Skip to main content

Advertisement

Log in

Characterization of bacteria isolated from palaeoproterozoic metasediments for sequestration of carbon dioxide and formation of calcium carbonate

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Bacterial community of palaeoproterozoic metasediments was enriched in the chemostat in the presence of different concentrations of NaHCO3. Six bacterial isolates were isolated from the chemostat on nutrient agar plates on the basis of distinct morphology. Denaturing gradient gel electrophoresis (DGGE) proved the presence of six operational taxonomic units (OTUs) at 50 and 100 mM NaHCO3. The OTU was reduced to three and one at enrichment concentration of 150 and 200 mM NaHCO3 respectively. These six isolates were tested for sequestration of carbon dioxide by 14C metabolic labeling of NaH14CO3. Among the six isolates, one of the bacterium showed better potency to fix radiolabeled NaH14CO3. The isolate (ISTD04) was identified as Serratia sp. by 16S ribosomal RNA (16S rRNA) sequence analysis and was found to be same as the DGGE OTU sequence at 200-mM NaHCO3 concentration. The bacterium was tested for product formation in form of calcite crystals in presence of 5 % CO2. Scanning electron microscopy (SEM) of product formed by the bacterium revealed defined faceted rhombohedral structure which resembled calcite and vaterite phases of the crystal. Formation of calcium carbonate crystals was further confirmed by Fourier transform infrared (FTIR) spectroscopy as carbonate group showing strong vibration at 1,456 cm−1. Major calcite phase diffraction peaks were determined by X-ray diffraction (XRD) analysis, and energy-dispersive X-ray (EDX) analysis showed the presence of CaO (72 %) and carbon (18 %). Bacterium use bicarbonate as carbon source for their growth as well as by-product formation in form of calcite shows carbon circulation and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achal V, Mukherjee A, Basu PC, Reddy MS (2009) Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J Ind Microbiol Biotechnol 36:981–988

    Article  CAS  Google Scholar 

  • Alonso-Sáez L, Galand PE, Casamayor EO, Pedrós-Alió C, Bertilsson S (2010) High bicarbonate assimilation in the dark by Arctic bacteria. ISME J 4:1581–1590

    Article  Google Scholar 

  • Bond GM, Stringer J, Brandvold DK, Simsek FA, Medina MG, Egeland G (2001) Development of integrated system for biomimetic CO2 sequestration using the enzyme carbonic anhydrase. Energy Fuel 15:309–316

    Article  CAS  Google Scholar 

  • Braissant O, Cailleau G, Dupraz C, Verrecchia P (2003) Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of exopolysaccharides and amino acids. J Sediment Res 73:485–490

    Article  CAS  Google Scholar 

  • Cacchio P, Ercole C, Cappuccio G, Lepidi A (2003) Calcium carbonate precipitation by bacterial strains isolated from a limestone cave and from a loamy soil. Geomicrobiol J 20:85–98

    Article  CAS  Google Scholar 

  • Cannon GC, Heinhorst S, Kerfeld CA (2010) Carboxysomal carbonic anhydrase: structure and role in microbial CO2 fixation. Biochem Biophys Acta 1804:382–392

    CAS  Google Scholar 

  • De Muynck W, Verbeken K, De Belie N, Verstraete W (2010) Influence of the calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecol Eng 36:99–111

    Article  Google Scholar 

  • Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Cont Shelf Res 20:1257–1273

    Article  Google Scholar 

  • Del Moral AE, Roldan J, Navarro M, Monteoliva-Sanchez, Ramos-Cormenzana A (1987) Formation of calcium carbonate crystals by moderately halophilic bacteria. Geomicrobiol J 5:79–87

  • Drake F (2000) Global warming, the Science of climate changes. Oxford University Press, New York

    Google Scholar 

  • Dupraz S, Parmentier M, Menez B, Guyot F (2009a) Experimental and numerical modeling of bacterially induced pH increase and calcite precipitation in saline aquifers. Chem Geol 265:44–53

    Article  CAS  Google Scholar 

  • Dupraz S, Ménez B, Gouze P, Leprovost R, Bénézeth P, Pokrovsky OS, Guyot F (2009b) Experimental approach of CO2 biomineralization in deep saline aquifers. Chem Geol 265:54–62

    Article  CAS  Google Scholar 

  • Ehrlich HL (2002) Geomicrobiology, 4th edn. Marcell Dekker, New York

    Google Scholar 

  • Ensign SA, Small FJ, Allen JR, Sluis MK (1998) New roles for CO2 in the microbial metabolism of aliphatic epoxides and ketones. Arch Microbiol 169:179–187

    Article  CAS  Google Scholar 

  • Ferrer MR, Quevedo-Sarmiento J, Rivadeneyra MA, Bejar V, Delgado G, Ramos-Cormenzana A (1988) Calcium carbonate precipitation by two groups of moderately halophilic microorganisms at different temperatures and salt concentrations. Curr Microbiol 17:221–227

    Article  CAS  Google Scholar 

  • Hammes F, Verstraete W (2002) Key roles of pH and calcium metabolism in microbial carbonate precipitation. Environ Sci Biotechnol 1:3–7

    Article  CAS  Google Scholar 

  • Holland IB, Jones HE, Cambell AK, Jacq A (1999) An assessment of the role of intracellular free Ca2+ in E. coli. Biochimie 81:901–907

    Article  CAS  Google Scholar 

  • Jaiswal PK, Kohli S, Gopal M, Thakur IS (2011) Isolation and characterization of alkalotolerant Pseudomonas sp. strain ISTDF1 for degradation of dibenzofuran. J Ind Microbiol Biotechnol 38:503–511

    Article  CAS  Google Scholar 

  • Kaplan A, Reinhold L (1999) CO2 concentrating mechanisms in photosynthetic microorganisms. Annu Rev Plant Physiol Plant Mol Biol 50:539–559

    Article  CAS  Google Scholar 

  • Knorre H, Krumbein KE (2000) Bacterial calcification. In: Riding EE, Awramik SM (eds) Microbial Sediments. Springer–Verlag, Berlin, pp 25–31

    Chapter  Google Scholar 

  • Kock AL (1970) Turbidity measurement of bacterial culture in some available commercial instruments. Anal Biochem 38:252–259

    Article  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  Google Scholar 

  • Kusian B, Sultemeyer D, Bowien B (2002) Carbonic anhydrase is essential for growth of Ralstonia eutropha at ambient CO2 concentrations. J Bacteriol 184:5018–5026

    Article  CAS  Google Scholar 

  • Lavalleur HJ, Colwell FS (2013) Microbial characterization of basalt formation waters targeted for geological carbon sequestration. FEMS Microbiol Ecol 85:62–73

    Article  Google Scholar 

  • López-Moreno A, Sepúlveda-Sánchez JD, Alonso Guzmán EMM, Borgne SL (2014) Calcium carbonate precipitation by heterotrophic bacteria isolated from biofilms formed on deteriorated ignimbrite stones: influence of calcium on EPS production and biofilm formation by these isolates. Biofouling 30:547–560

    Article  Google Scholar 

  • Lynch VH, Calvin M (1952) Carbondioxide fixation by microorganism. J Bacteriol 63:525–531

    CAS  Google Scholar 

  • Mc Swain BS, Irvine RL, Hausner M, Wilderer PA (2005) Composition and distribution of extracellular polymeric substances in the aerobic flocs and granular sludge. Appl Environ Microbiol 71:1051–1057

    Article  CAS  Google Scholar 

  • Miltner A, Kopinke FD, Kindler R, Selesi D, Hartmann A, Kästner M (2005) Non-phototrophic CO2 fixation by soil microorganisms. Plant Soil 269: 193–203

  • Muller WEG, Schroder CH, Schlossmacher U, Neufurth M, Geurtsen W, Korzhev M, Wang X (2013) The enzyme carbonic anhydrase as an integral component of biogenic Ca-carbonate formation in sponge spicules. FEBS Open Biol 3:357–362

    Article  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S ribosomal RNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Norris V, Grant S, Freestone P, Canvin J, Sheikh FN, Toth I, Trinei M, Modha K, Norman N (1996) Calcium signalling in bacteria. J Bacteriol 178:3677–3682

    CAS  Google Scholar 

  • Polz MF, Cavanaugh CM (1998) Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 64:3724–3730

    CAS  Google Scholar 

  • Portillo MC, Saiz-Jimenez C, Gonzalez JM (2009) Molecular characterization of total and metabolically active bacterial communities of “white colonizations” in the Altamira Cave. Spain Res Microbiol 160:41–47

    Article  CAS  Google Scholar 

  • Qian C, Wang R, Cheng L, Wang J (2010) Theory of microbial carbonate precipitation and its application in restoration of cement-based materials defects. Chin J Chem 28:847–857

    Article  CAS  Google Scholar 

  • Rivadeneyra MA, Parraga J, Delgado R, Ramos-Cormenzana A, Delgado G (2004) Biomineralization of carbonates by Halobacillus trueperi in solid and in liquid media with different salinities. FEMS Microbiol Ecol 48:39–46

    Article  CAS  Google Scholar 

  • Ruby EG, Wirsen CO, Jannasch HW (1981) Chemolithoautotrophic sulfur-oxidizing bacteria from the Galapagos Rift hydrothermal vents. Appl Environ Microbiol 42:317–342

    CAS  Google Scholar 

  • Sahni SK, Jaiswal PK, Kaushik P, Thakur IS (2011) Characterization of alkalotolerant bacterial community by 16S rDNA-based denaturing gradient gel electrophoresis method for degradation of dibenzofuran in soil microcosm. Int Biodeterior Biodegrad 65:1079–1086

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sato M, Matsuda S (1969) Structure of vaterite and infrared spectra. Z Krist 129:405–410

    Article  CAS  Google Scholar 

  • Schmitt J, Flemming HC (1998) FTIR-spectroscopy in microbial and material analysis. Int Biodeterior Biodegrad 41:1–11

    Article  CAS  Google Scholar 

  • Srivastava S, Thakur IS (2012) Biosorption and biotransformation of chromium by Serratia sp. isolated from tannery effluent. Environ Technol 33:113–122

    Article  CAS  Google Scholar 

  • Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO3. Soil Biol Biochem 31:1563–1571

    Article  CAS  Google Scholar 

  • Thakur IS (1995) Structural and functional characterization of a stable, 4 chlorosalicylic acid degrading, bacterial community in a chemostat. World J Microbiol Biotechnol 11:643–645

    Article  CAS  Google Scholar 

  • Warren LA, Haack EA (2001) Biochemical control on metal behaviour in fresh water environment. Earth Sci Rev 54:261–320

    Article  CAS  Google Scholar 

  • Williams DH, Fleming T (1989) Spectroscopic methods in organic chemistry, 4th edn. McGraw-Hill, London

    Google Scholar 

  • Yeates TO, Kerfeld CA, Heinhorst S, Cannon GC, Shivel JM (2008) Protein-based organelles in bacteria: carboxysomes and related microcompartments. Nat Rev Microbiol 6:681–691

    Article  CAS  Google Scholar 

  • Yoon JH, Lee KC, Weiss N, Kho YH, Kang KH, Park YH (2001) Sporosarcina aquimarina sp. nov., a bacterium isolated from seawater in Korea, and transfer of Bacillus globisporus (Larkin and Stokes 1967), Bacillus psychrophilus (Nakamura 1984) and Bacillus pasteurii (Chester 1898) to the genus Sporosarcina as Sporosarcina globispora comb. nov., Sporosarcina psychrophila comb. nov. and Sporosarcina pasteurii comb. nov., and emended description of the genus Sporosarcina. Int J Syst Evol Microbiol 51:1079–1086

    Article  CAS  Google Scholar 

  • Yoshida N, Takahashi N, Hiraishi A (2005) Phylogenetic characterization of a polychlorinated-dioxin-dechlorinating microbial community by use of microcosm studies. Appl Environ Microbiol 71:4325–4334

    Article  CAS  Google Scholar 

  • Zamarreño DV, Inkpen R, May E (2009) Carbonate crystals precipitated by freshwater bacteria and their use as a limestone consolidant. Appl Environ Microbiol 18:5981–5990

    Article  Google Scholar 

Download references

Acknowledgments

We would like to express our sincere thanks to Department of Science and Technology, for Fastrack Start up Project (Srivastava, S), and DBT, Government of India, New Delhi, for providing research fund for financial support in form of project. We also thank AIRF, Jawaharlal Nehru University, New Delhi, India, for XRD, FTIR spectroscopy, and SEM-EDX (Dr. Ruchita Pal) facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indu Shekhar Thakur.

Additional information

Responsible editor: Robert Duran

Shaili Srivastava and Randhir K. Bharti have equal contribution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, S., Bharti, R.K. & Thakur, I.S. Characterization of bacteria isolated from palaeoproterozoic metasediments for sequestration of carbon dioxide and formation of calcium carbonate. Environ Sci Pollut Res 22, 1499–1511 (2015). https://doi.org/10.1007/s11356-014-3442-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3442-2

Keywords

Navigation