Skip to main content
Log in

Measurement of Three-Dimensional Anisotropic Diffusion by Multiphoton Fluorescence Recovery after Photobleaching

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The multiphoton fluorescence recovery after photobleaching (MP-FRAP) technique has been developed to measure the three-dimensional (3D) solute diffusion within biological systems. However, current 3D MP-FRAP models are based on isotropic diffusion and spatial domain analysis. The 3D anisotropic diffusion and frequency domain analysis for MP-FRAP measurements are rarely studied. In this study, a new technique is demonstrated for the quantitative and non-destructive determination of 3D anisotropic solute diffusion tensors within biological fibrosis tissues by multiphoton photobleaching and spatial Fourier analysis (SFA). Compared to the spatial domain analysis based MP-FRAP techniques, this SFA-based method has the capability for determining the 3D anisotropic diffusion tensors as well as the flexibility for satisfying initial and boundary conditions. First, a close-form solution of the 3D anisotropic diffusion equation is derived by solely using SFA. Next, this new method is validated by computer-simulated MP-FRAP experiments with pre-defined 3D anisotropic diffusion tensors as well as experimental diffusion measurements of FITC-Dextran (FD) molecules in aqueous glycerol solutions. Finally, this MP-FRAP technique is applied to the measurement of 3D anisotropic diffusion tensors of FD molecules within porcine tendon tissues. This study provides a new tool for complete determination of 3D anisotropic solute diffusion tensor in biological tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Abrahamsson, S., J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson. Fast multicolor 3D imaging using aberration-corrected multifocus microscopy. Nat. Methods 10:60–63, 2013.

    Article  CAS  PubMed  Google Scholar 

  2. Beaudouin, J., F. Mora-Bermudez, T. Klee, N. Daigle, and J. Ellenberg. Dissecting the contribution of diffusion and interactions to the mobility of nuclear proteins. Biophys. J. 90:1878–1894, 2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Berk, D. A., F. Yuan, M. Leunig, and R. K. Jain. Fluorescence photobleaching with spatial Fourier analysis: measurement of diffusion in light-scattering media. Biophys. J. 65:2428–2436, 1993.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Braeckmans, K., K. Remaut, R. E. Vandenbroucke, B. Lucas, S. C. De Smedt, and J. Demeester. Line FRAP with the confocal laser scanning microscope for diffusion measurements in small regions of 3-D samples. Biophys. J. 92:2172–2183, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Brown, E. B., Y. Boucher, S. Nasser, and R. K. Jain. Measurement of macromolecular diffusion coefficients in human tumors. Microvasc. Res. 67:231–236, 2004.

    Article  CAS  PubMed  Google Scholar 

  6. Brown, E. B., E. S. Wu, W. Zipfel, and W. W. Webb. Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery. Biophys. J. 77:2837–2849, 1999.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Calvert, P. D., J. A. Peet, A. Bragin, W. E. Schiesser, and E. N. Pugh, Jr. Fluorescence relaxation in 3D from diffraction-limited sources of PAGFP or sinks of EGFP created by multiphoton photoconversion. J. Microsc. 225:49–71, 2007.

    Article  CAS  PubMed  Google Scholar 

  8. Calvert, P. D., W. E. Schiesser, and E. N. Pugh, Jr. Diffusion of a soluble protein, photoactivatable GFP, through a sensory cilium. J. Gen. Physiol. 135:173–196, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Cicchi, R., D. Sampson, D. Massi, and F. Pavone. Contrast and depth enhancement in two-photon microscopy of human skin ex vivo by use of optical clearing agents. Opt. Express 13:2337–2344, 2005.

    Article  CAS  PubMed  Google Scholar 

  10. Crank, J. The mathematics of diffusion. New York: Oxford University Press, 1975.

    Google Scholar 

  11. Genina, E. A., A. N. Bashkatov, and V. V. Tuchin. Tissue optical immersion clearing. Expert. Rev. Med. Devices 7:825–842, 2010.

    Article  PubMed  Google Scholar 

  12. Helmchen, F., and W. Denk. Deep tissue two-photon microscopy. Nat. Methods 2:932–940, 2005.

    Article  CAS  PubMed  Google Scholar 

  13. Kubitscheck, U., M. Tschodrich-Rotter, P. Wedekind, and R. Peters. Two-photon scanning microphotolysis for three-dimensional data storage and biological transport measurements. J. Microsc. 182:225–233, 1996.

    Article  CAS  PubMed  Google Scholar 

  14. Leddy, H. A., M. A. Haider, and F. Guilak. Diffusional anisotropy in collagenous tissues: fluorescence imaging of continuous point photobleaching. Biophys. J. 91:311–316, 2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Mazza, D., K. Braeckmans, F. Cella, I. Testa, D. Vercauteren, J. Demeester, S. S. De Smedt, and A. Diaspro. A new FRAP/FRAPa method for three-dimensional diffusion measurements based on multiphoton excitation microscopy. Biophys. J. 95:3457–3469, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Mazza, D., F. Cella, G. Vicidomini, S. Krol, and A. Diaspro. Role of three-dimensional bleach distribution in confocal and two-photon fluorescence recovery after photobleaching experiments. Appl. Opt. 46:7401–7411, 2007.

    Article  CAS  PubMed  Google Scholar 

  17. Meyvis, T. K., S. C. De Smedt, P. Van Oostveldt, and J. Demeester. Fluorescence recovery after photobleaching: a versatile tool for mobility and interaction measurements in pharmaceutical research. Pharm. Res. 16:1153–1162, 1999.

    Article  CAS  PubMed  Google Scholar 

  18. Mondal, P. P., and A. Diaspro. Simultaneous multilayer scanning and detection for multiphoton fluorescence microscopy. Sci. Rep. 1:149, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Papadopoulos, M. C., J. K. Kim, and A. S. Verkman. Extracellular space diffusion in central nervous system: anisotropic diffusion measured by elliptical surface photobleaching. Biophys. J. 89:3660–3668, 2005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Patterson, G. H., and J. Lippincott-Schwartz. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877, 2002.

    Article  CAS  PubMed  Google Scholar 

  21. Schneider, M., S. Barozzi, I. Testa, M. Faretta, and A. Diaspro. Two-photon activation and excitation properties of PA-GFP in the 720-920-nm region. Biophys. J. 89:1346–1352, 2005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Shi, C., J. Kuo, P. D. Bell, and H. Yao. Anisotropic solute diffusion tensor in porcine TMJ discs measured by FRAP with spatial Fourier analysis. Ann. Biomed. Eng. 38:3398–3408, 2010.

    Article  PubMed  Google Scholar 

  23. Shi, C., G. J. Wright, C. L. Ex-Lubeskie, A. D. Bradshaw, and H. Yao. Relationship between anisotropic diffusion properties and tissue morphology in porcine TMJ disc. Osteoarthr. Cartil. 21:625–633, 2013.

    Article  CAS  PubMed  Google Scholar 

  24. Smith, B. A., W. R. Clark, and H. M. McConnell. Anisotropic molecular motion on cell surfaces. Proc. Natl. Acad. Sci. USA 76:5641–5644, 1979.

    Article  CAS  PubMed  Google Scholar 

  25. Stylianopoulos, T., B. Diop-Frimpong, L. L. Munn, and R. K. Jain. Diffusion anisotropy in collagen gels and tumors: the effect of fiber network orientation. Biophys. J. 99:3119–3128, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Sullivan, K. D., W. H. Sipprell, 3rd, E. B. Brown, Jr., and E. B. Brown, 3rd. Improved model of fluorescence recovery expands the application of multiphoton fluorescence recovery after photobleaching in vivo. Biophys. J. 96:5082–5094, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Travascio, F., and W. Y. Gu. Anisotropic diffusive transport in annulus fibrosus: experimental determination of the diffusion tensor by FRAP technique. Ann. Biomed. Eng. 35:1739–1748, 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Travascio, F., A. R. Jackson, M. D. Brown, and W. Y. Gu. Relationship between solute transport properties and tissue morphology in human annulus fibrosus. J. Orthop. Res. 27:1625–1630, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Travascio, F., W. Zhao, and W. Y. Gu. Characterization of anisotropic diffusion tensor of solute in tissue by video-FRAP imaging technique. Ann. Biomed. Eng. 37:813–823, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Tsay, T. T., and K. A. Jacobson. Spatial Fourier analysis of video photobleaching measurements. Principles and optimization. Biophys. J. 60:360–368, 1991.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Williams, L. N., S. H. Elder, J. L. Bouvard, and M. F. Horstemeyer. The anisotropic compressive mechanical properties of the rabbit patellar tendon. Biorheology 45:577–586, 2008.

    PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by NIH Grants DE021134, DE018741, and AR055775, a NSF RII Grant predoctoral fellowship (EPS-0903795) to CS, and a NSF Graduate Research Fellowship to SEC.

Conflict of interest

None of the authors of this paper have a conflict of interest that might be construed as affecting the conduct or reporting of the work presented.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Yao.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1020 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, C., Cisewski, S.E., Bell, P.D. et al. Measurement of Three-Dimensional Anisotropic Diffusion by Multiphoton Fluorescence Recovery after Photobleaching. Ann Biomed Eng 42, 555–565 (2014). https://doi.org/10.1007/s10439-013-0939-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0939-7

Keywords

Navigation