Anisotropy Properties of Tissues: A Basis for Fabrication of Biomimetic Anisotropic Scaffolds for Tissue Engineering

Abstract

Tissue engineering has been a subject of extensive scientific exploration in the last two decades making gradual inroads into clinical studies as well. Along with regenerative cells and growth factors, biomaterial scaffolds are integral to the development of a tissue engineered construct. It is now appreciated that scaffolds should mimic the target tissue properties intimately in order to provide a micro-environment milieu that allows the seeded cells to differentiate into the desired tissue. Even from a structural viewpoint, mismatch between scaffold and native matrix properties can cause cell necrosis through mechanisms such as stress shielding. One of the key properties of most body tissues is that they exhibit anisotropy. However, most fabrication methods generate isotropic scaffolds and require specific modifications to produce anisotropic scaffolds. In the last decade, the advent of additive manufacturing and bioprinting has provided facile tools to fabricate scaffolds with desired anisotropy. On the other hand, a biomimetic scaffold can be designed only when target tissue anisotropy is well known to the tissue engineer. This review presents an overview of the anisotropic properties of different tissues, which will be critical for developing biomimetic engineered constructs. The traditional anatomical records do not adequately present these properties from the perspective of designing tissue engineering scaffolds. Subsequently, present state-of-the art in development of anisotropic scaffolds as well as tissue constructs using different conventional and emerging fabrication techniques is discussed. It is expected that the readers will obtain a comprehensive reference on the research area by examining these two aspects juxtaposed to each other and gain key trends for fabrication of anisotropic scaffolds, plausibly with improved regenerative outcomes.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Colombo F, Sampogna G, Cocozza G, Guraya S Y, Forgione A. Regenerative medicine: Clinical applications and future perspectives. Journal of Microscopy and Ultrastructure, 2017, 5, 1–8.

    Article  Google Scholar 

  2. [2]

    Geris L, Papantoniou I. The third era of tissue engineering: Reversing the innovation drivers. Tissue Engineering — Part A, 2019, 25, 821–826.

    Article  Google Scholar 

  3. [3]

    Hoffman T, Khademhosseini A, Langer R. Chasing the paradigm: Clinical translation of 25 years of tissue engineering. Tissue Engineering — Part A, 2019, 25, 679–687.

    Article  Google Scholar 

  4. [4]

    Datta P, Ayan B, Ozbolat I T. Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomaterialia, 2017, 51, 1–20.

    Article  Google Scholar 

  5. [5]

    Barui A, Chowdhury F, Pandit A, Datta P. Rerouting mesenchymal stem cell trajectory towards epithelial lineage by engineering cellular niche. Biomaterials, 2018, 156, 28–44.

    Article  Google Scholar 

  6. [6]

    Cunniffe G M, Díaz-Payno P J, Sheehy E J, Critchley S E, Almeida H V, Pitacco P, Carroll S F, Mahon O R, Dunne A, Levingstone T J, Moran C J, Brady R T, O’Brien F J, Brama P A J, Kelly D J. Tissue-specific extracellular matrix scaffolds for the regeneration of spatially complex musculoskeletal tissues. Biomaterials, 2019, 188, 63–73.

    Article  Google Scholar 

  7. [7]

    Sano K, Ishida Y, Aida T. Synthesis of anisotropic hydrogels and their applications. Angewandte Chemie International Edition, 2018, 57, 2532–2543.

    Article  Google Scholar 

  8. [8]

    Prince E, Kumacheva E. Design and applications of man-made biomimetic fibrillar hydrogels. Nature Reviews Materials, 2019, 4, 99–115.

    Article  Google Scholar 

  9. [9]

    Yang B, O’Connell G D. Swelling of fiber-reinforced soft tissues is affected by fiber orientation, fiber stiffness, and lamella structure. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 82, 320–328.

    Article  Google Scholar 

  10. [10]

    Yang B, O’Connell G D. GAG content, fiber stiffness, and fiber angle affect swelling-based residual stress in the intact annulus fibrosus. Biomechanics and Modeling in Mechanobiology, 2019, 18, 617–630.

    Article  Google Scholar 

  11. [11]

    Bini F, Pica A, Marinozzi A, Marinozzi F. A 3D model of the effect of tortuosity and constrictivity on the diffusion in mineralized collagen fibril. Scientific Reports, 2019, 9, 1–14.

    Article  Google Scholar 

  12. [12]

    Shi C, Cisewski S E, Bell P D, Yao H. Measurement of three-dimensional anisotropic diffusion by multiphoton fluorescence recovery after photobleaching. Annals of Biomedical Engineering, 2014, 42, 555–565.

    Article  Google Scholar 

  13. [13]

    Li S, Abdel-Wahab A, Demirci E, Silberschmidt V V. Fracture of cortical bone tissue: Inelastic behavior of materials and structures under monotonic and cyclic loading. In: Altenbach H, Brünig M eds., Advanced Structured Materials, Springer, Cham, Switzerland, 2015, 143–170.

    Google Scholar 

  14. [14]

    Novitskaya E, Chen P Y, Lee S, Castro-Ceseña A, Hirata G, Lubarda V A, McKittrick J. Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents. Acta Biomaterialia, 2011, 7, 3170–3177.

    Article  Google Scholar 

  15. [15]

    Barati D, Karaman O, Moeinzadeh S, Kader S, Jabbari E. Material and regenerative properties of an osteon-mimetic cortical bone-like scaffold. Regenerative Biomaterials, 2019, 6, 89–98.

    Article  Google Scholar 

  16. [16]

    Tang S Y. Natural composites: The structure-function relationships of bone, cartilage, tendon/ligament, and the intervertebral disc. In: Ambrosio L ed., Biomedical Composites, 2nd ed, Woodhead Publishing, Cambridge, UK, 2017, 1–16.

    Google Scholar 

  17. [17]

    Teichtahl A J, Wluka A E, Wijethilake P, Wang Y, Ghasem-Zadeh A, Cicuttini F M. Wolff’s law in action: A mechanism for early knee osteoarthritis. Arthritis Research and Therapy, 2015, 17, 1–9.

    Article  Google Scholar 

  18. [18]

    Li S, Demirci E, Silberschmidt V V. Variability and anisotropy of mechanical behavior of cortical bone in tension and compression. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 21, 109–120.

    Article  Google Scholar 

  19. [19]

    Iyo T, Maki Y, Sasaki N, Nakata M. Anisotropic viscoelastic properties of cortical bone. Journal of Biomechanics, 2004, 37, 1433–1437.

    Article  Google Scholar 

  20. [20]

    Hardisty M R, Garcia T C, Choy S, Dahmubed J, Stover S M, Fyhrie D P. Stress-whitening occurs in demineralized bone. Bone, 2013, 57, 367–374.

    Article  Google Scholar 

  21. [21]

    Szabó M E, Thurner P J. Anisotropy of bovine cortical bone tissue damage properties. Journal of Biomechanics, 2013, 46, 2–6.

    Article  Google Scholar 

  22. [22]

    Faingold A, Cohen S R, Shahar R, Weiner S, Rapoport L, Wagner H D. The effect of hydration on mechanical anisotropy, topography and fibril organization of the osteonal lamellae. Journal of Biomechanics, 2014, 47, 367–372.

    Article  Google Scholar 

  23. [23]

    Rohrbach D, Lakshmanan S, Peyrin F, Langer M, Gerisch A, Grimal Q, Laugier P, Raum K. Spatial distribution of tissue level properties in a human femoral cortical bone. Journal of Biomechanics, 2012, 45, 2264–2270.

    Article  Google Scholar 

  24. [24]

    Casanova M, Schneider P, Müller R, Carnelli D, Balmelli A, Courty D. Nanoindentation analysis of the micromechanical anisotropy in mouse cortical bone. Royal Society Open Science, 2017, 4, 1–9.

    Article  Google Scholar 

  25. [25]

    Cardoso L. Structure-function relationship in bone: Anisotropic mechanical properties of trabecular bone determined using poroelastic ultrasound. The Journal of the Acoustical Society of America, 2016, 140, 3080–3080.

    Article  Google Scholar 

  26. [26]

    Santiuste C, Rodríguez-Millán M, Giner E, Miguélez H. The influence of anisotropy in numerical modeling of orthogonal cutting of cortical bone. Composite Structures, 2014, 116, 423–431.

    Article  Google Scholar 

  27. [27]

    Moussa D G, Aparicio C. Present and future of tissue engineering scaffolds for dentin-pulp complex regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 58–75.

    Google Scholar 

  28. [28]

    Huo B. An inhomogeneous and anisotropic constitutive model of human dentin. Journal of Biomechanics, 2005, 38, 587–594.

    Article  Google Scholar 

  29. [29]

    Shinno Y, Ishimoto T, Saito M, Uemura R, Arino M, Marumo K, Nakano T, Hayashi M. Comprehensive analyses of how tubule occlusion and advanced glycation end-products diminish strength of aged dentin. Scientific Reports, 2016, 6, 19849.

    Article  Google Scholar 

  30. [30]

    Lu X, Fernández M P, Bradley R S, Rawson S D, O’Brien M, Hornberger B, Leibowitz M, Tozzi G, Withers P J. Anisotropic crack propagation and deformation in dentin observed by four-dimensional X-ray nano-computed tomography. Acta Biomaterialia, 2019, 96, 400–411.

    Article  Google Scholar 

  31. [31]

    Zaytsev D, Ivashov A, Panfilov P. Anisotropy of the mechanical properties of human dentin under shear testing. Materials Letters, 2015, 138, 219–221.

    Article  Google Scholar 

  32. [32]

    Muslov S A. Anisotropy of Poisson’s ratio of dentin and enamel. IOP Conference Series: Materials Science and Engineering, 2018, 441, 1–9.

    Article  Google Scholar 

  33. [33]

    Lertchirakarn V, Palamara J E A, Messer H H. Anisotropy of tensile strength of root dentin. Journal of Dental Research, 2001, 80, 453–456.

    Article  Google Scholar 

  34. [34]

    Urbanek O, Kolbuk D, Wróbel M. Articular cartilage: New directions and barriers of scaffolds development — Review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 396–410.

    Article  Google Scholar 

  35. [35]

    Ratcliffe A, Fryer P R, Hardingham T E. The distribution of aggregating proteoglycans in articular cartilage: Comparison of quantitative immunoelectron microscopy with radioimmunoassay and biochemical analysis. Journal of Histochemistry & Cytochemistry, 1984, 32, 193–201.

    Article  Google Scholar 

  36. [36]

    Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X, Li S, Deng Y, He N. Injectable hydrogels for cartilage and bone tissue engineering. Bone Research, 2017, 5, 1–20.

    Google Scholar 

  37. [37]

    Hardin J A, Cobelli N, Santambrogio L. Consequences of metabolic and oxidative modifications of cartilage tissue. Nature Reviews Rheumatology, 2015, 11, 521–529.

    Article  Google Scholar 

  38. [38]

    Muir H, Bullough P, Maroudas A. The distribution of collagen in human articular cartilage with some of its physiological implications. The Journal of Bone and Joint Surgery, 1970, 52, 554–563.

    Article  Google Scholar 

  39. [39]

    Akizuki S, Mow V C, Müller F, Pita J C, Howell D S, Manicourt D H. Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus. Journal of Orthopaedic Research, 1986, 4, 379–392.

    Article  Google Scholar 

  40. [40]

    Schinagl R M, Gurskis D, Chen A C, Sah R L. Depthdependent confined compression modulus of full — thickness bovine articular cartilage. Journal of Orthopaedic Research, 1997, 15, 499–506.

    Article  Google Scholar 

  41. [41]

    Mansfield J C, Bell J S, Winlove C P. The micromechanics of the superficial zone of articular cartilage. Osteoarthritis and Cartilage, 2015, 23, 1806–1816.

    Article  Google Scholar 

  42. [42]

    Maier F, Drissi H, Pierce D M. Shear deformations of human articular cartilage: Certain mechanical anisotropies apparent at large but not small shear strains. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 53–65.

    Article  Google Scholar 

  43. [43]

    Xia Y, Zheng S, Szarko M, Lee J. Anisotropic properties of bovine nasal cartilage. Microscopy Research and Technique, 2012, 75, 300–306.

    Article  Google Scholar 

  44. [44]

    Sophia Fox A J, Bedi A, Rodeo S A. The basic science of articular cartilage: Structure, composition, and function. Sports Health, 2009, 1, 461–468.

    Article  Google Scholar 

  45. [45]

    Gastaldi D, Taffetani M, Raiteri R, Vena P. Effect of the anisotropic permeability in the frequency dependent properties of the superficial layer of articular cartilage. Computer Methods in Biomechanics and Biomedical Engineering, 2018, 21, 635–644.

    Article  Google Scholar 

  46. [46]

    Shi C, Wright G J, Ex-lubeskie C L, Bradshaw A D, Yao H. Relationship between anisotropic diffusion properties and tissue morphology in porcine TMJ disc. Osteoarthritis and Cartilage, 2013, 21, 625–633.

    Article  Google Scholar 

  47. [47]

    Beaupre A, Choukroun R, Guidouin R, Garneau R, Gerardin H, Cardou A. Knee menisci. Correlation between microstructure and biomechanics. Clinical Orthopaedics and Related Research, 1986, 208, 72–75.

    Google Scholar 

  48. [48]

    Fithian D C, Kelly M A, Mow V C. Material properties and structure-function relationships in the menisci. Clinical Orthopaedics and Related Research, 1990, 252, 19–31.

    Google Scholar 

  49. [49]

    Li Q, Qu F, Han B, Wang C, Li H, Mauck R L, Han L. Micromechanical anisotropy and heterogeneity of the meniscus extracellular matrix. Acta Biomaterialia, 2017, 54, 356–366.

    Article  Google Scholar 

  50. [50]

    Hukins D W L. Biomechanical properties of collagen. Collagen in Health and Disease, Weiss J B and Jayson M I V eds., Churchill Livingstone, London, 1982, 49–72.

    Google Scholar 

  51. [51]

    Gabrion A, Aimedieu P, Laya Z, Havet E, Mertl P, Grebe R, Laude M. Relationship between ultrastructure and biomechanical properties of the knee meniscus. Surgical and Radiologic Anatomy, 2005, 27, 507–510.

    Article  Google Scholar 

  52. [52]

    Leslie B W, Gardner D L, McGeough J A, Moran R S. Anisotropic response of the human knee joint meniscus to unconfined compression. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 2000, 214, 631–635.

    Article  Google Scholar 

  53. [53]

    Puetzer J L, Koo E, Bonassar L J. Induction of fiber alignment and mechanical anisotropy in tissue engineered menisci with mechanical anchoring. Journal of Biomechanics, 2015, 48, 1436–1443.

    Article  Google Scholar 

  54. [54]

    Rattner J B, Matyas J R, Barclay L, Holowaychuk S, Sciore P, Lo I K Y, Shrive N G, Frank C B, Achari Y, Hart D A. New understanding of the complex structure of knee menisci: Implications for injury risk and repair potential for athletes. Scandinavian Journal of Medicine & Science in Sports, 2011, 21, 543–553.

    Article  Google Scholar 

  55. [55]

    Petersen W, Tillmann B. Collagenous fibril texture of the human knee joint menisci. Anatomy and Embryology, 1998, 197, 317–324.

    Article  Google Scholar 

  56. [56]

    Peloquin J M, Santare M H, Elliott D M. Advances in quantification of meniscus tensile mechanics including nonlinearity, yield, and failure. Journal of Biomechanical Engineering, 2016, 138, 1–13.

    Article  Google Scholar 

  57. [57]

    Gharpuray V M. Fibrocartilage. In: Murphy W, Black J, Hastings G eds., Handbook of Biomaterial Properties, Springer, New York, 2016, 45–54.

    Google Scholar 

  58. [58]

    Kleinhans K L, Jackson A R. Hydraulic permeability of meniscus fibrocartilage measured via direct permeation: Effects of tissue anisotropy, water volume content, and compressive strain. Journal of Biomechanics, 2018, 72, 215–221.

    Article  Google Scholar 

  59. [59]

    Kleinhans K L, McMahan J B, Jackson A R. Electrical conductivity and ion diffusion in porcine meniscus: effects of strain, anisotropy, and tissue region. Journal of Biomechanics, 2016, 49, 3041–3046.

    Article  Google Scholar 

  60. [60]

    Xu J, Liu S, Wang S, Qiu P, Chen P, Lin X, Fang X. Decellularised nucleus pulposus as a potential biologic scaffold for disc tissue engineering. Materials Science and Engineering: C, 2019, 99, 1213–1225.

    Article  Google Scholar 

  61. [61]

    Gao X, Zhu Q, Gu W. An anisotropic multiphysics model for intervertebral disk. Journal of Applied Mechanics, 2016, 83, 210111–210118.

    Google Scholar 

  62. [62]

    Raj P P. Intervertebral disc: Anatomy-physiology-pathophysiology- treatment. Pain Practice, 2008, 8, 18–44.

    Article  Google Scholar 

  63. [63]

    Fujita Y, Wagner D R, Biviji A A, Duncan N A, Lotz J C. Anisotropic shear behavior of the annulus fibrosus: Effect of harvest site and tissue prestrain. Medical Engineering and Physics, 2000, 22, 349–357.

    Article  Google Scholar 

  64. [64]

    Maquart F X, Monboisse J C. Extracellular matrix and wound healing. Pathologie Biologie, 2014, 62, 91–95.

    Article  Google Scholar 

  65. [65]

    Humzah M D, Soames R W. Human intervertebral disc: Structure and function. The Anatomical Record, 1988, 220, 337–356.

    Article  Google Scholar 

  66. [66]

    Yang B, O’Connell G D. Effect of collagen fibre orientation on intervertebral disc torsion mechanics. Biomechanics and Modeling in Mechanobiology, 2017, 16, 2005–2015.

    Article  Google Scholar 

  67. [67]

    Dittmar R, Van Rijsbergen M M, Ito K. Moderately degenerated human intervertebral disks exhibit a less geometrically specific collagen fiber orientation distribution. Global Spine Journal, 2016, 6, 439–446.

    Article  Google Scholar 

  68. [68]

    Nerurkar N L, Elliott D M, Mauck R L. Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering. Journal of Orthopaedic Research, 2007, 25, 1018–1028.

    Article  Google Scholar 

  69. [69]

    Newell N, Little J P, Christou A, Adams M A, Adam C J, Masouros S D. Biomechanics of the human intervertebral disc: A review of testing techniques and results. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69, 420–434.

    Article  Google Scholar 

  70. [70]

    Schmidt J L, Tweten D J, Badachhape A A, Reiter A J, Okamoto R J, Garbow J R, Bayly P V. Measurement of anisotropic mechanical properties in porcine brain white matter ex vivo using magnetic resonance elastography. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 79, 30–37.

    Article  Google Scholar 

  71. [71]

    Vadapalli R, Mulukutla R, Vadapalli A S, Vedula R R. Quantitative predictive imaging biomarkers of lumbar intervertebral disc degeneration. Asian Spine Journal, 2019, 13, 527–534.

    Article  Google Scholar 

  72. [72]

    Jana S, Levengood S K L, Zhang M. Anisotropic materials for skeletal-muscle-tissue engineering. Advanced Materials, 2016, 28, 10588–10612.

    Article  Google Scholar 

  73. [73]

    Eskandari M, Arvayo A L, Levenston M E. Mechanical properties of the airway tree: Heterogeneous and anisotropic pseudoelastic and viscoelastic tissue responses. Journal of Applied Physiology, 2018, 125, 878–888.

    Article  Google Scholar 

  74. [74]

    Li L P, Herzog W. Strain-rate dependence of cartilage stiffness in unconfined compression: The role of fibril reinforcement versus tissue volume change in fluid pressurization. Journal of biomechanics, 2004, 37, 375–382.

    Article  Google Scholar 

  75. [75]

    Mizrahi J, Karni Z, Polishuk W Z. Isotropy and anisotropy of uterine muscle during labor contraction. Journal of Biomechanics, 2018, 13, 211–218.

    Article  Google Scholar 

  76. [76]

    Ajalloueian F, Lemon G, Hilborn J, Chronakis I S, Fossum M. Bladder biomechanics and the use of scaffolds for regenerative medicine in the urinary bladder. Nature Reviews Urology, 2018, 15, 155.

    Article  Google Scholar 

  77. [77]

    Korossis S, Bolland F, Southgate J, Ingham E, Fisher J. Regional biomechanical and histological characterisation of the passive porcine urinary bladder: Implications for augmentation and tissue engineering strategies. Biomaterials, 2009, 30, 266–275.

    Article  Google Scholar 

  78. [78]

    Borsdorf M, Tomalka A, Stutzig N, Morales-Orcajo E, Böl M, Siebert T. Locational and directional dependencies of smooth muscle properties in pig urinary bladder. Frontiers in Physiology, 2019, 10, 63.

    Article  Google Scholar 

  79. [79]

    Morales-Orcajo E, Siebert T, Böl M. Location-dependent correlation between tissue structure and the mechanical behaviour of the urinary bladder. Acta Biomaterialia, 2018, 75, 263–278.

    Article  Google Scholar 

  80. [80]

    Fine M L, King T L, Ali H, Sidker N, Cameron T M. Wall structure and material properties cause viscous damping of swimbladder sounds in the oyster toadfish Opsanus tau. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 1–9.

    Article  Google Scholar 

  81. [81]

    Sacks M S, Gloeckner D C. Quantification of the fiber architecture and biaxial mechanical behavior of porcine intestinal submucosa. Journal of Biomedical Materials Research, 1999, 46, 1–10.

    Article  Google Scholar 

  82. [82]

    Kwon H, Guasch M, Nagy J A, Rutkove S B, Sanchez B. New electrical impedance methods for the in situ measurement of the complex permittivity of anisotropic skeletal muscle using multipolar needles. Scientific Reports, 2019, 9, 1–16.

    Article  Google Scholar 

  83. [83]

    Liu D, Yan G. A Multi-layer finite element model based on anisotropic hyperelastic fiber reinforcements within intestinal walls. Nano Biomedicine and Engineering, 2017, 9, 291–297.

    Google Scholar 

  84. [84]

    Patel D J, Janicki J S, Carew T E. Static anisotropic elastic properties of the aorta in living dogs. Circulation Research, 1969, 25, 765–799.

    Article  Google Scholar 

  85. [85]

    Kas’yanov V A, Purinya B A, Tseders É É. Determination of the shear modulus of human blood-vessel walls. Polymer Mechanics, 1978, 14, 753–755.

    Google Scholar 

  86. [86]

    Kohn J C, Lampi M C, Reinhart-King C A. Age-related vascular stiffening: Causes and consequences. Frontiers in Genetics, 2015, 6, 1–17.

    Article  Google Scholar 

  87. [87]

    Holzapfel G A. Determination of material models for arterial walls from uniaxial extension tests and histological structure. Journal of Theoretical Biology, 2006, 238, 290–302.

    MathSciNet  Article  Google Scholar 

  88. [88]

    Muiznieks L D, Keeley F W. Molecular assembly and mechanical properties of the extracellular matrix: A fibrous protein perspective. Biochimica et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 866–875.

    Article  Google Scholar 

  89. [89]

    Wang Y, Hahn J, Zhang Y. Mechanical properties of arterial elastin with water loss. Journal of Biomechanical Engineering, 2018, 140, 41012–41018.

    Article  Google Scholar 

  90. [90]

    Qi N, Gao H, Ogden R W, Hill N A, Holzapfel G A, Han H-C, Luo X. Investigation of the optimal collagen fibre orientation in human iliac arteries. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 52, 108–119.

    Article  Google Scholar 

  91. [91]

    Zou Y, Zhang Y. An experimental and theoretical study on the anisotropy of elastin network. Annals of Biomedical Engineering, 2009, 37, 1572–1583.

    Article  Google Scholar 

  92. [92]

    Sato M, Niimi H, Okumura A, Handa H, Hayashi K, Moritake K. Axial mechanical properties of arterial walls and their anisotropy. Medical and Biological Engineering and Computing, 1979, 17, 170–176.

    Article  Google Scholar 

  93. [93]

    Agrawal V, Kollimada S A, Byju A G, Gundiah N. Regional variations in the nonlinearity and anisotropy of bovine aortic elastin. Biomechanics and Modeling in Mechanobiology, 2013, 12, 1181–1194.

    Article  Google Scholar 

  94. [94]

    Yu X, Wang Y, Zhang Y. Transmural variation in elastin fiber orientation distribution in the arterial wall. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77, 745–753.

    Article  Google Scholar 

  95. [95]

    Hammer P E, Pacak C A, Howe R D, del Nido P J. Collagen bundle orientation explains aortic valve leaflet coaptation. In: Ourselin S, Rueckert D, Smith N eds., Functional Imaging and Modeling of the Heart, Springer, Berlin Heidelberg, Germany, 2013, 409–415.

    Google Scholar 

  96. [96]

    Auricchio F, Conti M, Morganti S. Aortic biological prosthetic valve for open-surgery and percutaneous implant: Procedure simulation and performance assessment. In: Franz T ed., Cardiovascular and Cardiac Therapeutic Devices, Springer, Berlin Heidelberg, Germany, 2014, 131–168.

    Google Scholar 

  97. [97]

    Hasan A, Ragaert K, Swieszkowski W, Selimovic Š, Paul A, Camci-Unal G, Mofrad M R K, Khademhosseini A. Biomechanical properties of native and tissue engineered heart valve constructs. Journal of Biomechanics, 2014, 47, 1949–1963.

    Article  Google Scholar 

  98. [98]

    Vesely I, Noseworthy R. Micromechanics of the fibrosa and the ventricularis in aortic valve leaflets. Journal of Biomechanics, 2018, 25, 111–113.

    Google Scholar 

  99. [99]

    Lo D, Vesely I. Biaxial strain analysis of the porcine aortic valve. The Annals of Thoracic Surgery, 2018, 60, 374–378.

    Article  Google Scholar 

  100. [100]

    Pham T, Sun W. Material properties of aged human mitral valve leaflets. Journal of Biomedical Materials Research Part A, 2014, 102, 2692–2703.

    Article  Google Scholar 

  101. [101]

    Ferraresi C, Manuelo Bertetto A, Maffiodo D, Franco W, Mazza L. One-dimensional experimental mechanical characterisation of porcine aortic root wall. Medical and Biological Engineering and Computing, 1999, 37, 202–207.

    Article  Google Scholar 

  102. [102]

    Eslami M, Javadi G, Agdami N, Shokrgozar M A. Expression of collagen 1 and elastin genes in mitral valvular interstitial cells within microfiber reinforced hydrogel. Cell Journal, 2015, 17, 478–488.

    Google Scholar 

  103. [103]

    Sacks M S, Schoen F J, Mayer J E. Bioengineering challenges for heart valve tissue engineering. Annual Review of Biomedical Engineering, 2009, 11, 289–313.

    Article  Google Scholar 

  104. [104]

    Lu J, Huang H Y S. Biaxial mechanical behavior of bovine saphenous venous valve leaflets. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77, 594–599.

    Article  Google Scholar 

  105. [105]

    Huang H Y S, Lu J. Biaxial mechanical properties of bovine jugular venous valve leaflet tissues. Biomechanics and Modeling in Mechanobiology, 2017, 16, 1911–1923.

    Article  Google Scholar 

  106. [106]

    Maurice D M. The structure and transparency of the cornea. The Journal of physiology, 1957, 136, 263–286.

    Article  Google Scholar 

  107. [107]

    Meek K M. The cornea and sclera. In: Fratzl P ed., Collagen: Structure and Mechanics, Springer, Boston, USA, 2008, 359–396.

    Google Scholar 

  108. [108]

    Meek K M, Knupp C. Corneal structure and transparency. Progress in Retinal and Eye Research, 2015, 49, 1–16.

    Article  Google Scholar 

  109. [109]

    Matthyssen S, Van den Bogerd B, Dhubhghaill S N, Koppen C, Zakaria N. Corneal regeneration: A review of stromal replacements. Acta Biomaterialia, 2018, 69, 31–41.

    Article  Google Scholar 

  110. [110]

    Leung L K K, Ko M W L, Ye C, Lam D C C, Leung C K S. Noninvasive measurement of scleral stiffness and tangent modulus in porcine eyes scleral stiffness/tangent modulus in porcine eyes. Investigative Ophthalmology & Visual Science, 2014, 55, 3721–3726.

    Article  Google Scholar 

  111. [111]

    Gogola A, Jan N-J, Lathrop K L, Sigal I A. Radial and circumferential collagen fibers are a feature of the peripapillary sclera of human, monkey, pig, cow, goat, and sheep. Investigative Ophthalmology and Visual Science, 2018, 59, 4763–4774.

    Article  Google Scholar 

  112. [112]

    Elsheikh A, Brown M, Alhasso D, Rama P, Campanelli M, Garway-Heath D. Experimental assessment of corneal anisotropy. Journal of Refractive Surgery, 2008, 24, 178–187.

    Article  Google Scholar 

  113. [113]

    Jayasuriya A C, Ghosh S, Scheinbeim J I, Lubkin V, Bennett G, Kramer P. A study of piezoelectric and mechanical anisotropies of the human cornea. Biosensors and Bioelectronics, 2003, 18, 381–387.

    Article  Google Scholar 

  114. [114]

    Karamichos D, Funderburgh M L, Hutcheon A E K, Zieske J D, Du Y, Wu J, Funderburgh J L. A role for topographic cues in the organization of collagenous matrix by corneal fibroblasts and stem cells. PLoS ONE, 2014, 9, 1–11.

    Article  Google Scholar 

  115. [115]

    Meek K M, Newton R H. Organization of collagen fibrils in the corneal stroma in relation to mechanical properties and surgical practice. Journal of Refractive Surgery, 1999, 15, 695–699.

    Google Scholar 

  116. [116]

    Xiang Y, Shen M, Xue C, Wu D, Wang Y. Tensile biomechanical properties and constitutive parameters of human corneal stroma extracted by SMILE procedure. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 85, 102–108.

    Article  Google Scholar 

  117. [117]

    Artal P. Handbook of Visual Optics. CRC Press, Boca Raton, USA, 2017, 417.

    Google Scholar 

  118. [118]

    Lemons C, Sellon J B, Freeman D M, Meaud J. Examining the effects of anisotropy on longitudinally propagating waves on isolated tectorial membranes. AIP Conference Proceedings, 2018, 1965, 040004.

    Article  Google Scholar 

  119. [119]

    Meaud J, Grosh K. The effect of tectorial membrane and basilar membrane longitudinal coupling in cochlear mechanics. Journal of the Acoustical Society of America, 2010, 127, 1411–1421.

    Article  Google Scholar 

  120. [120]

    Richardson G P, Lukashkin A N, Russell I J. The tectorial membrane: One slice of a complex cochlear sandwich. Current Opinion in Otolaryngology and Head and Neck Surgery, 2008, 16, 458–464.

    Article  Google Scholar 

  121. [121]

    Williams L N, Elder S H, Bouvard J L, Horstemeyer M F. The anisotropic compressive mechanical properties of the rabbit patellar tendon. Biorheology, 2008, 45, 577–586.

    Google Scholar 

  122. [122]

    Böl M, Ehret A E, Leichsenring K, Ernst M. Tissue-scale anisotropy and compressibility of tendon in semi-confined compression tests. Journal of Biomechanics, 2015, 48, 1092–1098.

    Article  Google Scholar 

  123. [123]

    Quapp K M, Weiss J A. Material characterization of human medial collateral ligament. Journal of Biomechanical Engineering, 1998, 120, 757–763.

    Article  Google Scholar 

  124. [124]

    Robertson D, Willardson R, Parajuli D, Cannon A, Bowden A E. The lumbar supraspinous ligament demonstrates increased material stiffness and strength on its ventral aspect. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 17, 34–43.

    Article  Google Scholar 

  125. [125]

    Baah-Dwomoh A, De Vita R. Effects of repeated biaxial loads on the creep properties of cardinal ligaments. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 74, 128–141.

    Article  Google Scholar 

  126. [126]

    Sardi S, Vardi R, Sheinin A, Goldental A, Kanter I. New types of experiments reveal that a neuron functions as multiple independent threshold units. Scientific Reports, 2017, 7, 1–17.

    Article  Google Scholar 

  127. [127]

    Martin K A C, Roth S, Rusch E S. Superficial layer pyramidal cells communicate heterogeneously between multiple functional domains of cat primary visual cortex. Nature Communications, 2014, 5, 1–13

    Google Scholar 

  128. [128]

    Xie J, Macewan M R, Liu W, Jesuraj N, Li X, Hunter D, Xia Y. Nerve guidance conduits based on double-layered scaffolds of electrospun nanofibers for repairing the peripheral nervous system. ACS Applied Materials and Interfaces, 2014, 6, 9472–9480.

    Article  Google Scholar 

  129. [129]

    Huang Y A, Ho C T, Lin Y H, Lee C J, Ho S M, Li M C, Hwang E. Nanoimprinted anisotropic topography preferentially guides axons and enhances nerve regeneration. Macromolecular Bioscience, 2018, 18, 1–12.

    Article  Google Scholar 

  130. [130]

    Golafshan N, Kharaziha M, Fathi M, Larson B L, Giatsidis G, Masoumi N. Anisotropic architecture and electrical stimulation enhance neuron cell behaviour on a tough graphene embedded PVA: Alginate fibrous scaffold. RSC Advances, 2018, 8, 6381–6389.

    Article  Google Scholar 

  131. [131]

    Chen Y, Taskin M B, Zhang Z, Su Y, Han X, Chen M. Bioadhesive anisotropic nanogrooved microfibers directing three-dimensional neurite extension. Biomaterials Science, 2019, 7, 2165–2173.

    Article  Google Scholar 

  132. [132]

    Pecheva D, Kelly C, Kimpton J, Bonthrone A, Batalle D, Zhang H, Counsell S J. Recent advances in diffusion neuroimaging: Applications in the developing preterm brain. F1000Research, 2018, 7, 1–12.

    Article  Google Scholar 

  133. [133]

    Wu X, Liu Y, Li X, Wen P, Zhang Y, Long Y, Wang X, Guo Y, Xing F, Gao J. Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomaterialia, 2010, 6, 1167–1177.

    Article  Google Scholar 

  134. [134]

    Mredha M T I, Kitamura N, Nonoyama T, Wada S, Goto K, Zhang X, Nakajima T, Kurokawa T, Takagi Y, Yasuda K, Gong J P. Anisotropic tough double network hydrogel from fish collagen and its spontaneous in vivo bonding to bone. Biomaterials, 2017, 132, 85–95.

    Article  Google Scholar 

  135. [135]

    Stoppel W L, Hu D, Domian I J, David L. Kaplan D L, Black III L D. Anisotropic silk biomaterials containing cardiac extracellular matrix for cardiac tissue engineering. Biomedical Materials, 2016, 10, 1–22.

    Google Scholar 

  136. [136]

    Canadas R F, Ren T, Marques A P, Oliveira J M, Reis R L, Demirci U. Biochemical gradients to generate 3D heterotypic-like tissues with isotropic and anisotropic architectures. Advanced Functional Materials, 2018, 28, 1804148.

    Article  Google Scholar 

  137. [137]

    Yetiskin B, Okay O. High-strength and self-recoverable silk fibroin cryogels with anisotropic swelling and mechanical properties. International Journal of Biological Macromolecules, 2019, 122, 1279–1289.

    Article  Google Scholar 

  138. [138]

    You F, Li Y, Zou Q, Zuo Y, Lu M, Chen X, Li J. Fabrication and osteogenesis of a porous nanohydroxyapatite/polyamide scaffold with an anisotropic architecture. ACS Biomaterials Science and Engineering, 2015, 1, 825–833.

    Article  Google Scholar 

  139. [139]

    Ran J, Xie L, Sun G, Hu J, Chen S, Jiang P, Shen X, Tong H. A facile method for the preparation of chitosan-based scaffolds with anisotropic pores for tissue engineering applications. Carbohydrate Polymers, 2016, 152, 615–623.

    Article  Google Scholar 

  140. [140]

    Ribeiro V P, Silva-Correia J, Nascimento A I, da Silva Morais A, Marques A P, Ribeiro A S, Silva C J, Bonifácio G, Sousa R A, Oliveira J M, Oliveira A L, Reis R L. Silk-based anisotropical 3D biotextiles for bone regeneration. Biomaterials, 2017, 123, 92–106.

    Article  Google Scholar 

  141. [141]

    Weber M, Gonzalez de Torre I, Moreira R, Frese J, Oedekoven C, Alonso M, Rodriguez Cabello C J, Jockenhoevel S, Mela P. Multiple-step injection molding for fibrin-based tissue-engineered heart valves. Tissue Engineering Part C: Methods, 2015, 21, 832–840.

    Article  Google Scholar 

  142. [142]

    Georgiou M, Bunting S C J, Davies H A, Loughlin A J, Golding J P, Phillips J B. Engineered neural tissue for peripheral nerve repair. Biomaterials, 2013, 34, 7335–7343.

    Article  Google Scholar 

  143. [143]

    Liu C, Pyne R, Kim J, Wright N T, Baek S, Chan C. The impact of prestretch induced surface anisotropy on axon regeneration. Tissue Engineering Part C: Methods, 2015, 22, 102–112.

    Article  Google Scholar 

  144. [144]

    Liu C, Baek S, Kim J, Vasko E, Pyne R, Chan C. Effect of static pre-stretch induced surface anisotropy on orientation of mesenchymal stem cells. Cellular and Molecular Bioengineering, 2014, 7, 106–121.

    Article  Google Scholar 

  145. [145]

    Puetzer J L, Bonassar L J. Physiologically distributed loading patterns drive the formation of zonally organized collagen structures in tissue-engineered meniscus. Tissue Engineering Part A, 2016, 22, 907–916.

    Article  Google Scholar 

  146. [146]

    MacBarb R F, Chen A L, Hu J C, Athanasiou K A. Engineering functional anisotropy in fibrocartilage neotissues. Biomaterials, 2013, 34, 9980–9989.

    Article  Google Scholar 

  147. [147]

    Tognato R, Armiento A R, Bonfrate V, Levato R, Malda J, Alini M, Eglin D, Giancane G, Serra T. A stimuli-responsive nanocomposite for 3D anisotropic cell-guidance and magnetic soft robotics. Advanced Functional Materials, 2019, 29, 1804647.

    Article  Google Scholar 

  148. [148]

    Gouveia R M, González-Andrades E, Cardona J C, González-Gallardo C, Ionescu A M, Garzon I, Alaminos M, González-Andrades M, Connon C J. Controlling the 3D architecture of Self-Lifting Auto-generated Tissue Equivalents (SLATEs) for optimized corneal graft composition and stability. Biomaterials, 2017, 121, 205–219.

    Article  Google Scholar 

  149. [149]

    Miotto M, Gouveia R M, Ionescu A M, Figueiredo F, Hamley I W, Connon C J. 4D Corneal tissue engineering: achieving time-dependent tissue self-curvature through localized control of cell actuators. Advanced Functional Materials, 2019, 29, 1–11.

    Article  Google Scholar 

  150. [150]

    Armstrong J P K, Puetzer J L, Serio A, Guex A G, Kapnisi M, Breant A, Zong Y, Assal V, Skaalure S C, King O, Murty T, Meinert C, Franklin A C, Bassindale P G, Nichols M K, Terracciano C M, Hutmacher D W, Drinkwater B W, Klein T J, Perriman A W, Stevens M M. Engineering anisotropic muscle tissue using acoustic cell patterning. Advanced Materials, 2018, 30, 1–7.

    Article  Google Scholar 

  151. [151]

    Margolis G, Polyak B, Cohen S. Magnetic induction of multiscale anisotropy in macroporous alginate scaffolds. Nano Letters, 2018, 18, 7314–7322.

    Article  Google Scholar 

  152. [152]

    Rose J C, Gehlen D B, Haraszti T, Köhler J, Licht C J, De Laporte L. Biofunctionalized aligned microgels provide 3D cell guidance to mimic complex tissue matrices. Biomaterials, 2018, 163, 128–141.

    Article  Google Scholar 

  153. [153]

    Mredha M T I, Le H H, Tran V T, Trtik P, Cui J, Jeon I. Anisotropic tough multilayer hydrogels with programmable orientation. Materials Horizons, 2019, 6, 1504–1511.

    Article  Google Scholar 

  154. [154]

    Young R E, Graf J, Miserocchi I, Van Horn R M, Gordon M B, Anderson C R, Sefcik L S. Optimizing the alignment of thermoresponsive poly(N-isopropyl acrylamide) electrospun nanofibers for tissue engineering applications: A factorial design of experiments approach. PLoS ONE, 2019, 14, e0219254.

    Article  Google Scholar 

  155. [155]

    Eslamian M, Khorrami M, Yi N, Majd S, Abidian M R. Electrospinning of highly aligned fibers for drug delivery applications. Journal of Materials Chemistry B, 2019, 7, 224–232.

    Article  Google Scholar 

  156. [156]

    Katta P, Alessandro M, Ramsier R D, Chase G G. Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Letters, 2004, 4, 2215–2218.

    Article  Google Scholar 

  157. [157]

    Badrossamay M R, Balachandran K, Capulli A K, Golecki H M, Agarwal A, Goss J A, Kim H, Shin K, Parker K K. Engineering hybrid polymer-protein super-aligned nanofibers via rotary jet spinning. Biomaterials, 2014, 35, 3188–3197.

    Article  Google Scholar 

  158. [158]

    Owida H A, Yang R, Cen L, Kuiper N J, Yang Y. Induction of zonal-specific cellular morphology and matrix synthesis for biomimetic cartilage regeneration using hybrid scaffolds. Journal of the Royal Society Interface, 2018, 15, 1–11.

    Article  Google Scholar 

  159. [159]

    Park S M, Eom S, Choi D, Han S J, Park S J, Kim D S. Direct fabrication of spatially patterned or aligned electrospun nanofiber mats on dielectric polymer surfaces. Chemical Engineering Journal, 2018, 335, 712–719.

    Article  Google Scholar 

  160. [160]

    Li S, Lee B-K. Formation of locally aligned nanofibers by electrospinning on preplaced dielectric particles. Materials Research Express, 2018, 5, 1–35.

    Article  Google Scholar 

  161. [161]

    Ding J, Zhang J, Li J, Li D, Xiao C, Xiao H, Yang H, Zhuang X, Chen X. Electrospun polymer biomaterials. Progress in Polymer Science, 2019, 90, 1–34.

    Article  Google Scholar 

  162. [162]

    Kurpinski K T, Stephenson J T, Janairo R R R, Lee H, Li S. The effect of fiber alignment and heparin coating on cell infiltration into nanofibrous PLLA scaffolds. Biomaterials, 2010, 31, 3536–3542.

    Article  Google Scholar 

  163. [163]

    Gazzarri M, Bartoli C, Mota C, Puppi D, Dinucci D, Volpi S, Chiellini F. Fibrous star poly(e-caprolactone) melt-electrospun scaffolds for wound healing applications. Journal of Bioactive and Compatible Polymers, 2013, 28, 492–507.

    Article  Google Scholar 

  164. [164]

    Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical Reviews, 2019, 119, 5298–5415.

    Article  Google Scholar 

  165. [165]

    Giannitelli S M, Abbruzzese F, Mozetic P, De Ninno A, Businaro L, Gerardino A, Rainer A. Surface decoration of electrospun scaffolds by microcontact printing. Asia-Pacific Journal of Chemical Engineering, 2014, 9, 401–406.

    Article  Google Scholar 

  166. [166]

    Lim J, Jun I, Lee Y BIN, Kim E M, Shin D, Jeon H, Park H, Shin H. Fabrication of cell sheets with anisotropically aligned myotubes using thermally expandable micropatterned hydrogels. Macromolecular Research, 2016, 24, 562–572.

    Article  Google Scholar 

  167. [167]

    Kuppan P, Sethuraman S, Krishnan U M. In vitro co-culture of epithelial cells and smooth muscle cells on aligned nanofibrous scaffolds. Materials Science and Engineering: C, 2017, 81, 191–205.

    Article  Google Scholar 

  168. [168]

    Jin G, He R, Sha B, Li W, Qing H, Teng R, Xu F. Electrospun three-dimensional aligned nanofibrous scaffolds for tissue engineering. Materials Science and Engineering: C, 2018, 92, 995–1005.

    Article  Google Scholar 

  169. [169]

    Fee T, Downs C, Eberhardt A, Zhou Y, Berry J. Image-based quantification of fiber alignment within electrospun tissue engineering scaffolds is related to mechanical anisotropy. Journal of Biomedical Materials Research - Part A, 2016, 104, 1680–1686.

    Article  Google Scholar 

  170. [170]

    Ligon S C, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D printing and customized additive manufacturing. Chemical Reviews, 2017, 117, 10212–10290.

    Article  Google Scholar 

  171. [171]

    Shirazi S F S, Gharehkhani S, Mehrali M, Yarmand H, Metselaar H S C, Adib Kadri N, Osman N A A. A review on powder-based additive manufacturing for tissue engineering: Selective laser sintering and inkjet 3D printing. Science and Technology of Advanced Materials, 2015, 16, 1–20.

    Article  Google Scholar 

  172. [172]

    Skoog S A, Goering P L, Narayan R J. Stereolithography in tissue engineering. Journal of Materials Science: Materials in Medicine, 2014, 25, 845–856.

    Google Scholar 

  173. [173]

    Tamay D G, Dursun Usal T, Alagoz A S, Yucel D, Hasirci N, Hasirci V. 3D and 4D printing of polymers for tissue engineering applications. Frontiers in Bioengineering and Biotechnology, 2019, 7, 1–22.

    Article  Google Scholar 

  174. [174]

    Ceretti E, Ginestra P, Neto P I, Fiorentino A, Da Silva J V L. Multi-layered scaffolds production via fused deposition modeling (FDM) using an open source 3D printer: Process parameters optimization for dimensional accuracy and design reproducibility. Procedia CIRP, 2017, 65, 13–18.

    Article  Google Scholar 

  175. [175]

    Datta P, Barui A, Wu Y, Ozbolat V, Moncal K K, Ozbolat I T. Essential steps in bioprinting: From pre- to post-bioprinting. Biotechnology Advances, 2018, 36, 1481–1504.

    Article  Google Scholar 

  176. [176]

    Miar S, Shafiee A, Guda T, Narayan R. Additive manufacturing for tissue engineering. In: Ovsianikov A, Yoo J, Mironov V eds., 3D Printing and Biofabrication, Springer International Publishing, Cham, Switzerland, 2018, 1–52.

    Google Scholar 

  177. [177]

    Zhang X Y, Fang G, Zhou J. Additively manufactured scaffolds for bone tissue engineering and the prediction of their mechanical behavior: A review. Materials, 2017, 10, 1–28.

    Google Scholar 

  178. [178]

    Ryan G E, Pandit A S, Apatsidis D P. Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials, 2008, 29, 3625–3635.

    Article  Google Scholar 

  179. [179]

    Es-Said O S, Foyos J, Noorani R, Mendelson M, Marloth R, Pregger B A. Effect of layer orientation on mechanical properties of rapid prototyped samples. Materials and Manufacturing Processes, 2000, 15, 107–122.

    Article  Google Scholar 

  180. [180]

    Ahn S, Montero M, Odell D, Roundy S, Wright P K. Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping Journal, 2002, 8, 248–257.

    Article  Google Scholar 

  181. [181]

    Zein I, Hutmacher D W, Tan K C, Teoh S H. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials, 2002, 23, 1169–1185.

    Article  Google Scholar 

  182. [182]

    Woodfield T B F, Van Blitterswijk C A, De Wijn J, Sims T J, Hollander A P, Riesle J. Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs. Tissue engineering, 2005, 11, 1297–1311.

    Article  Google Scholar 

  183. [183]

    Leonhardt S, Klare M, Scheer M, Fischer T, Cordes B, Eblenkamp M. Biocompatibility of photopolymers for additive manufacturing. Current Directions in Biomedical Engineering, 2016, 2, 113–116.

    Article  Google Scholar 

  184. [184]

    Alifui-Segbaya F, Varma S, Lieschke G J, George R. Biocompatibility of photopolymers in 3D printing. 3D Printing and Additive Manufacturing, 2017, 4, 185–191.

    Article  Google Scholar 

  185. [185]

    Kim J-H, Lee J W, Yun W-S. Fabrication and tissue engineering application of a 3D PPF/DEF scaffold using Blu-ray based 3D printing system. Journal of Mechanical Science and Technology, 2017, 31, 2581–2587.

    Article  Google Scholar 

  186. [186]

    Hoffmann A, Leonards H, Tobies N, Pongratz L, Kreuels K, Kreimendahl F, Apel C, Wehner M, Nottrodt N. New stereolithographic resin providing functional surfaces for biocompatible three-dimensional printing. Journal of Tissue Engineering, 2017, 8, 1–9.

    Article  Google Scholar 

  187. [187]

    Walker J M, Bodamer E, Kleinfehn A, Luo Y, Becker M, Dean D. Design and mechanical characterization of solid and highly porous 3D printed poly(propylene fumarate) scaffolds. Progress in Additive Manufacturing, 2017, 2, 99–108.

    Article  Google Scholar 

  188. [188]

    Rešetic A, Milavec J, Zupancic B, Domenici V, Zalar B. Polymer-dispersed liquid crystal elastomers. Nature Communications, 2016, 7, 1–10.

    Article  Google Scholar 

  189. [189]

    Wong J P F, MacRobert A J, Cheema U, Brown R A. Mechanical anisotropy in compressed collagen produced by localised photodynamic cross-linking. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 18, 132–139.

    Article  Google Scholar 

  190. [190]

    Arai S, Tsunoda S, Yamaguchi A, Ougizawa T. Effect of anisotropy in the build direction and laser-scanning conditions on characterization of short-glass-fiber-reinforced PBT for laser sintering. Optics & Laser Technology, 2019, 113, 345–356.

    Article  Google Scholar 

  191. [191]

    Eshraghi S, Das S. Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomaterialia, 2010, 6, 2467–2476.

    Article  Google Scholar 

  192. [192]

    Mierzejewska Z A, Hudák R, Sidun J. Mechanical properties and microstructure of DMLS Ti6Al4V alloy dedicated to biomedical applications. Materials, 2019, 12, 1–17.

    Google Scholar 

  193. [193]

    Hitzler L, Hirsch J, Heine B, Merkel M, Hall W, Öchsner A. On the anisotropic mechanical properties of selective laser-melted stainless steel. Materials, 2017, 10, 1–19.

    Article  Google Scholar 

  194. [194]

    Lammens N, Kersemans M, De Baere I, Van Paepegem W. On the visco-elasto-plastic response of additively manufactured polyamide-12 (PA-12) through selective laser sintering. Polymer Testing, 2017, 57, 149–155.

    Article  Google Scholar 

  195. [195]

    Mertens J C E, Henderson K, Cordes N L, Pacheco R, Xiao X, Williams J J, Chawla N, Patterson B M. Analysis of thermal history effects on mechanical anisotropy of 3D-printed polymer matrix composites via in situ X-ray tomography. Journal of Materials Science, 2017, 52, 12185–12206.

    Article  Google Scholar 

  196. [196]

    Costantini M, Testa S, Mozetic P, Barbetta A, Fuoco C, Fornetti E, Tamiro F, Bernardini S, Jaroszewicz J, Swieszkowski W, Trombetta M, Castagnoli L, Seliktar D, Garstecki P, Cesareni G, Cannata S, Rainer A, Gargioli C. Microfluidic-enhanced 3D bioprinting of aligned myoblast- laden hydrogels leads to functionally organized myofibers in vitro and in vivo. Biomaterials, 2017, 131, 98–110.

    Article  Google Scholar 

  197. [197]

    Matsugaki A, Ozasa R, Isobe Y, Saku T, Nakano T. Oriented collagen scaffolds for anisotropic bone tissue construction in vitro. Materials Science Forum, 2014, 783–786, 1303–1306.

    Article  Google Scholar 

  198. [198]

    Xu X, Zhou J, Feng C, Jiang Y, Zhang Q, Shi H. 3D printing algorithm of anisotropic biological scaffold with oxidized nanocellulose and gelatin. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 1260–1275.

    Article  Google Scholar 

  199. [199]

    Ozasa R, Matsugaki A, Isobe Y, Saku T, Yun H S, Nakano T. Construction of human induced pluripotent stem cell-derived oriented bone matrix microstructure by using in vitro engineered anisotropic culture model. Journal of Biomedical Materials Research - Part A, 2018, 106, 360–369.

    Article  Google Scholar 

  200. [200]

    Dixon T A, Cohen E, Cairns D M, Rodriguez M, Mathews J, Jose R R, Kaplan D L. Bioinspired three-dimensional human neuromuscular junction development in suspended hydrogel arrays. Tissue Engineering Part C: Methods, 2018, 24, 346–359.

    Article  Google Scholar 

  201. [201]

    Kung F H, Sillitti D, Shrirao A B, Shreiber D I, Firestein B L. Collagen nanofibre anisotropy induces myotube differentiation and acetylcholine receptor clustering. Journal of Tissue Engineering and Regenerative Medicine, 2017, 12, 2010–2019.

    Article  Google Scholar 

  202. [202]

    Ruiz de Galarreta S, Antón R, Cazón A, Finol E A. A methodology for developing anisotropic AAA phantoms via additive manufacturing. Journal of Biomechanics, 2017, 57, 161–166.

    Article  Google Scholar 

  203. [203]

    Cui H, Zhang L, Huang Y. Three-Dimensional Bioprinting of Cardiac Patch with Anisotropic and Perfusable Architecture, George Washington University, USA, PCT, WO/2019/075397, 2019.

    Google Scholar 

  204. [204]

    Moncal K K, Ozbolat V, Datta P, Heo D N, Ozbolat I T. Thermally-controlled extrusion-based bioprinting of collagen. Journal of Materials Science: Materials in Medicine, 2019, 30, 55.

    Google Scholar 

  205. [205]

    Sun Y, Yang C, Zhu X, Wang J-J, Liu X-Y, Yang X-P, An X-W, Liang J, Dong H-J, Jiang W, Chen C, Wang Z-G, Sun H-T, Tu Y, Zhang S, Chen F, Li X-H. 3D printing collagen/chitosan scaffold ameliorated axon regeneration and neurological recovery after spinal cord injury. Journal of Biomedical Materials Research Part A, 2019, 107, 1898–1908.

    Article  Google Scholar 

  206. [206]

    Fang Y, Zhang T, Zhang L, Gong W, Sun W. Biomimetic design and fabrication of scaffolds integrating oriented micro- pores with branched channel networks for myocardial tissue engineering. Biofabrication, 2019, 11, 1–17.

    Article  Google Scholar 

Download references

Acknowledgement

Pallab Datta acknowledges the DST Inspire Faculty Award.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pallab Datta.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Datta, P., Vyas, V., Dhara, S. et al. Anisotropy Properties of Tissues: A Basis for Fabrication of Biomimetic Anisotropic Scaffolds for Tissue Engineering. J Bionic Eng 16, 842–868 (2019). https://doi.org/10.1007/s42235-019-0101-9

Download citation

Keywords

  • biomimetics
  • scaffolds
  • tissue engineering
  • anisotropy
  • electrospinning
  • bioprinting