & Nain, L. (2016). Enhanced biodegradation of PAHs by microbial consortium with different amendment and their fate in in-situ condition. Journal of Environment Management, 181, 728–736. https://doi.org/10.1016/j.jenvman.2016.08.024

    Article  CAS  Google Scholar 

  • Singh, D. P., Gadi, R., Mandal, T. K., Saud, T., Saxena, M., & Sharma, S. K. (2013). Emissions estimates of PAH from biomass fuels used in rural sector of Indo-Gangetic Plains of India. Atmospheric Environment, 68, 120–126. https://doi.org/10.1016/j.atmosenv.2012.11.042

    Article  CAS  Google Scholar 

  • Skupinska, K., Misiewicz, I., & Kasprzycka-Guttman, T. (2004). Polycyclic aromatic hydrocarbons, physicochemical properties, environmental, appearance and impact on living organisms. Acta Poloniae Pharmaceutica, 61(3), 233–240.

    CAS  Google Scholar 

  • Smith, J. R., Nakles, D. V., Sherman, D. F., Neuhauser, E. F., & Loehr, R. C. (1989). Environmental fate mechanisms influencing biological degradation of coal-tar derived polynuclear aromatic hydrocarbons in soil systems. In the third international conference on new frontiers for hazardous waste management (pp. 397405). USEPA, Washington, DC.

  • Snousy, M. G., Khalil, M. M., Abdel-Moghny, T., & El-sayed, E. (2016). An overview on the organic contaminants. SDRP Journal of Earth Sciences & Environmental Studies, 2(1), 29–38. https://doi.org/10.25177/JESES.1.2.1

    Article  Google Scholar 

  • Sobus, J. R., Mc Clean, M. D., Herrick, R. F., Waidyanatha, S., Nylander-French, L. A., Kupper, L. L., & Rappaport, S. M. (2009). Comparing urinary biomarkers of airborne and dermal exposure to polycyclic aromatic compounds in asphalt-exposed workers. The Annals of Occupational Hygiene, 53(6), 561–571. https://doi.org/10.1093/annhyg/mep042

    Article  CAS  Google Scholar 

  • Srivastava, V. J., Kelley, R. L., Paterek, J. R., Hayes, T. D., Nelson, G. L., & Golchin, J. (1994). A field-scale demonstration of a novel bioremediation process for MGP sites. Applied Biochemistry & Biotechnology, 45–46, 741–756. https://doi.org/10.1007/BF02941846

    Article  Google Scholar 

  • Stroomberg, G. J., Ariese, F., van Gestel, C. A., van Hattum, B., Velthorst, N. H., & van Straalen, N. M. (2003). Pyrene biotransformation products as biomarkers of polycyclic aromatic hydrocarbon exposure in terrestrial Isopoda: Concentration-response relationship, and field study in a contaminated forest. Environmental Toxicology & Chemistry, 22(1), 224–231.

    CAS  Google Scholar 

  • Subashchandrabose, S. R., Venkateswarlu, K., Venkidusamy, K., Palanisami, T., Naidu, R., & Megharaj, M. (2019). Bioremediation of soil long-term contaminated with PAHs by algal- bacterial synergy of Chlorella sp. MM3 and Rhodococcus wratislaviensis strain 9 in slurry phase. Science of the Total Environment, 659, 724–731. https://doi.org/10.1016/j.scitotenv.2018.12.453

    Article  CAS  Google Scholar 

  • Sukhdhane, K. S., Pandey, P. K., Vennila, A., Purushothaman, C. S., & Ajima, M. N. (2015). Sources, distribution, and risk assessment of polycyclic aromatic hydrocarbons in the mangrove sediments of Thane Creek, Maharashtra, India. Environmental Monitoring & Assessment, 187(5), 274. https://doi.org/10.1007/s10661-015-4470-1

    Article  CAS  Google Scholar 

  • Thacharodi, A., Hassan, S., Singh, T., Mandal, R., Chinnadurai, J., Khan, H. A., Hussain, M. A., Brindhadevi, K., & Pugazhendhi, A. (2023). Bioremediation of polycyclic aromatic hydrocarbons: An updated microbiological review. Chemosphere, 328, 138498. https://doi.org/10.1016/j.chemosphere.2023.138498

    Article  CAS  Google Scholar 

  • Torrent laboratory Inc. (2022). Methods for remediation of PAHs from contaminated soil. Retrieved December 26, 2022 from https://torrentlab.commethods-for-remediation-of-pahs-from-contaminated-soil.

  • Twiss, M. R., Granier, L., Lafrance, P., & Campbell, P. G. C. (1999). Bioaccumulation of 2,2′,5,5′-tetrachlorobiphenyl and pyrene by picoplankton (Synechococcus leopoliensis- Cyanophyceae): Influence of variable humic acid concentrations & pH. Environmental Toxicology & Chemistry, 18(9), 2063–2069. https://doi.org/10.1002/etc.5620180926

    Article  CAS  Google Scholar 

  • Unwin, J., Cocker, J., Scobbie, E., & Chambers, H. (2006). An assessment of occupational exposure to polycyclic aromatic hydrocarbons in the UK. The Annals of Occupational Hygiene, 50(4), 395–403.

    CAS  Google Scholar 

  • USEPA (United States Environment Protection Agency). (1982). Appendix A: Priority pollutants. Federal Register. 40 CFR, part 432. Retrieved December 26, 2022 from https://www.epa.gov/sites/default/files/2015-09/documents/priority-pollutant-list-epa.pdf.

  • USEPA (United States Environment Protection Agency). (2000). Methodology for deriving ambient water quality criteria for the protection of human health. Technical Support Document, Volume 1: Risk Assessment. Retrieved December 26, 2022 from https://www.epa.gov/sites/default/files/2018-12/documents/methodology-wqc-protection-hh-2000-volume1.pdf.

  • USEPA (United States Environment Protection Agency). (2004). National coastal condition report II. Office of Research and Development/Office of Water. EPA-620/R-03/002. Retrieved December 26, 2022 from https://www.epa.gov/sites/default/files/2014-10/documents/nccriicomplete.pdf.

  • USEPA (United States Environment Protection Agency). (2008). Polycyclic aromatic hydrocarbons (PAHs). Retrieved December 26, 2022 from https://www.epa.gov/osw/hazard/wastemin/priority.htm.

  • USEPA (United States Environment Protection Agency). (2022). Human health risk assessment. Retrieved December 26, 2022 from https://www.epa.gov/risk/human-health-risk-assessment.

  • Valerio, F., & Pala, M. (1991). Effects of temperature on the concentration of polycyclic aromatic hydrocarbons (PAHs) adsorbed onto airborne particulates. Fresenius Journal of Analytical Chemistry, 339, 777–779.

    Article  CAS  Google Scholar 

  • Van der Meer, J. R., de Vos, W. M., Harayama, S., & Zehnder, A. J. B. (1992). Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiological Reviews, 56(4), 677–694.

    Article  Google Scholar 

  • Venkataraman, C., Negi, G., Sardar, S. B., & Rastogi, R. (2002). Size distribution of polycyclic aromatic hydrocarbons in aerosol emissions from biofuel combustion. Journal of Aerosol Science, 33(3), 503–518. https://doi.org/10.1016/S0021-8502(01)00185-9

    Article  CAS  Google Scholar 

  • Viglianti, C., Hanna, K., de Brauer, C., & Germain, P. (2006). Removal of polycyclic aromatic hydrocarbons from aged-contaminated soil using cyclodextrins: Experimental study. Environmental Pollution, 140(3), 427–435. https://doi.org/10.1016/j.envpol.2005.08.002

    Article  CAS  Google Scholar 

  • Wang, C., Liu, H., Li, J., & Sun, H. (2014). Degradation of PAHs in soil by Lasiodiplodia theobromae and enhanced benzo [a] pyrene degradation by the addition of Tween-80. Environmental Science & Pollution Research, 21, 10614–10625. https://doi.org/10.1007/s11356-014-3050-1

    Article  CAS  Google Scholar 

  • Wang, C., Yu, D., Shi, W., Jiao, K., Wu, B., & Xu, H. (2016). Application of spent mushroom (Lentinula edodes) substrate and acclimated sewage sludge on the bioremediation of polycyclic aromatic hydrocarbon polluted soil. RSC Advances, 6(43), 1–40. https://doi.org/10.1039/C6RA05457A

    Article  Google Scholar 

  • Wang, X. C., & Zhao, H. M. (2007). Uptake and biodegradation of polycyclic aromatic hydrocarbons by marine seaweed. Journal of Coastal Research, Special Issue, 50, 1056–1061.

    Google Scholar 

  • Wania, F., Haugen, J. E., Lei, Y. D., & Mackay, D. (1998). Temperature dependence of atmospheric concentrations of semi-volatile organic compounds. Environmental Science & Technology, 32, 1013–1021.

    Article  CAS  Google Scholar 

  • Wells, P. G., McCallum, G. P., Lam, K. C., Henderson, J. T., & Ondovcik, S. L. (2010). Oxidative DNA damage and repair in teratogenesis and neurodevelopmental deficits. Birth Defects Research Part C- Embryo Today, 90(2), 103–109. https://doi.org/10.1002/bdrc.20177

    Article  CAS  Google Scholar 

  • Wilson, S. C., & Jones, K. C. (1993). Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): A review. Environmental Pollution, 81(3), 229–249. https://doi.org/10.1016/0269-7491(93)90206-4

    Article  CAS  Google Scholar 

  • Wołowiec, M., Muir, B., Zięeba, K., Bajda, T., Kowalik, M., & Franus, W. (2017). Experimental study on the removal of VOCs and PAHs by zeolites and surfactant-modified zeolites. Energy & Fuels. https://doi.org/10.1021/acs.energyfuels.7b01124

    Article  Google Scholar 

  • Woo, C. S., D’silva, A. P., Fassel, V. A., & Oestreich, G. J. (1978). Polynuclear aromatic hydrocarbons in coal-identification by their X-ray excited optical luminescence. Environment Science & Technology, 12(2), 173–174. https://doi.org/10.1021/es60138a003

    Article  CAS  Google Scholar 

  • Woo, O. T., Chung, W. K., Wong, K. H., Chow, A. T., & Wong, P. K. (2009). Photocatalytic oxidation of polycyclic aromatic hydrocarbons: Intermediates identification and toxicity testing. Journal of Hazardous Materials, 168(2), 1192–1199.

    Article  CAS  Google Scholar 

  • Wu, J., Gong, Z., Zheng, L., Yi, Y., Jin, J., Li, X., & Li, P. (2010). Removal of high concentrations of polycyclic aromatic hydrocarbons from contaminated soil by biodiesel. Frontiers of Environmental Science & Engineering in China, 4(4), 387–394. https://doi.org/10.1007/s11783-010-0269-z

    Article  CAS  Google Scholar 

  • Yang, X., Li, E., Liu, F., & Xu, M. (2020). Interactions of PAH-degradation and nitrate-/sulfate-reducing assemblages in anaerobic sediment microbial community. Journal of Hazardous Materials, 388, 122068. https://doi.org/10.1016/j.jhazmat.2020.122068

    Article  CAS  Google Scholar 

  • Yuan, S. Y., Wei, S. H., & Chang, B. V. (2000). Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere, 41(9), 1463–1468. https://doi.org/10.1016/s0045-6535(99)00522-6

    Article  CAS  Google Scholar 

  • Zafra, G., & Cortés-Espinosa, D. V. (2015). Biodegradation of polycyclic aromatic hydrocarbons by Trichoderma species: A mini review. Environmental Science & Pollution Research, 22(24), 19426–19433. https://doi.org/10.1007/s11356-015-5602-4

    Article  CAS  Google Scholar 

  • Zander, M. (1983). Physical and chemical properties of polycyclic aromatic hydrocarbons. In A. Bjørseth (Ed.), Handbook of polycyclic aromatic hydrocarbons (pp. 1–26). Marcel Dekker, Inc.

    Google Scholar 

  • Zelinkova, Z., & Wenzl, T. (2015). The Occurrence of 16 EPA PAHs in food—A review. Polycyclic Aromatic Compounds, 35(2), 1–37. https://doi.org/10.1080/10406638.2014.918550

    Article  CAS  Google Scholar 

  • Zheng, Z., & Obbard, J. P. (2002). Polycyclic aromatic hydrocarbon removal from soil by surfactant solubilization & Phanerochaete chrysosporium oxidation. Journal of Environmental Quality, 31(6), 1842–1847. https://doi.org/10.2134/jeq2002.1842

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Director, CSIR-Central Institute of Mining and Fuel Research, Barwa road, Dhanbad-826015 (Jharkhand), India for giving permission to publish this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Singh.

Ethics declarations

Competing interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.K., Singh, R.K. An overview on remediation technologies for polycyclic aromatic hydrocarbons in contaminated lands: a critical approach. Environ Dev Sustain (2023). https://doi.org/10.1007/s10668-023-04020-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-023-04020-3

Keywords

Navigation