Skip to main content
Log in

Design and Investigation of the 22 nm FinFET Based Dynamic Latched Comparator for Low Power Applications

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

A low-power, high-speed two-stage dynamic latch comparator suitable for high-resolution analog-to-digital converters (ADCs) is described and implemented in this work using 22 nm FinFET technology. The purpose of this research is to apply the FinFET device in low-power, high-speed analogue and mixed-signal circuits. Today, in the sub-50 nm realm, FinFETs outperform planar MOSFETs in terms of performance. In addition to a high voltage gain, other benefits include better channel control, reduced short-channel effects, low leakage current at the output, and a low output conductance. The suggested dynamic latched comparator makes use of both CMOS and FinFET technology components. By studying the device properties, the analogue performance metrics of FinFET are compared to bulk CMOS. Most dynamic comparators are able to function at fast speeds for input referred noise levels that are sufficiently high. This is because high-resolution ADCs do not benefit from the pre-amplifier's limited gain. This shortcoming is addressed by way of a pre-amplifier based on a cascode structure. The proposed comparator architectures improve the pre- amplifier differential gain and minimize input referred noise. In addition, a tranconductance enhanced latch stage is used. Using 0.8 V as a supply voltage and 1 GHz clock frequency, the suggested comparator has a delay as low as 50.42 ps, input referred noise of 190 µv and an input offset voltage of 5.2 mV with a power consumption of 7.67 µW and with a low power delay product (PDP) of 0.382 fJ. The FinFET based dynamic latch comparator has 20.6%, of delay and 12.5% power dissipation improvement than bulk CMOS based dynamic latch comparator and also better PDP than conventional double tail pre-amplifier based dynamic comparators. The proposed circuit's active area is 5.93 µm × 2.85 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. B. Razavi, B.A. Wooley, Design techniques for high-speed, high-resolution comparators. IEEE J. Solid State Circuits 27(12), 1916–1926 (1992). https://doi.org/10.1109/4.173122

    Article  Google Scholar 

  2. P.E. Allen, D.R. Holberg, CMOS Analog Circuit Design (Oxford University Press, Oxford, 2002)

    Google Scholar 

  3. K. Dubey Avaneesh, R.K. Nagaria, Enhanced gain low-power CMOS amplifiers: a novel design approach using bulk-driven load and introduction to GACOBA technique. J Circuit Syst Comput 27(13), 1850204 (2018). https://doi.org/10.1142/S0218126618502043

    Article  Google Scholar 

  4. B. Goll, H. Zimmermann, A comparator with reduced delay time in 65-nm CMOS for supply voltages down to 0.65 V. IEEE Trans. Circuits Syst. II Express Briefs 56(11), 810–814 (2009). https://doi.org/10.1109/TCSII.2009.2030357

    Article  Google Scholar 

  5. B. Wicht, T. Nirschl, L. Schmitt, D. Siedel, Yield and speed optimization of a latch-type voltage sense amplifier. IEEE J. Solid State Circuits 39, 1148–1158 (2004)

    Article  Google Scholar 

  6. S. Devarajan et al., A 12-b 10-GS/s interleaved pipeline ADC in 28-nm CMOS technology. IEEE J. Solid State Circuits 52(12), 3204–3218 (2017). https://doi.org/10.1109/JSSC.2017.2747758

    Article  Google Scholar 

  7. D. Schinkel, E. Mensink, E. Klumperink, E. van Tuijl, B. Nauta, A Double-tail latch-type voltage sense amplifier with 18ps setup+hold time, in 2007 IEEE International Solid-State Circuits Conference, Digest of Technical Papers (2007), pp. 314–605.

  8. S. Xu, D. Xu, G. Chen, High-speed low-power and low-power supply voltage dynamic comparator. Electron. Lett. 2113, 012064 (2005)

    Google Scholar 

  9. S. Babayan-Mashhadi, R. Lotfi, Analysis and design of a low-voltage low-power double-tail comparator. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22(2), 343–352 (2014). https://doi.org/10.1109/TVLSI.2013.2241799

    Article  Google Scholar 

  10. H.S. Bindra, C.E. Lokin, A. Annema, B. Nauta, A 30fJ/comparison dynamic bias comparator, in ESSCIRC 2017—43rd IEEE European Solid State Circuits Conference (2017), pp. 71–74. https://doi.org/10.1109/ESSCIRC.2017.8094528.

  11. A. Khorami, M. Sharifkhani, A low-power high-speed comparator for precise applications. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 26(10), 2038–2049 (2018). https://doi.org/10.1109/TVLSI.2018.2833037

    Article  Google Scholar 

  12. Y. Wang, M. Yao, B. Guo, Z. Wu, W. Fan, J.J. Liou, A low-power high-speed dynamic comparator with a transconductance-enhanced latching stage. IEEE Access 7, 93396–93403 (2019). https://doi.org/10.1109/ACCESS.2019.2927514

    Article  Google Scholar 

  13. R. Jain, A.K. Dubey, V. Varshney, R.K. Nagaria, Design of low-power high-speed double-tail dynamic CMOS comparator using novel latch structure, in 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON) (2017), pp. 217–222. https://doi.org/10.1109/UPCON.2017.8251050.

  14. P.M. Figueiredo, J.C. Vital, Kickback noise reduction techniques for CMOS latched comparators. IEEE Trans. Circuits Syst. II Express Briefs 53(7), 541–545 (2006). https://doi.org/10.1109/TCSII.2006.875308

    Article  Google Scholar 

  15. A.S. Kumar, M. Deekshana, V.B. Sreenivasulu, N.A. Kumari, G. Shanthi, Device analysis of vertically stacked GAA nanosheet fet at advanced technology node, in 2023 3rd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS), Kalady, Ernakulam, India (2023), pp. 274–279.

  16. A.M. Maghraby, I.T. Abougindia, H.N. Ahmed, A low-noise, low-power, dynamic latched comparator using cascoded structure, in 2020 12th International Conference on Electrical Engineering (ICEENG) (2020), pp. 335–338. https://doi.org/10.1109/ICEENG45378.2020.9171746.

  17. V.B. Sreenivasulu, V. Narendar, Circuit analysis and optimization of GAA nanowire FET towards low power and high switching. SILICON (2022). https://doi.org/10.1007/s12633-022-01777-6

    Article  Google Scholar 

  18. V.B. Sreenivasulu, V. Narendar, p-Type trigate junctionless nanosheet MOSFET: analog/RF, linearity, and circuit analysis. ECS J. Solid State Sci. Technol. 10, 123001 (2021). https://doi.org/10.1149/2162-8777/ac3bdf

    Article  CAS  Google Scholar 

  19. V.B. Sreenivasulu, V. Narendar, Junctionless, gate-all around nanowire FET with asymmetric spacer for continued scaling. SILICON (2021). https://doi.org/10.1007/s12633-021-01471-z

    Article  Google Scholar 

  20. V.B. Sreenivasulu, V. Narendar, Junctionless SOI FinFET with advanced spacer techniques for sub-3 nm technology nodes. AEU-Int. J. Electron. C. 145, 154069 (2022). https://doi.org/10.1016/j.aeue.2021.154069

    Article  Google Scholar 

  21. A.S. Kumar, K.N. Rao, A. Sujith, T. Dhanuja, M.V.S. Vinay, Design and implementation of 1KB SRAM array in 45 nm technology for low-power applications, in 2023 3rd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS), Kalady, Ernakulam, India (2023), pp. 245–250.

  22. R. Sonkusare, P. Prathamesh, S. Rathod, Analysis of subthreshold SOI FinFET based two stage OTA for low power. Analog Integr. Circuits Signal Process. 98, 277–289 (2019)

    Article  Google Scholar 

  23. R. Thakker, M. Srivastava, K. Tailor, M. Shojaei Baghini, D. Sharma, V. Rao, B. Mahesh, A novel architecture for improving slew rate in FinFET-based op-amps and OTAs. Microelectron. J. 42, 758–765 (2011). https://doi.org/10.1016/j.mejo.2011.01.010

    Article  CAS  Google Scholar 

  24. A. Sai Kumar et al., Nanosheet field effect transistor device and circuit aspects for future technology nodes. ECS J. Solid State Sci. Technol. 12(8), 083009 (2023)

    Article  Google Scholar 

  25. T. Poiroux, M. Vinet, O. Faynot, J. Lolivier, T. Ernst, B. Previtali et al., Multiple gate devices: advantages and challenges. Micro Electron. Eng. 80, 378–385 (2005)

    Article  CAS  Google Scholar 

  26. V. Subramanian et al., Planar bulk MOSFETs versus FinFETs: an analog/RF perspective. IEEE Trans. Electron Devices (2006). https://doi.org/10.1109/TED.2006.885649

    Article  Google Scholar 

  27. V. Narendar, Performance enhancement of FinFET devices with gate-stack (GS) high-K dielectrics for nanoscale applications. SILICON 10(6), 2419–2429 (2018)

    Article  CAS  Google Scholar 

  28. A. Sai Kumar et al., Characterization for Sub-5nm Technology Nodes of Junctionless Gate-All-Around Nanowire FETs, in 2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT) (2022), pp. 1–5.

  29. A. Kranti, G.A. Armstrong, Device design considerations for nanoscale double and triple gate FinFETs. Proc. IEEE Int. SOI Conf. 2005, 96–98 (2005)

    Google Scholar 

  30. C.R. Manoj, M. Nagpal, D. Varghese, V.R. Rao, Device design and optimization considerations for bulk FinFETs. IEEE Trans. Electron Devices 55(2), 609–615 (2008)

    Article  CAS  Google Scholar 

  31. J. Singh et al., 14nm FinFET technology for analog and RF applications, VLSI, 140–141 (2017)

  32. M. Shrivastava, M.S. Baghini, D.K. Sharma, V.R. Rao, A novel bottom spacer FinFET structure for improved short-channel power-delay and thermal performance. IEEE Trans. Electron Devices 57(6), 1287–1294 (2010)

    Article  CAS  Google Scholar 

  33. D. Deb, R. Goswami, R. Kr Baruah, K. Kandpal, R. Saha, Parametric investigation and trap sensitivity of n-p-n double gate TFETs. Comput. Electr. Eng. (2022). https://doi.org/10.1016/j.compeleceng.2022.107930

    Article  Google Scholar 

  34. G. Jain, R.S. Sawhney, R. Kumar, G. Wadhwa, Analytical modeling analysis and simulation study of dual material gate underlap dopingless TFET. Superlatt. Microstruct. (2021). https://doi.org/10.1016/j.spmi.2021.106866

    Article  Google Scholar 

  35. N. Nagendra Reddy, D.K. Panda, R. Saha, Analytical modelling for surface potential of dual material gate overlapped-on-drain TFET(DM-DMG-TFET) for label-free biosensing application. AEU Int. J. Electron. Commun. (2022). https://doi.org/10.1016/j.aeue.2022.154225

    Article  Google Scholar 

  36. G. Jain, R.S. Sawhney, R. Kumar et al., performance analysis of vertically stacked nanosheet tunnel field effect transistor with ideal subthreshold swing. SILICON (2021). https://doi.org/10.1007/s12633-021-01302-1

    Article  Google Scholar 

  37. N.N. Reddy, D.K. Panda, Dielectric modulated double gate hetero dielectric TFET (DM-DGH-TFET) biosensors: gate misalignment analysis on sensitivity, in 2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP), pp. 1–8 (2022). https://doi.org/10.1109/AISP53593.2022.9760561.

  38. S. Tiwari, R. Saha, Methods to reduce ambipolar current of various TFET structures: a review. SILICON (2021). https://doi.org/10.1007/s12633-021-01458-w

    Article  Google Scholar 

  39. R. Saha, R. Goswami, B. Bhowmick et al., Performance evaluation of epitaxial layer based gate modulated TFET (GM-TFET). SILICON (2021). https://doi.org/10.1007/s12633-021-01365-0

    Article  Google Scholar 

  40. V. Savani, N.M. Devashrayee, Analysis of power for double-tail current dynamic latch comparator. Analog Integr. Circ. Sig. Process 100, 345–355 (2019). https://doi.org/10.1007/s10470-019-01472-4

    Article  Google Scholar 

  41. Y.B. Ni, T. Li, Z.B. Huang, Y. Zhang, S.L. Xu, A highspeed dynamic comparator with low-power supply voltage, in 2018 14th IEEE International Conference Solid-State Integrated Circuit Technology ICSIC (2018), pp. 4–6.

  42. A. Rezapour, H. Shamsi, H. Abbasizadeh, K.Y. Lee, Low power high speed dynamic comparator, in IEEE International Symposium on Circuits and Systems, May 27–30 (2018), pp. 1–5.

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aruru Sai Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarangam, K., Kumar, A.S. & Reddy, B.N.K. Design and Investigation of the 22 nm FinFET Based Dynamic Latched Comparator for Low Power Applications. Trans. Electr. Electron. Mater. 25, 218–231 (2024). https://doi.org/10.1007/s42341-023-00503-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-023-00503-2

Keywords

Navigation