Skip to main content
Log in

An Experimental and Theoretical Study on the Anisotropy of Elastin Network

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The mechanical properties of elastin network from bovine thoracic aorta under biaxial tensile loading were studied both experimentally and theoretically. Histology and scanning electron microscopy were performed to verify the removal of cells, collagen, and other extracellular matrix components. Equi- and nonequi-biaxial tests were performed to study the effect of different loading conditions on the stress–strain responses of the elastin network. The mechanical properties of different elastin sections along the thoracic aorta were examined and studied to understand the anisotropy of elastin along the whole artery. Biaxial tensile test data comparing elastin vs. intact aorta showed that elastin is mainly responsible for the linear elastic response of the arterial wall at lower strains. Experimental results revealed that elastin network possesses significant anisotropic mechanical properties with the circumferential direction being stiffer than the longitudinal direction. The mechanical properties of elastin vary significantly along the thoracic aorta, with the thin section appearing to have the highest tangent modulus. Biological assay results indicate that elastin content is about the same along the thoracic aorta. The mechanical behavior of elastin network was well captured by the eight-chain statistical mechanics based microstructural model. Material parameters obtained from the equi-biaxial test were able to predict the stress–strain responses of elastin network under arbitrary nonequi-biaxial loading conditions. Also, by varying material parameters in the model, the changes in microstructure such as elastin fiber orientation and cross-linking density on the macroscopic mechanical properties of elastin network were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Adamczyk M.M, Lee T.C. and Vesely I. (2000). Biaxial strain properties of elastase-digested porcine aortic valves. Journal of Heart Valve Disease 9: 445-453.

    PubMed  CAS  Google Scholar 

  2. Arruda E.M. and Boyce M. C. (1993). A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41: 389-412.

    Article  CAS  Google Scholar 

  3. Bischoff J.E., Arruda E. A. and Grosh K. (2002). A microstructurally based orthotropic hyperelastic constitutive law. J. Appl. Mech. 69: 570-579.

    Article  CAS  Google Scholar 

  4. Black L.D., Allen P.G., Morris S.M., Stone P.J., and Suki B. (2008). “Mechanical and Failure Properties of Extracellular Matrix Sheets as a Function of Structural Protein Composition.” Biophysical Journal 94:1916-1929.

    Article  PubMed  CAS  Google Scholar 

  5. Daamen W.F., Hafmans T., Veerkamp J.H. and van Kuppevelt T.H. (2001). Comparison of five procedures for the purification of insoluble elastin. Biomaterials 22: 1997-2005.

    Article  PubMed  CAS  Google Scholar 

  6. Daamen W.F., van Moerkerk H.T.B., Hafmans T., Buttafoco L., Poot A.A., Veerkamp J.H. and van Kuppevelt T.H. (2003). Preparation and evaluation of molecularly-defined collagen-elastin-glycosaminoglycan scaffolds for tissue engineering. Biomaterials 24: 4001-4009.

    Article  PubMed  CAS  Google Scholar 

  7. Daamen W.F., Veerkamp J.H., van Hest J.C.M. and van Kuppevelt T.H. (2007). Elastin as a biomaterial for tissue engineering. Biomaterials 28: 4378-4398.

    Article  PubMed  CAS  Google Scholar 

  8. Delfino A., Stergiopulos N., Moore J. E., and Meister J. J. (1997). Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. Journal of Biomechanics 30: 777-786.

    Article  PubMed  CAS  Google Scholar 

  9. Flory P.J. and Rehner J. (1943). Statistical mechanics of cross-linked polymer networks: I. rubber elasticity. J. Chem. Phys. 11: 512-520.

    Article  CAS  Google Scholar 

  10. Fung Y.C., Fronek K., and Patitucci P. (1979). Pseudoelasticity of arteries and the choice of its mathematical expression. American Journal of Physiology 237: H620-631.

    PubMed  CAS  Google Scholar 

  11. Gilbert T.W., Sacks M.S., Grashow J.S., Woo S.L.Y., Badylak S.F. and Chancellor M.B. (2006). Fiber kinematics of small intestinal submucosa under biaxial and uniaxial stretch. Journal of Biomechanical Engineering 128: 890-898.

    Article  PubMed  Google Scholar 

  12. Gundiah N., Ratcliffe M.B. and Pruitt L.A. (2007). Determination of strain energy function for arterial elastin: Experiments using histology and mechanical tests. Journal of Biomechanics 40:.586-594.

    Article  PubMed  Google Scholar 

  13. Holzapfel G.A. and Gasser T.C. (2000). A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity 61: 1-48.

    Article  Google Scholar 

  14. Huang W., Delgado-West D., Wu J.T., and Fung Y.C. (2001). Tissue Remodeling of rat pulmonary artery in hypoxic breathing. II. Course of Change of Mechanical Properties. Annals of Biomedical Engineering 29: 552-562.

    Article  PubMed  CAS  Google Scholar 

  15. Humphrey J.D. (1995). Mechanics of arterial wall: review and directions. Critical Reviews in Biomedical Engineering 23: 1-162.

    PubMed  CAS  Google Scholar 

  16. James H.M. and Guth E. (1943). Theory of the elastic properties of rubber. J. Chem. Phys. 10: 455-481.

    Article  Google Scholar 

  17. Kielty C.M., Sherratt M.J., and Shuttleworth C.A. (2002). Elastic fibers. Journal of Cell Science 115: 2817-2828.

    PubMed  CAS  Google Scholar 

  18. Knezevic, V., Sim, A.J., Borg, T.K., and Holmes, J.W. (2002). Isotonic biaxial loading of fibroblast-populated collagen gels: a versatile, low-cost system for the study of mechanobiology. Biomechanics and Modeling in Mechanobiology 1: 59-67.

    Article  PubMed  CAS  Google Scholar 

  19. Kurane A., Simionescu D.T. and Vyavahare N.R. (2007). In vivo cellular repopulation of tubular elastin scaffolds mediated by basic fibroblast growth factor. Biomaterials 28(18): 2830-2838.

    Article  PubMed  CAS  Google Scholar 

  20. Lally C., Reid A.J. and Prendergast P.J. (2004). Elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension. Annals of Biomedical Engineering 32: 1355-1364.

    Article  PubMed  CAS  Google Scholar 

  21. Lillie M.A. and Gosline J.M. (1990). The effects of hydration on the dynamic mechanical properties of elastin. Biopolymers 29: 1147-1160.

    Article  PubMed  CAS  Google Scholar 

  22. Lillie M.A. and Gosline J.M. (2002). The viscoelastic basis for the tensile strength of elastin. International Journal of Biological Macromolecules 30: 119-127.

    Article  PubMed  CAS  Google Scholar 

  23. Lillie M.A. and Gosline J.M. (2007). Mechanical properties of elastin along the thoracic aorta in the pig. Journal of Biomechanics 10: 2214-2221.

    Article  Google Scholar 

  24. Lillie M.A. and Gosline J.M. (2007). Limits to the durability of arterial elastin tissue. Biomaterials 28: 2021-2031.

    Article  PubMed  CAS  Google Scholar 

  25. Lin A.P., Bennett E., Wisk L.E., Gharib M., Fraser S.E. and Wen H. (2008). Circumferential strain in the wall of the common carotid artery: comparing displacement-encoded and cine MRI in volunteers. Magnetic Resonance in Medicine 60: 8-13.

    Article  PubMed  Google Scholar 

  26. Lu Q., Ganesan K., Simionescu D.T. and Vyavahare N.R. (2004). Novel porous aortic elastin and collagen scaffolds for tissue engineering. Biomaterials 25: 5227-5237.

    Article  PubMed  CAS  Google Scholar 

  27. McEniery C.M., Wilkinson I.B., and Avolio A.P. (2007). Age, hypertension, and arterial function. Clinical and Experimental Pharmacology and Physiology 34: 665-671.

    Article  PubMed  CAS  Google Scholar 

  28. Mecham, R.P. (2008). Methods in elastic tissue biology: Elastin isolation and purification. Methods 45: 32-41.

    Article  PubMed  CAS  Google Scholar 

  29. Poiani G.J., Tozzi C.A., Yohn S.E., Pierce R.A., Belsky S.A., Berg R.A., Yu S.Y., Deak S.B., and Riley D.J. (1990). Collagen and elastin metabolism in hypertensive pulmonary arteries of rats. Circulation Research 66: 968-978.

    PubMed  CAS  Google Scholar 

  30. Rasmussen B.L., Bruenger E. And Sandberg L.B. (1975). A new method for purification of mature elastin. Analytical Biochemistry 64: 225-229.

    Article  Google Scholar 

  31. Rezakhaniha R. and Stergiopulos N. (2008). A structural model of the venous wall considering elastin anisotropy. Journal of Biomechanical Engineering 130: 031017.

    Article  PubMed  Google Scholar 

  32. Sacks M.S. and Chuong C.J., (1992). Biaxial mechanical properties of passive right ventricular free wall myocardium. Journal of Biomechanical Engineering 114: 183-190.

    Article  PubMed  CAS  Google Scholar 

  33. Sacks M.S. and Sun W. (2003). Multiaxial mechanical behavior of biological materials. Annual Review of Biomedical Engineering 5: 251-284.

    Article  PubMed  CAS  Google Scholar 

  34. Schwartz C.J., Valente A.J., Sprague E.A., Kelley J.L. and Nerem R.M. (1991). The pathogenesis of atherosclerosis: an overview. Clinical Cardiology 14: 11-16.

    Article  Google Scholar 

  35. Simionescu D.T., Lu Q., Song Y., Lee S.J., Rosenbalm T.N., Kelley C. and Vyavahare N.R. (2006). Biocompatibility and remodeling potential of pure arterial elastin and collagen scaffolds. Biomaterials 27: 702-713.

    Article  PubMed  CAS  Google Scholar 

  36. Takamizawa K. and Hayashi K. (1987). Strain energy density function and uniform strain hypothesis for arterial mechanics. Journal of Biomechanics 20: 7-17.

    Article  PubMed  CAS  Google Scholar 

  37. Todorovich-Hunter L., Johnson D.J., Ranger P., Keeley F.W. and Rabinovitch M. (1988). Altered elastin and collagen synthesis associated with progressive pulmonary hypertension induced by monocrotaline: A biochemical and ultrastructural study. Laboratory Investigation 58: 184-195.

    PubMed  CAS  Google Scholar 

  38. Watson R.E.B., Griffiths C.E.M., Craven N.M., Shuttleworth C.A. and Kielty C.M. (1999). Fibrilin-rich microfibrils are reduced in photoaged skin. Distribution at the dermal-epidermal junction. Journal of Investigative Dermatology 112: 782-787.

    Article  PubMed  CAS  Google Scholar 

  39. Wedding K.L., Draney M.T., Herfkens R.J., Zarins C.K., Taylor C.A. and Pelc N.J. (2002). Measurement of vessel wall strain using cine phase contrast MRI. Journal of Magnetic Resonance Imaging 15: 418-428.

    Article  PubMed  Google Scholar 

  40. Wells S.M., Langille B.L. and Lee J.M. (1998). In vivo and in vitro mechanical properties of the sheep thoracic aorta in the perinatal period and adulthood. American Journal of Physiology: Heart and Circulatory Physiology 274: 1749-1960.

    Google Scholar 

  41. Wells S.M., Langille B.L., Lee J.M. and Adamson S.L. (1999). Determinants of mechanical properties in the developing ovine thoracic aorta. American Journal of Physiology: Heart and Circulatory Physiology 277: 1385-1391.

    Google Scholar 

  42. Wolinsky H. (1971). Effects of hypertension and its reversal on the thoracic aorta of male and female rats. Morphological and chemical studies. Circulation Research 28: 622-637.

    PubMed  CAS  Google Scholar 

  43. Wuyts F.L., Vanhuyse V.J., Langewouters G.J., Decraemer W.F., Raman E.R. and Buyle S. (1995) Elastic properties of human aortas in relations to age and atherosclerosis: a structural model. Physics in Medicine & Biology 40: 1577-1597.

    Article  PubMed  CAS  Google Scholar 

  44. Zhang Y., Dunn M.L., Drexler E.S., McCowan C.N., Slifka A.J., Ivy D.D. and Shandas R. (2005). A microstructural hyperelastic model of pulmonary arteries under normo- and hypertensive conditions. Annals of biomedical engineering 33: 1042-1052.

    Article  PubMed  Google Scholar 

  45. Zhou J. and Fung Y.C. (1997) The degree of nonlinearity and anisotropy of blood vessel elasticity. Proceedings of the National Academy of Sciences of the United States of America 94: 14255-14260.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by funding from NSF (0700507) and the College of Engineering at Boston University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, Y., Zhang, Y. An Experimental and Theoretical Study on the Anisotropy of Elastin Network. Ann Biomed Eng 37, 1572–1583 (2009). https://doi.org/10.1007/s10439-009-9724-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9724-z

Keywords

Navigation