Skip to main content
Log in

Perovskite Cathode Materials for Low-Temperature Solid Oxide Fuel Cells: Fundamentals to Optimization

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Acceleration of the oxygen reduction reaction at the cathode is paramount in the development of low-temperature solid oxide fuel cells. At low operating temperatures between 450 and 600 °C, the interactions between the surface and the bulk of the cathode materials greatly impact the electrode kinetics and consequently determine the overall efficacy and long-term stability of the fuel cells. This review will provide an overview of the recent progress in the understanding of surface-bulk interactions in perovskite oxides as well as their impact on cathode reactivity and stability. This review will also summarize current strategies in the development of cathode materials through bulk doping and surface functionalization. In addition, this review will highlight the roles of surface segregation in the mediation of surface and bulk interactions, which have profound impacts on the properties of cathode surfaces and the bulk and therefore overall cathode performance. Although trade-offs between reactivity and stability commonly exist in terms of catalyst design, opportunities also exist in attaining optimal cathode performance through the modulation of both cathode surfaces and bulk using combined strategies. This review will conclude with future research directions involving investigations into the role of oxygen vacancy and mobility in catalysis, the rational modulation of surface-bulk interactions and the use of advanced fabrication techniques, all of which can lead to optimized cathode performance.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

Abbreviations

BSCF:

(Ba, Sr)(Co, Fe)O3−δ

LSC:

(La, Sr)CoO3−δ

LSM:

(La, Sr)MnO3

LSCF:

(La,Sr)(Co, Fe)O3−δ

ASR:

Area-specific resistance

ALD:

Atomic layer deposition

ABE:

Average metal–oxygen energy

BZY:

BaZr0.8Y0.2O3−δ

CAED:

Chemically assisted electrodeposition

D2O:

Deuterium oxide

EDX:

Energy-dispersive X-ray

ETEM:

Environmental transmission electron microscopy

GDC:

Gd0.1Ce0.9O1.95

HAADF-STEM:

High-angle annular dark-field scanning transmission electron microscopy

LAO:

LaAlO3

ORR:

Oxygen reduction reaction

ABO3 :

Perovskite oxides

PLD:

Pulsed laser deposition

RP:

Ruddlesden–Popper

SOFCs:

Solid oxide fuel cells

SCT15:

SrCo0.85Ta0.15O3−δ

SCNT:

SrCo0.8Nb0.1Ta0.1O3−δ

SCN20:

SrCo0.8Nb0.2O3−δ

SCT20:

SrCo0.8Ta0.2O3−δ

SSNC:

SrSc0.175Nb0.025Co0.8O3−δ

STO:

SrTiO3

TEM:

Transmission electron microscopy

YSZ:

Yttria-stabilized zirconia

References

  1. Kishimoto, M., Muroyama, H., Suzuki, S., et al.: Development of 1 kW-class ammonia-fueled solid oxide fuel cell stack. Fuel Cells 20, 80–88 (2020)

    Article  CAS  Google Scholar 

  2. Murray, E.P., Tsai, T., Barnett, S.A.: A direct-methane fuel cell with a ceria-based anode. Nature 400, 649–651 (1999)

    Article  CAS  Google Scholar 

  3. Chen, Y., deGlee, B., Tang, Y., et al.: A robust fuel cell operated on nearly dry methane at 500 °C enabled by synergistic thermal catalysis and electrocatalysis. Nat. Energy 3, 1042–1050 (2018)

    Article  CAS  Google Scholar 

  4. Hussain, A.M., Wachsman, E.D.: Liquids-to-power using low-temperature solid oxide fuel cells. Energy Technol. 7, 20–32 (2019)

    Article  CAS  Google Scholar 

  5. Gao, Z., Mogni, L.V., Miller, E.C., et al.: A perspective on low-temperature solid oxide fuel cells. Energ. Environ. Sci. 9, 1602–1644 (2016)

    Article  CAS  Google Scholar 

  6. Boldrin, P., Brandon, N.P.: Progress and outlook for solid oxide fuel cells for transportation applications. Nat. Catal. 2, 571–577 (2019)

    Article  CAS  Google Scholar 

  7. Wachsman, E.D., Lee, K.T.: Lowering the temperature of solid oxide fuel cells. Science 334, 935–939 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. Brett, D.J.L., Atkinson, A., Brandon, N.P., et al.: Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 37, 1568–1578 (2008)

    Article  CAS  PubMed  Google Scholar 

  9. Shao, Z., Haile, S.M.: A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170–173 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. Choi, S., Yoo, S., Kim, J., et al.: Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: : PrBa0.5Sr0.5Co2−xFexO5+δ. Sci. Rep. 3, 2426 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhou, W., Sunarso, J., Zhao, M., et al.: A highly active perovskite electrode for the oxygen reduction reaction below 600 °C. Angew. Chem. Int. Ed. 52, 14036–14040 (2013)

    Article  CAS  Google Scholar 

  12. Li, M., Zhao, M., Li, F., et al.: A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 °C. Nat. Commun. 8, 13990 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li, M., Zhou, W., Zhu, Z.: Highly CO2-tolerant cathode for intermediate-temperature solid oxide fuel cells: samarium-doped ceria-protected SrCo0.85Ta0.15O3−δ Hybrid. ACS Appl. Mater. Inter. 9, 2326–2333 (2017)

    Article  CAS  Google Scholar 

  14. Irvine, J.T.S., Neagu, D., Verbraeken, M.C., et al.: Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nat. Energy 1, 15014 (2016)

    Article  CAS  Google Scholar 

  15. Zhao, C., Li, Y., Zhang, W., et al.: Heterointerface engineering for enhancing the electrochemical performance of solid oxide cells. Energ. Environ. Sci. 13, 53–85 (2020)

    Article  Google Scholar 

  16. Chen, K., Jiang, S.P.: Surface segregation in solid oxide cell oxygen electrodes: phenomena, mitigation strategies and electrochemical properties. Electrochem. Energy Rev. (2020). https://doi.org/10.1007/s41918-020-00078-z

    Article  Google Scholar 

  17. Koo, B., Kim, K., Kim, J.K., et al.: Sr segregation in perovskite oxides: why it happens and how it exists. Joule 2, 1476–1499 (2018)

    Article  CAS  Google Scholar 

  18. Rehman, A.U., Li, M., Knibbe, R., et al.: Enhancing oxygen reduction reaction activity and CO2 tolerance of cathode for low-temperature solid oxide fuel cells by in situ formation of carbonates. ACS Appl. Mater. Inter. 11, 26909–26919 (2019)

    Article  CAS  Google Scholar 

  19. Rehman, A.U., Li, M., Knibbe, R., et al.: Unveiling lithium roles in cobalt-free cathodes for efficient oxygen reduction reaction below 600 °C. ChemElectroChem 6, 5340–5348 (2019)

    Article  CAS  Google Scholar 

  20. Yu, Y., Ludwig, K.F., Woicik, J.C., et al.: Effect of Sr content and strain on Sr surface segregation of La1−xSrxCo0.2Fe0.8O3−δ as cathode material for solid oxide fuel cells. ACS Appl. Mater. Inter. 8, 26704–26711 (2016)

    Article  CAS  Google Scholar 

  21. Yi, J., Weirich, T.E., Schroeder, M.: CO2 corrosion and recovery of perovskite-type BaCo1−xyFexNbyO3−δ membranes. J. Membr. Sci. 437, 49–56 (2013)

    Article  CAS  Google Scholar 

  22. Koo, B., Kwon, H., Kim, Y., et al.: Enhanced oxygen exchange of perovskite oxide surfaces through strain-driven chemical stabilization. Energ. Environ. Sci. 11, 71–77 (2018)

    Article  CAS  Google Scholar 

  23. Tsvetkov, N., Lu, Q., Sun, L., et al.: Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface. Nat. Mater. 15, 1010–1016 (2016)

    Article  CAS  PubMed  Google Scholar 

  24. Anjum, U., Agarwal, M., Khan, T.S., et al.: Controlling surface cation segregation in a nanostructured double perovskite GdBaCo2O5+δ electrode for solid oxide fuel cells. Nanoscale 11, 21404–21418 (2019)

    Article  CAS  PubMed  Google Scholar 

  25. Kwon, O., Sengodan, S., Kim, K., et al.: Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites. Nat. Commun. 8, 15967 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Neagu, D., Papaioannou, E.I., Ramli, W.K.W., et al.: Demonstration of chemistry at a point through restructuring and catalytic activation at anchored nanoparticles. Nat. Commun. 8, 1855 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Neagu, D., Oh, T.S., Miller, D.N., et al.: Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. Nat. Commun. 6, 8120 (2015)

    Article  PubMed  Google Scholar 

  28. Chen, Y., Téllez, H., Burriel, M., et al.: Segregated chemistry and structure on (001) and (100) surfaces of (La1−xSrx)2CoO4 override the crystal anisotropy in oxygen exchange kinetics. Chem. Mater. 27, 5436–5450 (2015)

    Article  CAS  Google Scholar 

  29. Lee, W., Han, J.W., Chen, Y., et al.: Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J. Am. Chem. Soc. 135, 7909–7925 (2013)

    Article  CAS  PubMed  Google Scholar 

  30. Niania, M., Podor, R., Britton, T.B., et al.: In situ study of strontium segregation in La0.6Sr0.4Co0.2Fe0.8O3−δ in ambient atmospheres using high-temperature environmental scanning electron microscopy. J. Mater. Chem. A 6, 14120–14135 (2018)

    Article  CAS  Google Scholar 

  31. Neagu, D., Tsekouras, G., Miller, D.N., et al.: In situ growth of nanoparticles through control of non-stoichiometry. Nat. Chem. 5, 916–923 (2013)

    Article  CAS  PubMed  Google Scholar 

  32. Neagu, D., Kyriakou, V., Roiban, I.L, et al.: In situ observation of nanoparticle exsolution from perovskite oxides: from atomic scale mechanistic insight to nanostructure tailoring. ACS Nano 13, 12996–13005 (2019)

    Article  CAS  PubMed  Google Scholar 

  33. Li, Y., Zhang, W., Zheng, Y., et al.: Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability. Chem. Soc. Rev. 46, 6345–6378 (2017)

    Article  CAS  PubMed  Google Scholar 

  34. Shannon, R.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32, 751–767 (1976)

    Article  Google Scholar 

  35. Kim, D., Bliem, R., Hess, F., et al.: Electrochemical polarization dependence of the elastic and electrostatic driving forces to aliovalent dopant segregation on LaMnO3. J. Am. Chem. Soc. 142, 3548–3563 (2020)

    Article  CAS  PubMed  Google Scholar 

  36. Porotnikova, N.M., Eremin, V.A., Farlenkov, A.S., et al.: Effect of AO segregation on catalytical activity of La0.7A0.3MnOδ (A = Ca, Sr, Ba) regarding oxygen reduction reaction. Catal. Lett. 148, 2839–2847 (2018)

    Article  CAS  Google Scholar 

  37. Cai, Z., Kubicek, M., Fleig, J., et al.: Chemical heterogeneities on La0.6Sr0.4CoO3−δ thin films: correlations to cathode surface activity and stability. Chem. Mater. 24, 1116–1127 (2012)

    Article  CAS  Google Scholar 

  38. Choi, M., Ibrahim, I.A.M., Kim, K., et al.: Engineering of charged defects at perovskite oxide surfaces for exceptionally stable solid oxide fuel cell electrodes. ACS Appl. Mater. Inter. 12, 21494–21504 (2020)

    Article  CAS  Google Scholar 

  39. Kwon, H., Lee, W., Han, J.W.: Suppressing cation segregation on lanthanum-based perovskite oxides to enhance the stability of solid oxide fuel cell cathodes. RSC Adv. 6, 69782–69789 (2016)

    Article  CAS  Google Scholar 

  40. Jin, T., Lu, K.: Surface and interface behaviors of (La0.8Sr0.2)xMnO3 air electrode for solid oxide cells. J. Power Sources 196, 8331–8339 (2011)

    Article  CAS  Google Scholar 

  41. Lee, W., Yildiz, B.: Factors that influence cation segregation at the surfaces of perovskite oxides. ECS Trans. 57, 2115–2123 (2013)

    Article  CAS  Google Scholar 

  42. Abernathy, H., Finklea, H.O., Mebane, D.S., et al.: Examination of the mechanism for the reversible aging behavior at open circuit when changing the operating temperature of (La0.8Sr0.2)0.95MnO3 electrodes. Solid State Ionics 272, 144–154 (2015)

    Article  CAS  Google Scholar 

  43. Pang, S., Yang, G., Jiang, X., et al.: Insight into tuning the surface and bulk microstructure of perovskite catalyst through control of cation non-stoichiometry. J. Catal. 381, 408–414 (2020)

    Article  CAS  Google Scholar 

  44. Xu, C., Du, H., Van der Torren, A.J.H., et al.: Formation mechanism of Ruddlesden–Popper-type antiphase boundaries during the kinetically limited growth of Sr rich SrTiO3 thin films. Sci. Rep. 6, 38296 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tomkiewicz, A.C., Tamimi, M.A., Huq, A., et al.: Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden–Popper phases? Faraday Discuss. 182, 113–127 (2015)

    Article  CAS  PubMed  Google Scholar 

  46. Wu, K.T., Téllez, H., Druce, J., et al.: Surface chemistry and restructuring in thin-film Lan+1NinO3n+1 (n = 1, 2 and 3) Ruddlesden–Popper oxides. J. Mater. Chem. A 5, 9003–9013 (2017)

    Article  CAS  Google Scholar 

  47. Siemons, W., Koster, G., Yamamoto, H., et al.: Origin of charge density at LaAlO3 on SrTiO3 heterointerfaces: possibility of intrinsic doping. Phys. Rev. Lett. 98, 196802 (2007)

    Article  CAS  PubMed  Google Scholar 

  48. Hamada, I., Uozumi, A., Morikawa, Y., et al.: A density functional theory study of self-regenerating catalysts LaFe1−xMxO3−y (M = Pd, Rh, Pt). J. Am. Chem. Soc. 133, 18506–18509 (2011)

    Article  CAS  PubMed  Google Scholar 

  49. Pişkin, F., Bliem, R., Yildiz, B.: Effect of crystal orientation on the segregation of aliovalent dopants at the surface of La0.6Sr0.4CoO3. J. Mater. Chem. A 6, 14136–14145 (2018)

    Article  Google Scholar 

  50. Kim, K.J., Han, H., Defferriere, T., et al.: Facet-dependent in situ growth of nanoparticles in epitaxial thin films: the role of interfacial energy. J. Am. Chem. Soc. 141, 7509–7517 (2019)

    Article  CAS  PubMed  Google Scholar 

  51. Van den Bosch, C.A.M., Cavallaro, A., Moreno, R., et al.: Revealing strain effects on the chemical composition of perovskite oxide thin films surface, bulk, and interfaces. Adv. Mater. Interfaces 7, 1901440 (2020)

    Article  CAS  Google Scholar 

  52. Cai, Z., Kuru, Y., Han, J.W., et al.: Surface electronic structure transitions at high temperature on perovskite oxides: the case of strained La0.8Sr0.2CoO3 thin films. J. Am. Chem. Soc. 133, 17696–17704 (2011)

    Article  CAS  PubMed  Google Scholar 

  53. Jalili, H., Han, J.W., Kuru, Y., et al.: New insights into the strain coupling to surface chemistry, electronic structure, and reactivity of La0.7Sr0.3MnO3. J. Phys. Chem. Lett. 2, 801–807 (2011)

    Article  CAS  Google Scholar 

  54. Ding, H., Virkar, A.V., Liu, M., et al.: Suppression of Sr surface segregation in La1−xSrxCo1−yFeyO3−δ: a first principles study. Phys. Chem. Chem. Phys. 15, 489–496 (2013)

    Article  CAS  PubMed  Google Scholar 

  55. Bachelet, R., Sánchez, F., Palomares, F.J., et al.: Atomically flat SrO-terminated SrTiO3(001) substrate. Appl. Phys. Lett. 95, 141915 (2009)

    Article  CAS  Google Scholar 

  56. Crumlin, E.J., Mutoro, E., Hong, W.T., et al.: In situ ambient pressure X-ray photoelectron spectroscopy of cobalt perovskite surfaces under cathodic polarization at high temperatures. J. Phys. Chem. C 117, 16087–16094 (2013)

    Article  CAS  Google Scholar 

  57. Wen, Y., Yang, T., Lee, D., et al.: Temporal and thermal evolutions of surface Sr-segregation in pristine and atomic layer deposition modified La0.6Sr0.4CoO3−δ epitaxial films. J. Mater. Chem. A 6, 24378–24388 (2018)

    Article  CAS  Google Scholar 

  58. Kubicek, M., Rupp, G.M., Huber, S., et al.: Cation diffusion in La0.6Sr0.4CoO3−δ below 800 °C and its relevance for Sr segregation. Phys. Chem. Chem. Phys. 16, 2715–2726 (2014)

    Article  CAS  PubMed  Google Scholar 

  59. Lai, K.Y., Manthiram, A.: Evolution of exsolved nanoparticles on a perovskite oxide surface during a redox process. Chem. Mater. 30, 2838–2847 (2018)

    Article  CAS  Google Scholar 

  60. Sharma, V., Mahapatra, M.K., Krishnan, S., et al.: Effects of moisture on (La, A)MnO3 (A = Ca, Sr, and Ba) solid oxide fuel cell cathodes: a first-principles and experimental study. J. Mater. Chem. A 4, 5605–5615 (2016)

    Article  CAS  Google Scholar 

  61. Zhu, L., Wei, B., Lü, Z., et al.: Performance degradation of double-perovskite PrBaCo2O5+δ oxygen electrode in CO2 containing atmospheres. Appl. Surf. Sci. 416, 649–655 (2017)

    Article  CAS  Google Scholar 

  62. Mutoro, E., Crumlin, E.J., Pöpke, H., et al.: Reversible compositional control of oxide surfaces by electrochemical potentials. J. Phys. Chem. Lett. 3, 40–44 (2012)

    Article  CAS  Google Scholar 

  63. Baumann, F.S., Fleig, J.R., Konuma, M., et al.: Strong performance improvement of La0.6Sr0.4Co0.8Fe02O3−δ SOFC cathodes by electrochemical activation. J. Electrochem. Soc. 152, A2074 (2005)

    Article  CAS  Google Scholar 

  64. Chen, K., Li, N., Ai, N., et al.: Polarization-induced interface and Sr segregation of in situ assembled La0.6Sr0.4Co0.2Fe0.8O3−δ electrodes on Y2O3–ZrO2 electrolyte of solid oxide fuel cells. ACS Appl. Mater. Inter. 8, 31729–31737 (2016)

    Article  CAS  Google Scholar 

  65. lao GJ, Savinell RF, Shao-Horn Y, : Activity enhancement of dense strontium-doped lanthanum manganite thin films under cathodic polarization: a combined AES and XPS study. J. Electrochem. Soc. 156, B771 (2009)

    Article  CAS  Google Scholar 

  66. Jiang, S.P.: Activation, microstructure, and polarization of solid oxide fuel cell cathodes. J. Solid State Electrochem. 11, 93–102 (2007)

    Article  CAS  Google Scholar 

  67. Huber, A.K., Falk, M., Rohnke, M., et al.: In situ study of activation and de-activation of LSM fuel cell cathodes-electrochemistry and surface analysis of thin-film electrodes. J. Catal. 294, 79–88 (2012)

    Article  CAS  Google Scholar 

  68. Huber, A.K., Falk, M., Rohnke, M., et al.: In situ study of electrochemical activation and surface segregation of the SOFC electrode material La0.75Sr0.25Cr0.5Mn0.5Oδ. Phys. Chem. Chem. Phys. 14, 751–758 (2012)

    Article  CAS  PubMed  Google Scholar 

  69. Adler, S.B.: Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 4791–4844 (2004)

    Article  CAS  PubMed  Google Scholar 

  70. Wang, L., Merkle, R., Mastrikov, Y.A., et al.: Oxygen exchange kinetics on solid oxide fuel cell cathode materials-general trends and their mechanistic interpretation. J. Mater. Res. 27, 2000–2008 (2012)

    Article  CAS  Google Scholar 

  71. Mastrikov, Y.A., Merkle, R., Heifets, E., et al.: Pathways for oxygen incorporation in mixed conducting perovskites: a DFT-based mechanistic analysis for (La, Sr)MnO3−δ. J. Phys. Chem. C 114, 3017–3027 (2010)

    Article  CAS  Google Scholar 

  72. Nakamura, T., Oike, R., Ling, Y., et al.: The determining factor for interstitial oxygen formation in Ruddlesden–Popper type La2NiO4-based oxides. Phys. Chem. Chem. Phys. 18, 1564–1569 (2016)

    Article  CAS  PubMed  Google Scholar 

  73. Xu, S., Jacobs, R., Morgan, D.: Factors controlling oxygen interstitial diffusion in the Ruddlesden–Popper oxide La2−xSrxNiO4+δ. Chem. Mater. 30, 7166–7177 (2018)

    Article  CAS  Google Scholar 

  74. Tarasova, N., Animitsa, I., Galisheva, A., et al.: Protonic transport in the new phases BaLaIn0.9M0.1O4.05 (M = Ti, Zr) with Ruddlesden–Popper structure. Solid State Sci. 101, 106121 (2020)

    Article  CAS  Google Scholar 

  75. Vielstich, W., Gasteiger, H.A., Yokokawa H.: Harumi Yokokawa: Handbook of Fuel Cells: Advances in Electrocatalysis, Materials, Diagnostics and Durability. Wiley, Hoboken (2009)

    Google Scholar 

  76. Chatzichristodoulou, C., Norby, P., Hendriksen, P.V., et al.: Size of oxide vacancies in fluorite and perovskite structured oxides. J. Electroceram. 34, 100–107 (2015)

    Article  CAS  Google Scholar 

  77. Joo, J.H., Merkle, R., Maier, J.: Effects of water on oxygen surface exchange and degradation of mixed conducting perovskites. J. Power Sources 196, 7495–7499 (2011)

    Article  CAS  Google Scholar 

  78. Zhang, Z., Xu, X., Zhang, J., et al.: Silver-doped strontium niobium cobaltite as a new perovskite-type ceramic membrane for oxygen separation. J. Membr. Sci. 563, 617–624 (2018)

    Article  CAS  Google Scholar 

  79. Zomorrodian, A., Salamati, H., Lu, Z., et al.: Electrical conductivity of epitaxial La0.6Sr0.4Co0.2Fe0.8O3−δ thin films grown by pulsed laser deposition. Int. J. Hydrogen Energy 35, 12443–12448 (2010)

    Article  CAS  Google Scholar 

  80. Armstrong, E.N., Duncan, K.L., Wachsman, E.D.: Effect of A and B-site cations on surface exchange coefficient for ABO3 perovskite materials. Phys. Chem. Chem. Phys. 15, 2298–2308 (2013)

    Article  CAS  PubMed  Google Scholar 

  81. Ciucci, F.: Electrical conductivity relaxation measurements: Statistical investigations using sensitivity analysis, optimal experimental design and ECRTOOLS. Solid State Ionics 239, 28–40 (2013)

    Article  CAS  Google Scholar 

  82. Chen, D., Shao, Z.: Surface exchange and bulk diffusion properties of Ba0.5Sr0.5Co0.8Fe0.2O3−δ mixed conductor. Int. J. Hydrogen Energy 36, 6948–6956 (2011)

    Article  CAS  Google Scholar 

  83. Ananyev, M.V., Porotnikova, N.M., Kurumchin, E.K.: Influence of strontium content on the oxygen surface exchange kinetics and oxygen diffusion in La1−xSrxCoO3−δ oxides. Solid State Ionics 341, 115052 (2019)

    Article  CAS  Google Scholar 

  84. Metlenko, V., Jung, W., Bishop, S.R., et al.: Oxygen diffusion and surface exchange in the mixed conducting oxides SrTi1−yFeyO3−δ. Phys. Chem. Chem. Phys. 18, 29495–29505 (2016)

    Article  CAS  PubMed  Google Scholar 

  85. Li, M., Niu, H., Druce, J., et al.: A CO2-tolerant perovskite oxide with high oxide ion and electronic conductivity. Adv. Mater. 32, 1905200 (2020)

    Article  CAS  Google Scholar 

  86. Yang, T., Jin, X., Huang, K.: Transport properties of SrCo0.9Nb0.1O3−δ and SrCo0.9Ta0.1O3−δ mixed conductors determined by combined oxygen permeation measurement and phenomenological modeling. J. Membr. Sci. 568, 47–54 (2018)

    Article  CAS  Google Scholar 

  87. Zhang, J., Zhang, Z., Chen, Y., et al.: Materials design for ceramic oxygen permeation membranes: single perovskite vs. single/double perovskite composite, a case study of tungsten-doped barium strontium cobalt ferrite. J. Membr. Sci. 566, 278–287 (2018)

    Article  CAS  Google Scholar 

  88. Lu, Y., Zhao, H., Chang, X., et al.: Novel cobalt-free BaFe1−xGdxO3−δ perovskite membranes for oxygen separation. J. Mater. Chem. A 4, 10454–10466 (2016)

    Article  CAS  Google Scholar 

  89. Liu, B., Sunarso, J., Zhang, Y., et al.: Highly oxygen non-stoichiometric BaSc0.25Co0.75O3−δ as a high-performance cathode for intermediate-temperature solid oxide fuel cells. ChemElectroChem 5, 785–792 (2018)

    Article  CAS  Google Scholar 

  90. Zhang, S., Wang, H., Lu, M.Y., et al.: Cobalt-substituted SrTi0.3Fe0.7O3−δ: a stable high-performance oxygen electrode material for intermediate-temperature solid oxide electrochemical cells. Eng. Environ. Sci. 11, 1870–1879 (2018)

    CAS  Google Scholar 

  91. De Souza, R.A., Kilner, J.A.: Oxygen transport in La1−xSrxMn1−yCoyOδ perovskites: part II. Oxygen surface exchange. Solid State Ionics 126, 153–161 (1999)

    Article  Google Scholar 

  92. Bian, L., Wang, L., Duan, C., et al.: Co-free La0.6Sr0.4Fe0.9Nb0.1O3−δ symmetric electrode for hydrogen and carbon monoxide solid oxide fuel cell. Int. J. Hydrogen Energy 44, 32210–32218 (2019)

    Article  CAS  Google Scholar 

  93. Zhou, N., Yin, Y., Li, J., et al.: A robust high performance cobalt-free oxygen electrode La0.5Sr0.5Fe0.8Cu0.15Nb0.05O3−δ for reversible solid oxide electrochemical cell. J. Power Sources 340, 373–379 (2017)

    Article  CAS  Google Scholar 

  94. He, G., Baumann, S., Liang, F., et al.: Phase stability and oxygen permeability of Fe-based BaFe0.9Mg0.05X0.05O3 (X = Zr, Ce, Ca) membranes for air separation. Sep. Purif. Technol. 220, 176–182 (2019)

    Article  CAS  Google Scholar 

  95. Gu, H., Zheng, Y., Ran, R., et al.: Synthesis and assessment of La0.8Sr0.2ScyMn1−yO3−δ as cathodes for solid-oxide fuel cells on scandium-stabilized zirconia electrolyte. J. Power Sources 183, 471–478 (2008)

    Article  CAS  Google Scholar 

  96. Gan, L., Ye, L., Liu, M., et al.: A scandium-doped manganate anode for a proton-conducting solid oxide steam electrolyzer. RSC Adv. 6, 641–647 (2016)

    Article  CAS  Google Scholar 

  97. Richter, J., Holtappels, P., Graule, T., et al.: Materials design for perovskite SOFC cathodes. Monatsh. Chem. 140, 985–999 (2009)

    Article  CAS  Google Scholar 

  98. Halder, S., Sheikh, M.S., Ghosh, B., et al.: Electronic structure and electrical conduction by polaron hopping mechanism in A2LuTaO6 (A = Ba, Sr, Ca) double perovskite oxides. Ceram. Int. 43, 11097–11108 (2017)

    Article  CAS  Google Scholar 

  99. Piao, J., Sun, K., Zhang, N., et al.: Preparation and characterization of Pr1−xSrxFeO3 cathode material for intermediate temperature solid oxide fuel cells. J. Power Sources 172, 633–640 (2007)

    Article  CAS  Google Scholar 

  100. Ding, X., Gao, X., Zhu, W., et al.: Electrode redox properties of Ba1−xLaxFeO3−δ as cobalt free cathode materials for intermediate-temperature SOFCs. Int. J. Hydrogen Energy 39, 12092–12100 (2014)

    Article  CAS  Google Scholar 

  101. Raccah, P.M., Goodenough, J.B.: First-order localized-electron ⇆ collective-electron transition in LaCoO3. Phys. Rev. 155, 932–943 (1967)

    Article  CAS  Google Scholar 

  102. Zhou, S., Miao, X., Zhao, X., et al.: Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition. Nat. Commun. 7, 11510 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Altin, S., Aksan, M.A., Bayri, A.: High temperature spin state transitions in misfit-layered Ca3Co4O9. J. Alloys Compd. 587, 40–44 (2014)

    Article  CAS  Google Scholar 

  104. Mahato, N., Banerjee, A., Gupta, A., et al.: Progress in material selection for solid oxide fuel cell technology: a review. Prog. Mater Sci. 72, 141–337 (2015)

    Article  CAS  Google Scholar 

  105. Patrakeev, M.V., Bahteeva, J.A., Mitberg, E.B., et al.: Electron/hole and ion transport in La1−xSrxFeO3−δ. J. Solid State Chem. 172, 219–231 (2003)

    Article  CAS  Google Scholar 

  106. Mizusaki, J., Sasamoto, T., Cannon, W.R., et al.: Electronic conductivity, seebeck coefficient, and defect structure of La1−xSrxFeO3 (x = 0.l, 0.25). J. Am. Ceram. Soc. 66, 247–252 (1983)

    Article  CAS  Google Scholar 

  107. Orikasa, Y., Ina, T., Nakao, T., et al.: An X-ray absorption spectroscopic study on mixed conductive La0.6Sr0.4Co0.8Fe0.2O3−δ cathodes. I. Electrical conductivity and electronic structure. Phys. Chem. Chem. Phys. 13, 16637–16643 (2011)

    Article  CAS  PubMed  Google Scholar 

  108. Wærnhus, I., Grande, T., Wiik, K.: Surface exchange of oxygen in La1−xSrxFeO3−δ (x = 0, 0.1). Top. Catal. 54, 1009 (2011)

    Article  CAS  Google Scholar 

  109. Merkulov, O.V., Naumovich, E.N., Patrakeev, M.V., et al.: Defect formation, ordering, and transport in SrFe1−xSixO3−δ (x = 0.05–0.20). J. Solid State Electrochem. 22, 727–737 (2018)

    Article  CAS  Google Scholar 

  110. Olsson, E., Cottom, J., Aparicio-Anglès, X., et al.: Computational study of the mixed B-site perovskite SmBxCo1−xO3−d (B = Mn, Fe, Ni, Cu) for next generation solid oxide fuel cell cathodes. Phys. Chem. Chem. Phys. 21, 9407–9418 (2019)

    Article  CAS  PubMed  Google Scholar 

  111. Li, Q., Deng, Y., Zhu, Y., et al.: Structural stability of Lanthanum-based oxygen-deficient perovskites in redox catalysis: a density functional theory study. Catal. Today 347, 142–149 (2020)

    Article  CAS  Google Scholar 

  112. Roohandeh, T., Saievar-Iranizad, E.: Ni- and Cu-doping effects on formation and migration energies of oxygen vacancies in Ba0.5Sr0.5Fe1-x(Cu/Ni)xO3–δ perovskites: a DFT + U study. Appl. Phys. A 125, 552 (2019)

    Article  CAS  Google Scholar 

  113. Muñoz-García, A.B., Ritzmann, A.M., Pavone, M., et al.: Oxygen Transport in perovskite-type solid oxide fuel cell materials: insights from quantum mechanics. Acc. Chem. Res. 47, 3340–3348 (2014)

    Article  CAS  PubMed  Google Scholar 

  114. Lee, D., Kim, D., Son, S.J., et al.: Simultaneous A- and B- site substituted double perovskite (AA’B2O5+δ) as a new high-performance and redox-stable anode material for solid oxide fuel cells. J. Power Sources 434, 226743 (2019)

    Article  CAS  Google Scholar 

  115. Merkle, R., Mastrikov, Y.A., Kotomin, E.A., et al.: First principles calculations of oxygen vacancy formation and migration in Ba1−xSrxCo1−yFeyO3−δ perovskites. J. Electrochem. Soc. 159, B219–B226 (2011)

    Article  CAS  Google Scholar 

  116. Ji, Q., Bi, L., Zhang, J., et al.: The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Eng. Environ. Sci. 13, 1408–1428 (2020)

    CAS  Google Scholar 

  117. Li, M., Zhou, W., Zhu, Z.: Comparative studies of SrCo1−xTaxO3−δ (x = 0.05–0.4) oxides as cathodes for low-temperature solid-oxide fuel cells. ChemElectroChem 2, 1331–1338 (2015)

    Article  CAS  Google Scholar 

  118. Li, M., Zhou, W., Peterson, V.K., et al.: A comparative study of SrCo0.8Nb0.2O3−δ and SrCo0.8Ta0.2O3−δ as low-temperature solid oxide fuel cell cathodes: effect of non-geometry factors on the oxygen reduction reaction. J. Mater. Chem. A 3, 24064–24070 (2015)

    Article  CAS  Google Scholar 

  119. Li, M., Zhou, W., Xu, X., et al.: SrCo0.85Fe0.1P0.05O3−δ perovskite as a cathode for intermediate-temperature solid oxide fuel cells. J. Mater. Chem. A 1, 13632–13639 (2013)

    Article  CAS  Google Scholar 

  120. Grunbaum, N., Mogni, L., Prado, F., et al.: Phase equilibrium and electrical conductivity of SrCo0.8Fe0.2O3−δ. J. Solid State Chem. 177, 2350–2357 (2004)

    Article  CAS  Google Scholar 

  121. Baijnath, T.P., Basu, S.: Cobalt and molybdenum co-doped Ca2Fe2O5 cathode for solid oxide fuel cell. Int. J. Hydrogen Energy 44, 10059–10070 (2019)

    Article  CAS  Google Scholar 

  122. Jeen, H., Choi, W.S., Freeland, J.W., et al.: Topotactic phase transformation of the brownmillerite SrCo0.25 to the perovskite SrCoO3−δ. Adv. Mater. 25, 3651–3656 (2013)

    Article  CAS  PubMed  Google Scholar 

  123. Ding, X., Gao, Z., Ding, D., et al.: Cation deficiency enabled fast oxygen reduction reaction for a novel SOFC cathode with promoted CO2 tolerance. Appl. Catal. 243, 546–555 (2019)

    Article  CAS  Google Scholar 

  124. Chen, T., Pang, S., Shen, X., et al.: Evaluation of Ba-deficient PrBa1−xFe2O5+δ oxides as cathode materials for intermediate-temperature solid oxide fuel cells. RSC Adv. 6, 13829–13836 (2016)

    Article  CAS  Google Scholar 

  125. Zhu, J., Liu, G., Liu, Z., et al.: Unprecedented perovskite oxyfluoride membranes with high-efficiency oxygen ion transport paths for low-temperature oxygen permeation. Adv. Mater. 28, 3511–3515 (2016)

    Article  CAS  PubMed  Google Scholar 

  126. Mayeshiba, T.T., Morgan, D.D.: Factors controlling oxygen migration barriers in perovskites. Solid State Ionics 296, 71–77 (2016)

    Article  CAS  Google Scholar 

  127. Shaula, A.L., Pivak, Y.V., Waerenborgh, J.C., et al.: Ionic conductivity of brownmillerite-type calcium ferrite under oxidizing conditions. Solid State Ionics 177, 2923–2930 (2006)

    Article  CAS  Google Scholar 

  128. Kharton, V.V., Marozau, I.P., Vyshatko, N.P., et al.: Oxygen ionic conduction in brownmillerite CaAl0.5Fe0.5O2.5+δ. Mater. Res. Bull. 38, 773–782 (2003)

    Article  CAS  Google Scholar 

  129. Nikonov, A.V., Kuterbekov, K., Bekmyrza, K.Z., et al.: A brief review of conductivity and thermal expansion of perovskite-related oxides for SOFC cathode. EurAsian J. Phys. Funct. Mater. 2, 274–292 (2018)

    Article  Google Scholar 

  130. Kilner, J.A., Brook, R.J.: A study of oxygen ion conductivity in doped non-stoichiometric oxides. Solid State Ionics 6, 237–252 (1982)

    Article  CAS  Google Scholar 

  131. Xu, N., Zhao, H., Zhou, X., et al.: Dependence of critical radius of the cubic perovskite ABO3 oxides on the radius of A- and B-site cations. Int. J. Hydrogen Energy 35, 7295–7301 (2010)

    Article  CAS  Google Scholar 

  132. Mogensen, M., Lybye, D., Bonanos, N., et al.: Factors controlling the oxide ion conductivity of fluorite and perovskite structured oxides. Solid State Ionics 174, 279–286 (2004)

    Article  CAS  Google Scholar 

  133. Dou, L., Wong, A.B., Yu, Y., et al.: Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 349, 1518–1521 (2015)

    Article  CAS  PubMed  Google Scholar 

  134. Lu, Y., Zhao, H., Cheng, X., et al.: Investigation of In-doped BaFeO3−δ perovskite-type oxygen permeable membranes. J. Mater. Chem. A 3, 6202–6214 (2015)

    Article  CAS  Google Scholar 

  135. Cook, R.L.: Investigations on BaTh0.9Gd0.1O3 as an intermediate temperature fuel cell solid electrolyte. J. Electrochem. Soc. 139, L19 (1992)

    Article  CAS  Google Scholar 

  136. Chou, Y.S., Stevenson, J.W., Choi, J.P.: Long-term evaluation of solid oxide fuel cell candidate materials in a 3-cell generic short stack fixture, Part II: sealing glass stability, microstructure and interfacial reactions. J. Power Sources 250, 166–173 (2014)

    Article  CAS  Google Scholar 

  137. Aphale, A., Liang, C., Hu, B., et al.: Chapter 6-cathode degradation from airborne contaminants in solid oxide fuel cells: a review. In: Brandon, N.P., Ruiz-Trejo, E., Boldrin, P. (eds.) Solid Oxide Fuel Cell Lifetime Reliab, pp. 101–119. Academic Press, New York (2017)

    Chapter  Google Scholar 

  138. Xu, X., Zhao, J., Li, M., et al.: Sc and Ta-doped SrCoO3−δ perovskite as a high-performance cathode for solid oxide fuel cells. Compos. B 178, 107491 (2019)

    Article  CAS  Google Scholar 

  139. Zhu, Y., Zhou, W., Chen, Z., et al.: SrNb0.1Co0.7Fe0.2O3−δ Perovskite as a next-generation electrocatalyst for oxygen evolution in alkaline solution. Angew. Chem. Int. Ed. 54, 3897–3901 (2015)

    Article  CAS  Google Scholar 

  140. Goldschmidt, V.M.: Die Gesetze der Krystallochemie. Naturwissenschaften 14, 477–485 (1926)

    Article  CAS  Google Scholar 

  141. Bartel, C.J., Sutton, C., Goldsmith, B.R., et al.: New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 5, eaav0693 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Švarcová, S., Wiik, K., Tolchard, J., et al.: Structural instability of cubic perovskite BaxSr1−xCo1−yFeyO3−δ. Solid State Ionics 178, 1787–1791 (2008)

    Article  CAS  Google Scholar 

  143. Kruidhof, H., Bouwmeester, H.J.M., Doorn, R.H.E., et al.: Influence of order-disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides. Solid State Ionics 63–65, 816–822 (1993)

    Article  Google Scholar 

  144. Kashyap, V.K., Jaiswal, S.K., Kumar, J.: Effect of Zr4+on the phase stability and oxygen permeation characteristics of SrCo0.8Fe0.2-yZryO3–δ (y \(\leqslant\) 0.1) membranes. Ionics 26, 1895–1911 (2020)

    Article  CAS  Google Scholar 

  145. Kubicek, M., Limbeck, A., Frömling, T., et al.: Relationship between cation segregation and the electrochemical oxygen reduction kinetics of La0.6Sr0.4CoO3−δ thin film electrodes. J. Electrochem. Soc. 158, B727 (2011)

    Article  CAS  Google Scholar 

  146. Rupp, G.M., Opitz, A.K., Nenning, A., et al.: Real-time impedance monitoring of oxygen reduction during surface modification of thin film cathodes. Nat. Mater. 16, 640–645 (2017)

    Article  CAS  PubMed  Google Scholar 

  147. Patel, N.K., Utter, R.G., Das, D., et al.: Surface degradation of strontium-based perovskite electrodes of solid oxide fuel cells. J. Power Sources 438, 227040 (2019)

    Article  CAS  Google Scholar 

  148. Baqué, L.C., Soldati, A.L., Teixeira-Neto, E., et al.: Degradation of oxygen reduction reaction kinetics in porous La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes due to aging-induced changes in surface chemistry. J. Power Sources 337, 166–172 (2017)

    Article  CAS  Google Scholar 

  149. Yokokawa, H., Tu, H., Iwanschitz, B., et al.: Fundamental mechanisms limiting solid oxide fuel cell durability. J. Power Sources 182, 400–412 (2008)

    Article  CAS  Google Scholar 

  150. Konysheva, E., Penkalla, H., Wessel, E., et al.: Chromium poisoning of perovskite cathodes by the ODS alloy Cr5Fe1Y2O3 and the high chromium ferritic steel Crofer22APU. J. Electrochem. Soc. 153, A765 (2006)

    Article  CAS  Google Scholar 

  151. Wang, R., Würth, M., Pal, U.B., et al.: Roles of humidity and cathodic current in chromium poisoning of Sr-doped LaMnO3-based cathodes in solid oxide fuel cells. J. Power Sources 360, 87–97 (2017)

    Article  CAS  Google Scholar 

  152. Sand, T., Geers, C., Cao, Y., et al.: Effective reduction of chromium-oxy-hydroxide evaporation from Ni-base alloy 690. Oxid. Met. 92, 259–279 (2019)

    Article  CAS  Google Scholar 

  153. Bucher, E., Sitte, W., Klauser, F., et al.: Impact of humid atmospheres on oxygen exchange properties, surface-near elemental composition, and surface morphology of La0.6Sr0.4CoO3−δ. Solid State Ionics 208, 43–51 (2012)

    Article  CAS  Google Scholar 

  154. Hagen, A., Neufeld, K., Liu, Y.L.: Effect of humidity in air on performance and long-term durability of SOFCs. J. Electrochem. Soc. 157, B1343 (2010)

    Article  CAS  Google Scholar 

  155. Nielsen, J., Hagen, A., Liu, Y.L.: Effect of cathode gas humidification on performance and durability of solid oxide fuel cells. Solid State Ionics 181, 517–524 (2010)

    Article  CAS  Google Scholar 

  156. Wachsman, E.D., Huang, Y.L., Pellegrinelli, C., et al.: (Invited) towards a fundamental understanding of the cathode degradation mechanisms. ECS Trans. 61, 47–56 (2014)

    Article  CAS  Google Scholar 

  157. Huang, Y., Pellegrinelli, C., Wachsman, E.D.: Fundamental impact of humidity on SOFC cathode ORR. J. Electrochem. Soc. 163, F171–F182 (2015)

    Article  CAS  Google Scholar 

  158. Huang, Y., Pellegrinelli, C., Wachsman, E.D.: Oxygen dissociation kinetics of concurrent heterogeneous reactions on metal oxides. ACS Catal. 7, 5766–5772 (2017)

    Article  CAS  Google Scholar 

  159. Zhang, D., Machala, M.L., Chen, D., et al.: Hydroxylation and cation segregation in (La0.5Sr0.5)FeO3−δ electrodes. Chem. Mater. 32, 2926–2934 (2020)

    Article  CAS  Google Scholar 

  160. Liu, R.R., Kim, S.H., Taniguchi, S., et al.: Influence of water vapor on long-term performance and accelerated degradation of solid oxide fuel cell cathodes. J. Power Sources 196, 7090–7096 (2011)

    Article  CAS  Google Scholar 

  161. Wang, J., Yang, Z., He, X., et al.: Effect of humidity on La0.4Sr0.6Co0.2Fe0.7Nb0.1O3−δ cathode of solid oxide fuel cells. Int. J. Hydrogen Energy 44, 3055–3062 (2019)

    Article  CAS  Google Scholar 

  162. Hammami, R., Batis, H., Minot, C.: Combined experimental and theoretical investigation of the CO2 adsorption on LaMnO3+y perovskite oxide. Surf. Sci. 603, 3057–3067 (2009)

    Article  CAS  Google Scholar 

  163. Zhou, W., Zhu, Z.: The instability of solid oxide fuel cells in an intermediate temperature region. Asia-Pac. J. Chem. Eng. 6, 199–203 (2011)

    Article  CAS  Google Scholar 

  164. Chen, W., Chen, C.S., Winnubst, L.: Ta-doped SrCo0.8Fe0.2O3−δ membranes: phase stability and oxygen permeation in CO2 atmosphere. Solid State Ionics 196, 30–33 (2011)

    Article  CAS  Google Scholar 

  165. Zhu, Y., Sunarso, J., Zhou, W., et al.: Probing CO2 reaction mechanisms and effects on the SrNb0.1Co0.9−xFexO3−δ cathodes for solid oxide fuel cells. Appl. Catal. B 172–173, 52–57 (2015)

    Article  CAS  Google Scholar 

  166. Cetin, D., Yu, Y., Luo, H., et al.: Effect of carbon dioxide on the cathodic performance of solid oxide fuel cells. ECS Trans. 61, 131–137 (2014)

    Article  CAS  Google Scholar 

  167. Yi, J., Feng, S., Zuo, Y., et al.: Oxygen permeability and stability of Sr0.95Co0.8Fe0.2O3−δ in a CO2- and H2O-containing atmosphere. Chem. Mater. 17, 5856–5861 (2005)

    Article  CAS  Google Scholar 

  168. Yáng, Z., Harvey, A.S., Gauckler, L.J.: Influence of CO2 on Ba0.2Sr0.8Co0.8Fe0.2O3−δ at elevated temperatures. Scr. Mater. 61, 1083–1086 (2009)

    Article  CAS  Google Scholar 

  169. Zhang, Y., Yang, G., Chen, G., et al.: Evaluation of the CO2 poisoning effect on a highly active cathode SrSc0.175Nb0.025Co0.8O3−δ in the oxygen reduction reaction. ACS Appl. Mater. Inter. 8, 3003–3011 (2016)

    Article  CAS  Google Scholar 

  170. Stern, K.H., Weise, E.L.: High Temperature Properties and Decomposition of Inorganic Salts Part 1, Sulfates. pp. 1–38. U. S. Department of Commerce, United States (1966)

  171. Lancashire, R.J.: Lecture 3. Polarizability (2015). http://wwwchem.uwimona.edu.jm/courses/CHEM1902/IC10K_MG_Fajans.html. Accessed 30 July 2020

  172. Stern, K.H.: High temperature properties and decomposition of inorganic salts part 3, nitrates and nitrites. J. Phys. Chem. Ref. Data 1, 747–772 (1972)

    Article  Google Scholar 

  173. Li, K., Zhao, H., Lu, Y., et al.: High CO2 tolerance oxygen permeation membranes BaFe0.95−xCa0.05TixO3−δ. J. Membr. Sci. 550, 302–312 (2018)

    Article  CAS  Google Scholar 

  174. Li, J., Hou, J., Lu, Y., et al.: Ca-containing Ba0.95Ca0.05Co0.4Fe0.4Zr0.1O3−δ cathode with high CO2-poisoning tolerance for proton-conducting solid oxide fuel cells. J. Power Sources 453, 227909 (2020)

    Article  CAS  Google Scholar 

  175. Choi, S., Park, S., Shin, J., et al.: The effect of calcium doping on the improvement of performance and durability in a layered perovskite cathode for intermediate-temperature solid oxide fuel cells. J. Mater. Chem. A 3, 6088–6095 (2015)

    Article  CAS  Google Scholar 

  176. Chen, G., Widenmeyer, M., Tang, B., et al.: A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+δ Ruddlesden–Popper membrane for oxygen separation. Front. Chem. Sci. Eng. 14, 405–414 (2020)

    Article  CAS  Google Scholar 

  177. Yi, J., Schroeder, M., Martin, M.: CO2-tolerant and cobalt-free SrFe0.8Nb0.2O3−δ perovskite membrane for oxygen separation. Chem. Mater. 25, 815–817 (2013)

    Article  CAS  Google Scholar 

  178. Yi, J., Brendt, J., Schroeder, M., et al.: Oxygen permeation and oxidation states of transition metals in (Fe, Nb)-doped BaCoO3−δ perovskites. J. Membr. Sci. 387–388, 17–23 (2012)

    Article  CAS  Google Scholar 

  179. Meng, Y., Sun, L., Gao, J., et al.: Insights into the CO2 stability-performance trade-off of antimony-doped SrFeO3−δ perovskite cathode for solid oxide fuel cells. ACS Appl. Mater. Inter. 11, 11498–11506 (2019)

    Article  CAS  Google Scholar 

  180. Zhang, J., Li, X., Zhang, Z., et al.: A new highly active and CO2-stable perovskite-type cathode material for solid oxide fuel cells developed from A- and B-site cation synergy. J. Power Sources 457, 227995 (2020)

    Article  CAS  Google Scholar 

  181. Zhang, Y., Gao, X., Sunarso, J., et al.: Significantly Improving the durability of single-chamber solid oxide fuel cells: a highly active CO2-resistant perovskite cathode. ACS Appl. Energy Mater. 1, 1337–1343 (2018)

    Article  CAS  Google Scholar 

  182. Zhu, J., Guo, S., Chu, Z., et al.: CO2-tolerant oxygen-permeable perovskite-type membranes with high permeability. J. Mater. Chem. A 3, 22564–22573 (2015)

    Article  CAS  Google Scholar 

  183. Park, J.H., Kim, K.Y., Park, S.D.: Oxygen permeation and stability of La0.6Sr0.4TixFe1-xO3−δ (x = 0.2 and 0.3) membrane. Desalination 245, 559–569 (2009)

    Article  CAS  Google Scholar 

  184. Zhang, Z., Chen, D., Dong, F., et al.: Understanding the doping effect toward the design of CO2-tolerant perovskite membranes with enhanced oxygen permeability. J. Membr. Sci. 519, 11–21 (2016)

    Article  CAS  Google Scholar 

  185. Slater, J.C.: Atomic shielding constants. Phys. Rev. 36, 57–64 (1930)

    Article  CAS  Google Scholar 

  186. Sammells, A.F., Cook, R.L., White, J.H., et al.: Rational selection of advanced solid electrolytes for intermediate temperature fuel cells. Solid State Ionics 52, 111–123 (1992)

    Article  CAS  Google Scholar 

  187. Daio, T., Mitra, P., Lyth, S.M., et al.: Atomic-resolution analysis of degradation phenomena in SOFCS: a case study of SO2 poisoning in LSM cathodes. Int. J. Hydrogen Energy 41, 12214–12221 (2016)

    Article  CAS  Google Scholar 

  188. Berger, C., Bucher, E., Gspan, C., et al.: Long-term stability of oxygen surface exchange kinetics of Pr0.8Ca0.2FeO3−δ against SO2-poisoning. Solid State Ionics 326, 82–89 (2018)

    Article  CAS  Google Scholar 

  189. Wang, F., Yamaji, K., Cho, D.H., et al.: Sulfur poisoning on La0.6Sr0.4Co0.2Fe0.8O3 Cathode for SOFCs. J. Electrochem. Soc. 158, B1391 (2011)

    Article  CAS  Google Scholar 

  190. Wang, F., Yamaji, K., Cho, D.H., et al.: Effect of strontium concentration on sulfur poisoning of LSCF cathodes. Solid State Ionics 225, 157–160 (2012)

    Article  CAS  Google Scholar 

  191. De Vero, J.C., Yokokawa, H., Develos-Bagarinao, K., et al.: Influence of electrolyte substrates on the Sr-segregation and SrSO4 formation in La0.6Sr0.4Co0.2Fe0.8O3−δ thin films. MRS Commun. 9, 236–244 (2019)

    Article  CAS  Google Scholar 

  192. Kishimoto, H., Sakai, N., Horita, T., et al.: Cation transport behavior in SOFC cathode materials of La0.8Sr0.2CoO3 and La0.8Sr0.2FeO3 with perovskite structure. Solid State Ionics 178, 1317–1325 (2007)

    Article  CAS  Google Scholar 

  193. Eguchi, K., Akasaka, N., Mitsuyasu, H., et al.: Process of solid state reaction between doped ceria and zirconia. Solid State Ionics 135, 589–594 (2000)

    Article  CAS  Google Scholar 

  194. Horita, T., Yamaji, K., Sakai, N., et al.: Stability at La0.6Sr0.4CoO3−dcathode/La0.8Sr0.2Ga0.8Mg0.2O2.8 electrolyte interface under current flow for solid oxide fuel cells. Solid State Ionics 133, 143–152 (2000)

    Article  CAS  Google Scholar 

  195. Tsoga, A., Gupta, A., Naoumidis, A., et al.: Gadolinia-doped ceria and yttria stabilized zirconia interfaces: regarding their application for SOFC technology. Acta Mater. 48, 4709–4714 (2000)

    Article  CAS  Google Scholar 

  196. Gindorf, C., Singheiser, L., Hilpert, K.: Vaporisation of chromia in humid air. J. Phys. Chem. Solids 66, 384–387 (2005)

    Article  CAS  Google Scholar 

  197. Jiang, S.P., Chen, X.: Chromium deposition and poisoning of cathodes of solid oxide fuel cells: a review. Int. J. Hydrogen Energy 39, 505–531 (2014)

    Article  CAS  Google Scholar 

  198. Jiang, S.P., Zhang, J.P., Zheng, X.G.: A comparative investigation of chromium deposition at air electrodes of solid oxide fuel cells. J. Eur. Ceram. Soc. 22, 361–373 (2002)

    Article  CAS  Google Scholar 

  199. Yang, Z., Guo, M., Wang, N., et al.: A short review of cathode poisoning and corrosion in solid oxide fuel cell. Int. J. Hydrogen Energy 42, 24948–24959 (2017)

    Article  CAS  Google Scholar 

  200. Fergus, J.W.: Sealants for solid oxide fuel cells. J. Power Sources 147, 46–57 (2005)

    Article  CAS  Google Scholar 

  201. Stanislowski, M., Wessel, E., Hilpert, K., et al.: Chromium vaporization from high-temperature alloys. J. Electrochem. Soc. 154, A295 (2007)

    Article  CAS  Google Scholar 

  202. Schuler, J.A., Wuillemin, Z., Hessler-Wyser, A.C., et al.: Glass-forming exogenous silicon contamination in solid oxide fuel cell cathodes. Electrochem. Solid-State Lett. 14, B20 (2011)

    Article  CAS  Google Scholar 

  203. Jacobson, N.S., Opila, E.J., Myers, D.L., et al.: Thermodynamics of gas phase species in the Si-O-H system. J. Chem. Thermodyn. 37, 1130–1137 (2005)

    Article  CAS  Google Scholar 

  204. Perz, M., Bucher, E., Gspan, C., et al.: Long-term degradation of La0.6Sr0.4Co0.2Fe0.8O3−δ IT-SOFC cathodes due to silicon poisoning. Solid State Ionics 288, 22–27 (2016)

    Article  CAS  Google Scholar 

  205. Schrödl, N., Bucher, E., Gspan, C., et al.: Phase decomposition in the chromium- and silicon-poisoned IT-SOFC cathode materials La0.6Sr0.4CoO3−δ and La2NiO4+δ. Solid State Ionics 288, 14–21 (2016)

    Article  CAS  Google Scholar 

  206. Bucher, E., Gspan, C., Höschen, T., et al.: Oxygen exchange kinetics of La0.6Sr0.4CoO3−δ affected by changes of the surface composition due to chromium and silicon poisoning. Solid State Ionics 299, 26–31 (2017)

    Article  CAS  Google Scholar 

  207. Schrödl, N., Bucher, E., Egger, A., et al.: Long-term stability of the IT-SOFC cathode materials La0.6Sr0.4CoO3−δ and La2NiO4+δ against combined chromium and silicon poisoning. Solid State Ionics 276, 62–71 (2015)

    Article  CAS  Google Scholar 

  208. Sohn, S.B., Choi, S.Y., Kim, G.H., et al.: Suitable glass-ceramic sealant for planar solid-oxide fuel cells. J. Am. Ceram. Soc. 87, 254–260 (2004)

    Article  CAS  Google Scholar 

  209. Sohn, S.B., Choi, S.Y., Kim, G.H., et al.: Stable sealing glass for planar solid oxide fuel cell. J. Non-Cryst. Solids 297, 103–112 (2002)

    Article  CAS  Google Scholar 

  210. Marzouk, S.Y.: The acoustic properties of borosilicate glass affected by oxide of rare earth gadolinium. Phys. B 405, 3395–3400 (2010)

    Article  CAS  Google Scholar 

  211. Snyder, M.J., Mesko, M.G., Shelby, J.E.: Volatilization of boron from E-glass melts. J. Non-Cryst. Solids 352, 669–673 (2006)

    Article  CAS  Google Scholar 

  212. Zhang, T., Fahrenholtz, W.G., Reis, S.T., et al.: Borate Volatility from SOFC sealing glasses. J. Am. Ceram. Soc. 91, 2564–2569 (2008)

    Article  CAS  Google Scholar 

  213. Chen, K., Ai, N., Zhao, L., et al.: Effect of volatile boron species on the electrocatalytic activity of cathodes of solid oxide fuel cells. J. Electrochem. Soc. 160, F183–F190 (2012)

    Article  CAS  Google Scholar 

  214. Chen, K., Ai, N., Zhao, L., et al.: Effect of volatile boron species on the electrocatalytic activity of cathodes of solid oxide fuel cells. J. Electrochem. Soc. 160, F301–F308 (2013)

    Article  CAS  Google Scholar 

  215. Chen, K., Hyodo, J., O’Donnell, K.M., et al.: Effect of volatile boron species on the electrocatalytic activity of cathodes of solid oxide fuel cells. J. Electrochem. Soc. 161, F1163–F1170 (2014)

    Article  CAS  Google Scholar 

  216. Chen, K., Ai, N., Lievens, C., et al.: Impact of volatile boron species on the microstructure and performance of nano-structured (Gd, Ce)O2 infiltrated (La, Sr)MnO3 cathodes of solid oxide fuel cells. Electrochem. Commun. 23, 129–132 (2012)

    Article  CAS  Google Scholar 

  217. Dimesso, L.: Pechini processes: an alternate approach of the sol-gel method, preparation, properties, and applications. In: Klein, L., Aparicio, M., Jitianu, A. (eds.) Handbook of Sol-Gel Science and Technology, pp. 1–22. Springer, Cham (2016)

    Google Scholar 

  218. Athayde, D.D., Souza, D.F., Silva, A.M.A., et al.: Review of perovskite ceramic synthesis and membrane preparation methods. Ceram. Int. 42, 6555–6571 (2016)

    Article  CAS  Google Scholar 

  219. Babindamana, D., Jia, C., Han, M.: Study of a promising co-doped double perovskite cathode material for IT-SOFCs. ECS Trans. 91, 1437–1443 (2019)

    Article  CAS  Google Scholar 

  220. Kumar, P., Presto, S., Sinha, A.S.K., et al.: Effect of samarium (Sm3+) doping on structure and electrical conductivity of double perovskite Sr2NiMoO6 as anode material for SOFC. J. Alloys Compd. 725, 1123–1129 (2017)

    Article  CAS  Google Scholar 

  221. Niu, Y., Zhou, W., Sunarso, J., et al.: A single-step synthesized cobalt-free barium ferrites-based composite cathode for intermediate temperature solid oxide fuel cells. Electrochem. Commun. 13, 1340–1343 (2011)

    Article  CAS  Google Scholar 

  222. Gędziorowski, B., Świerczek, K., Molenda, J.: La1−xBaxCo0.2Fe0.8O3−δ perovskites for application in intermediate temperature SOFCs. Solid State Ionics 225, 437–442 (2012)

    Article  CAS  Google Scholar 

  223. Yoo, S., Jun, A., Ju, Y.W., et al.: Development of double-perovskite compounds as cathode materials for low-temperature solid oxide fuel cells. Angew. Chem. Int. Ed. 53, 13064–13067 (2014)

    Article  CAS  Google Scholar 

  224. Pang, S., Xu, J., Su, Y., et al.: The role of A-site cation size mismatch in tune the catalytic activity and durability of double perovskite oxides. Appl. Catal. B 270, 118868 (2020)

    Article  CAS  Google Scholar 

  225. Li, M., Zhou, W., Zhu, Z.: Recent development on perovskite-type cathode materials based on SrCoO3−δ parent oxide for intermediate-temperature solid oxide fuel cells. Asia-Pac. J. Chem. Eng. 11, 370–381 (2016)

    Article  CAS  Google Scholar 

  226. Celikbilek, O., Thieu, C.A., Agnese, F., et al.: Enhanced catalytic activity of nanostructured, A-site deficient (La0.7Sr0.3)095(Co0.2Fe0.8)O3−δ for SOFC cathodes. J. Mater. Chem. A 7, 25102–25111 (2019)

    Article  CAS  Google Scholar 

  227. Zhu, Y., Zhou, W., Ran, R., et al.: Promotion of oxygen reduction by exsolved silver nanoparticles on a perovskite scaffold for low-temperature solid oxide fuel cells. Nano Lett. 16, 512–518 (2016)

    Article  CAS  PubMed  Google Scholar 

  228. Sažinas, R., Andersen, K.B., Simonsen, S.B., et al.: Silver modified cathodes for solid oxide fuel cells. J. Electrochem. Soc. 166, F79–F88 (2019)

    Article  CAS  Google Scholar 

  229. Chen, Y., Yoo, S., Choi, Y., et al.: A highly active, CO2-tolerant electrode for the oxygen reduction reaction. Eng. Environ. Sci. 11, 2458–2466 (2018)

    CAS  Google Scholar 

  230. Xing, L., Xia, T., Li, Q., et al.: High-performance and CO2-durable composite cathodes toward electrocatalytic oxygen reduction: Ce0.8Sm0.2O1.9 nanoparticle-decorated double perovskite EuBa0.5Sr0.5Co2O5+δ. ACS Sustain. Chem. Eng. 7, 17907–17918 (2019)

    Article  CAS  Google Scholar 

  231. Subardi, A., Liao, K.Y., Fu, Y.P.: Oxygen transport, thermal and electrochemical properties of NdBa0.5Sr0.5Co2O5+δ cathode for SOFCs. J. Eur. Ceram. Soc. 39, 30–40 (2019)

    Article  CAS  Google Scholar 

  232. Yang, H., Gu, Y., Zhang, Y., et al.: Sr-substituted SmBa0.75Ca0.25CoFeO5+δ as a cathode for intermediate-temperature solid oxide fuel cells. J. Alloys Compd. 770, 616–624 (2019)

    Article  CAS  Google Scholar 

  233. Wang, S., Meng, X., Yang, J., et al.: Performance assessment of Pr1−xSrxCo0.8Cu0.2O3−δ perovskite oxides as cathode material for solid oxide fuel cells with Ce0.8Sm0.2O1.9 electrolyte. J. Mater. Sci.: Mater. Electron. 30, 5881–5890 (2019)

    CAS  Google Scholar 

  234. Pang, S., Wang, W., Chen, T., et al.: The effect of potassium on the properties of PrBa1−xCo2O5+δ (x = 0.00–0.10) cathodes for intermediate-temperature solid oxide fuel cells. Int. J. Hydrogen Energy 41, 13705–13714 (2016)

    Article  CAS  Google Scholar 

  235. Liu, X., Dong, W., Tong, Y., et al.: Li effects on layer-structured oxide LixNi0.8Co0.15Al0.05O2−δ: improving cell performance via on-line reaction. Electrochim. Acta 295, 325–332 (2019)

    Article  CAS  Google Scholar 

  236. Choi, S., Sengodan, S., Park, S., et al.: A robust symmetrical electrode with layered perovskite structure for direct hydrocarbon solid oxide fuel cells: PrBa0.8Ca0.2Mn2O5+δ. J. Mater. Chem. A 4, 1747–1753 (2016)

    Article  CAS  Google Scholar 

  237. Zhang, Y., Zhao, H., Du, Z., et al.: High-performance SmBaMn2O5+δ electrode for symmetrical solid oxide fuel cell. Chem. Mater. 31, 3784–3793 (2019)

    Article  CAS  Google Scholar 

  238. Dong, F., Chen, Y., Chen, D., et al.: Surprisingly high activity for oxygen reduction reaction of selected oxides lacking long oxygen-ion diffusion paths at intermediate temperatures: a case study of cobalt-free BaFeO3−δ. ACS Appl. Mater. Intern. 6, 11180–11189 (2014)

    Article  CAS  Google Scholar 

  239. Ren, R., Wang, Z., Meng, X., et al.: Boosting the electrochemical performance of Fe-based layered double perovskite cathodes by Zn2+ doping for solid oxide fuel cells. ACS Appl. Mater. Inter. 12, 23959–23967 (2020)

    Article  CAS  Google Scholar 

  240. Zhou, W., Ran, R., Shao, Z.: Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based cathodes for intermediate-temperature solid-oxide fuel cells: a review. J. Power Sources 192, 231–246 (2009)

    Article  CAS  Google Scholar 

  241. Matar, S.F., Campet, G., Subramanian, M.A.: Electronic properties of oxides: chemical and theoretical approaches. Prog. Solid State Chem. 39, 70–95 (2011)

    Article  CAS  Google Scholar 

  242. Shimada, H., Yamaguchi, T., Sumi, H., et al.: Extremely fine structured cathode for solid oxide fuel cells using Sr-doped LaMnO3 and Y2O3-stabilized ZrO2 nano-composite powder synthesized by spray pyrolysis. J. Power Sources 341, 280–284 (2017)

    Article  CAS  Google Scholar 

  243. Shen, J., Yang, G., Zhang, Z., et al.: Tuning layer-structured La0.6Sr1.4MnO4+δ into a promising electrode for intermediate-temperature symmetrical solid oxide fuel cells through surface modification. J. Mater. Chem. A 4, 10641–10649 (2016)

    Article  CAS  Google Scholar 

  244. Chen, C., Baiyee, Z.M., Ciucci, F.: Unraveling the effect of La A-site substitution on oxygen ion diffusion and oxygen catalysis in perovskite BaFeO3 by data-mining molecular dynamics and density functional theory. Phys. Chem. Chem. Phys. 17, 24011–24019 (2015)

    Article  CAS  PubMed  Google Scholar 

  245. Rehman, S.U., Shaur, A., Song, R.H., et al.: Nano-fabrication of a high-performance LaNiO3 cathode for solid oxide fuel cells using an electrochemical route. J. Power Sources 429, 97–104 (2019)

    Article  CAS  Google Scholar 

  246. Rehman, S.U., Song, R.H., Lim, T.H., et al.: High-performance nanofibrous LaCoO3 perovskite cathode for solid oxide fuel cells fabricated via chemically assisted electrodeposition. J. Mater. Chem. A 6, 6987–6996 (2018)

    Article  Google Scholar 

  247. Fu, D., Jin, F., He, T.: A-site calcium-doped Pr1−xCaxBaCo2O5+δ double perovskites as cathodes for intermediate-temperature solid oxide fuel cells. J. Power Sources 313, 134–141 (2016)

    Article  CAS  Google Scholar 

  248. Ling, Y., Lu, X., Niu, J., et al.: Antimony doped barium strontium ferrite perovskites as novel cathodes for intermediate-temperature solid oxide fuel cells. J. Alloys Compd. 666, 23–29 (2016)

    Article  CAS  Google Scholar 

  249. Chan, J.Y., Zhang, K., Zhang, C., et al.: Novel tungsten stabilizing SrCo1−xWxO3−δ membranes for oxygen production. Ceram. Int. 41, 14935–14940 (2015)

    Article  CAS  Google Scholar 

  250. Aguadero, A., Pérez-Coll, D., Alonso, J.A., et al.: A new family of Mo-doped SrCoO3−δ perovskites for application in reversible solid state electrochemical cells. Chem. Mater. 24, 2655–2663 (2012)

    Article  CAS  Google Scholar 

  251. Aguadero, A., Alonso, J.A., Pérez-Coll, D., et al.: SrCo0.95Sb0.05O3−δ as cathode material for high power density solid oxide fuel cells. Chem. Mater. 22, 789–798 (2010)

    Article  CAS  Google Scholar 

  252. Cascos, V., Martínez-Coronado, R., Alonso, J.A.: New Nb-doped SrCo1−xNbxO3−δ perovskites performing as cathodes in solid-oxide fuel cells. Int. J. Hydrogen Energy 39, 14349–14354 (2014)

    Article  CAS  Google Scholar 

  253. Fernández-Ropero, A.J., Porras-Vázquez, J.M., Cabeza, A., et al.: High valence transition metal doped strontium ferrites for electrode materials in symmetrical SOFCs. J. Power Sources 249, 405–413 (2014)

    Article  CAS  Google Scholar 

  254. Pauling, L.: The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51, 1010–1026 (1929)

    Article  CAS  Google Scholar 

  255. Nagai, T., Ito, W., Sakon, T.: Relationship between cation substitution and stability of perovskite structure in SrCoO3−δ-based mixed conductors. Solid State Ionics 177, 3433–3444 (2007)

    Article  CAS  Google Scholar 

  256. Li, Z., Lv, L., Wang, J., et al.: Engineering phosphorus-doped LaFeO3−δ perovskite oxide as robust bifunctional oxygen electrocatalysts in alkaline solutions. Nano Energy 47, 199–209 (2018)

    Article  CAS  Google Scholar 

  257. Jarvis, A., Berry, F.J., Marco, J.F., et al.: Introduction of sulfate to stabilize the n = 3 Ruddlesden–Popper system Sr4Fe3O10−δ, as a potential SOFC cathode. ECS Trans. 91, 1467–1476 (2019)

    Article  CAS  Google Scholar 

  258. Liu, Y., Zhu, X., Yang, W.: Stability of sulfate doped SrCoO3−δ MIEC membrane. J. Membr. Sci. 501, 53–59 (2016)

    Article  CAS  Google Scholar 

  259. Porras-Vazquez, J.M., Slater, P.R.: Synthesis and characterization of oxyanion-doped cobalt containing perovskites. Fuel Cells 12, 1056–1063 (2012)

    Article  CAS  Google Scholar 

  260. Xu, M., Wang, W., Liu, Y., et al.: An intrinsically conductive Phosphorus-Doped perovskite oxide as a new cathode for high-performance dye-sensitized solar cells by providing internal conducting pathways. Solar RRL 3, 1900108 (2019)

    Article  CAS  Google Scholar 

  261. Luo, Y., Zheng, Y., Feng, X., et al.: Controllable P doping of the LaCoO3 catalyst for efficient propane oxidation: optimized surface Co distribution and enhanced oxygen vacancies. ACS Appl. Mater. Inter. 12, 23789–23799 (2020)

    Article  CAS  Google Scholar 

  262. Zhao, L., Cheng, Y., Jiang, S.P.: A new, high electrochemical activity and chromium tolerant cathode for solid oxide fuel cells. Int. J. Hydrogen Energy 40, 15622–15631 (2015)

    Article  CAS  Google Scholar 

  263. Porras-Vazquez, J.M., Smith, R.I., Slater, P.R.: Investigation into the effect of Si doping on the cell symmetry and performance of Sr1−yCayFeO3−δ SOFC cathode materials. J. Solid State Chem. 213, 132–137 (2014)

    Article  CAS  Google Scholar 

  264. Gao, J., Li, Q., Xia, W., et al.: Advanced electrochemical performance and CO2 tolerance of Bi0.5Sr0.5Fe1−xTixO3−δ perovskite materials as oxygen reduction cathodes for intermediate-temperature solid oxide fuel cells. ACS Sustain. Chem. Eng. 7, 18647–18656 (2019)

    Article  CAS  Google Scholar 

  265. Jang, I., Lee, H., Tamarany, R., et al.: Tailoring the ratio of A-site cations in Pr1−xNdxBaCo1.6Fe0.4O5+δ to promote the higher oxygen reduction reaction activity for low-temperature solid oxide fuel cells. Chem. Mater. 32, 3841–3849 (2020)

    Article  CAS  Google Scholar 

  266. Zeng, P., Ran, R., Chen, Z., et al.: Efficient stabilization of cubic perovskite SrCoO3−δ by B-site low concentration scandium doping combined with sol-gel synthesis. J. Alloys Compd. 455, 465–470 (2008)

    Article  CAS  Google Scholar 

  267. Zeng, Q., Zhang, X., Wang, W., et al.: A Zn-doped Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite cathode with enhanced ORR catalytic activity for SOFCs. Catalysts 10, 12 (2020)

    Google Scholar 

  268. Park, B.K., Barnett, S.A.: Boosting solid oxide fuel cell performance via electrolyte thickness reduction and cathode infiltration. J. Mater. Chem. A 8, 11626–11631 (2020)

    Article  CAS  Google Scholar 

  269. Yang, T., Wen, Y., Wu, T., et al.: A highly active and Cr-resistant infiltrated cathode for practical solid oxide fuel cells. J. Mater. Chem. A 8, 82–86 (2020)

    Article  CAS  Google Scholar 

  270. Zhou, W., Liang, F., Shao, Z., et al.: Hierarchical CO2-protective shell for highly efficient oxygen reduction reaction. Sci. Rep. 2, 327 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Shaur, A., Rehman, S.U., Kim, H.S., et al.: Hybrid electrochemical deposition route for the facile nanofabrication of a Cr-poisoning-tolerant La(Ni, Fe)O3−δ cathode for solid oxide fuel cells. ACS Appl. Mater. Inter. 12, 5730–5738 (2020)

    Article  CAS  Google Scholar 

  272. Zhou, W., Ge, L., Chen, Z.G., et al.: Amorphous iron oxide decorated 3D heterostructured electrode for highly efficient oxygen reduction. Chem. Mater. 23, 4193–4198 (2011)

    Article  CAS  Google Scholar 

  273. Gong, Y., Patel, R.L., Liang, X., et al.: Atomic Layer Deposition Functionalized Composite SOFC Cathode La0.6Sr0.4Fe0.8Co0.2O3−δ-Gd0.2Ce0.8O1.9: enhanced long-term stability. Chem. Mater. 25, 4224–4231 (2013)

    Article  CAS  Google Scholar 

  274. Gong, Y., Palacio, D., Song, X., et al.: Stabilizing nanostructured solid oxide fuel cell cathode with atomic layer deposition. Nano Lett. 13, 4340–4345 (2013)

    Article  CAS  PubMed  Google Scholar 

  275. Choi, H.J., Bae, K., Grieshammer, S., et al.: Surface tuning of solid oxide fuel cell cathode by atomic layer deposition. Adv. Energy Mater. 8, 1802506 (2018)

    Article  CAS  Google Scholar 

  276. Chen, Y., Gerdes, K., Song, X.: Nanoionics and nanocatalysts: conformal mesoporous surface scaffold for cathode of solid oxide fuel cells. Sci. Rep. 6, 32997 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Zhang, Y., Wen, Y., Huang, K., et al.: Atomic layer deposited zirconia overcoats as on-board strontium getters for improved solid oxide fuel cell nanocomposite cathode durability. ACS Appl. Energy Mater. 3, 4057–4067 (2020)

    Article  CAS  Google Scholar 

  278. Zheng, Y., Li, Y., Wu, T., et al.: Controlling crystal orientation in multilayered heterostructures toward high electro-catalytic activity for oxygen reduction reaction. Nano Energy 62, 521–529 (2019)

    Article  CAS  Google Scholar 

  279. Ma, W., Kim, J.J., Tsvetkov, N., et al.: Vertically aligned nanocomposite La0.8Sr0.2CoO3/(La0.5Sr0.5)2CoO4 cathodes—electronic structure, surface chemistry and oxygen reduction kinetics. J. Mater. Chem. A 3, 207–219 (2015)

    Article  CAS  Google Scholar 

  280. Lee, Y.H., Ren, H., Wu, E.A., et al.: All-sputtered, superior power density thin-film solid oxide fuel cells with a novel nanofibrous ceramic cathode. Nano Lett. 20, 2943–2949 (2020)

    Article  CAS  PubMed  Google Scholar 

  281. Yun, S.S., Jo, K., Ryu, J., et al.: Surface modification and electrochemical properties of cobalt-based layered perovskite cathodes for intermediate-temperature solid oxide fuel cells. Solid State Ionics 347, 115268 (2020)

    Article  CAS  Google Scholar 

  282. Ding, D., Li, X., Lai, S.Y., et al.: Enhancing SOFC cathode performance by surface modification through infiltration. Eng. Environ. Sci. 7, 552–575 (2014)

    CAS  Google Scholar 

  283. Jiang, S.P.: A review of wet impregnation-An alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells. Mater. Sci. Eng. A 418, 199–210 (2006)

    Article  CAS  Google Scholar 

  284. Vohs, J.M., Gorte, R.J.: High-performance SOFC cathodes prepared by infiltration. Adv. Mater. 21, 943–956 (2009)

    Article  CAS  Google Scholar 

  285. Jiang, Z., Xia, C., Chen, F.: Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique. Electrochim. Acta 55, 3595–3605 (2010)

    Article  CAS  Google Scholar 

  286. Nicollet, C., Flura, A., Vibhu, V., et al.: An innovative efficient oxygen electrode for SOFC: Pr6O11 infiltrated into Gd-doped ceria backbone. Int. J. Hydrogen Energy 41, 15538–15544 (2016)

    Article  CAS  Google Scholar 

  287. Lee, S., Miller, N., Staruch, M., et al.: Pr0.6Sr0.4CoO3−δ electrocatalyst for solid oxide fuel cell cathode introduced via infiltration. Electrochim. Acta 56, 9904–9909 (2011)

    Article  CAS  Google Scholar 

  288. Zhang, X., Liu, L., Zhao, Z., et al.: High performance solid oxide fuel cells with Co1.5Mn1.5O4 infiltrated (La, Sr)MnO3-yittria stabilized zirconia cathodes. Int. J. Hydrogen Energy 40, 3332–3337 (2015)

    Article  CAS  Google Scholar 

  289. Basu, R.N., Tietz, F., Wessel, E., et al.: Interface reactions during co-firing of solid oxide fuel cell components. J. Mater. Process. Technol. 147, 85–89 (2004)

    Article  CAS  Google Scholar 

  290. Bevilacqua, M., Montini, T., Tavagnacco, C., et al.: Preparation, characterization, and electrochemical properties of pure and composite LaNi0.6Fe0.4O3-based cathodes for IT-SOFC. Chem. Mater. 19, 5926–5936 (2007)

    Article  CAS  Google Scholar 

  291. Schmauss, T.A., Railsback, J.G., Lu, M.Y., et al.: ZrO2 atomic layer deposition into Sr0.5Sm0.5CoO3−δ-Ce0.9Gd0.1O2−δ solid oxide fuel cell cathodes: mechanisms of stability enhancement. J. Mater. Chem. A 7, 27585–27593 (2019)

    Article  CAS  Google Scholar 

  292. Matsuda, J., Kanae, S., Kawabata, T., et al.: TEM and ETEM study on SrZrO3 formation at the LSCF/GDC/YSZ interfaces. ECS Trans. 78, 993–1001 (2017)

    Article  CAS  Google Scholar 

  293. Ai, N., Chen, K., Jiang, S.P.: A La0.8Sr0.2MnO3/La0.6Sr0.4Co0.2Fe0.8O3−δ core-shell structured cathode by a rapid sintering process for solid oxide fuel cells. Int. J. Hydrogen Energy 42, 7246–7251 (2017)

    Article  CAS  Google Scholar 

  294. Bishop, C.A.: 19-atomic layer deposition. In: Bishop, C.A. (ed.) Vacuum Deposition onto Webs, Films and Foils, 2nd edn., pp. 331–336. William Andrew Publishing, Oxford (2011)

    Chapter  Google Scholar 

  295. Chen, Y., Hinerman, A., Liang, L., et al.: Conformal coating of cobalt oxide on solid oxide fuel cell cathode and resultant continuously increased oxygen reduction reaction kinetics upon operation. J. Power Sources 405, 45–50 (2018)

    Article  CAS  Google Scholar 

  296. Rahmanipour, M., Cheng, Y., Onn, T.M., et al.: Modification of LSF-YSZ composite cathodes by atomic layer deposition. J. Electrochem. Soc. 164, F879–F884 (2017)

    Article  CAS  Google Scholar 

  297. Choi, H.J., Bae, K., Jang, D.Y., et al.: Performance degradation of lanthanum strontium cobaltite after surface modification. J. Electrochem. Soc. 162, F622–F626 (2015)

    Article  CAS  Google Scholar 

  298. Yu, A.S., Küngas, R., Vohs, J.M., et al.: Modification of SOFC cathodes by atomic layer deposition. J. Electrochem. Soc. 160, F1225–F1231 (2013)

    Article  CAS  Google Scholar 

  299. Paige, J.M., Cheng, Y., Pepin, P.A., et al.: Surface modification of SOFC cathodes by Co, Ni, and Pd oxides. Solid State Ionics 341, 115051 (2019)

    Article  CAS  Google Scholar 

  300. Küngas, R., Yu, A.S., Levine, J., et al.: An investigation of oxygen reduction kinetics in LSF electrodes. J. Electrochem. Soc. 160, F205–F211 (2012)

    Article  CAS  Google Scholar 

  301. Sumi, H., Ohshiro, T., Nakayama, M., et al.: Prevention of reaction between (Ba, Sr)(Co, Fe)O3 cathodes and yttria-stabilized zirconica electrolytes for intermediate-temperature solid oxide fuel cells. Electrochim. Acta 184, 403–409 (2015)

    Article  CAS  Google Scholar 

  302. Martín-Palma, R.J., Lakhtakia, A.: Chapter 15—vapor-deposition techniques. In: Lakhtakia, A., Martín-Palma, R.J. (eds.) Engineered Biomimicry, pp. 383–398. Elsevier, Boston (2013)

    Chapter  Google Scholar 

  303. Fujioka, H.: 8-pulsed laser deposition (PLD). In: Kuech, T.F. (ed.) Handbook of Crystal Growth, 2nd edn., pp. 365–397. North-Holland, Boston (2015)

    Chapter  Google Scholar 

  304. Mukherjee, K., Hayamizu, Y., Kim, C.S., et al.: Praseodymium cuprate thin film cathodes for intermediate temperature solid oxide fuel cells: roles of doping, orientation, and crystal structure. ACS Appl. Mater. Interfaces 8, 34295–34302 (2016)

    Article  CAS  PubMed  Google Scholar 

  305. Zhu, Z., Zhou, C., Zhou, W., et al.: Textured Sr2Sc0.1Nb0.1Co1.5Fe0.3O6−2δ thin film cathodes for IT-SOFCs. Materials 12, 777 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  306. Chen, Y., Cai, Z., Kuru, Y., et al.: Electronic activation of cathode superlattices at elevated temperatures: source of markedly accelerated oxygen reduction kinetics. Adv. Energy Mater. 3, 1221–1229 (2013)

    Article  CAS  Google Scholar 

  307. Feng, Z., Yacoby, Y., Gadre, M.J., et al.: Anomalous interface and surface strontium segregation in (La1−ySry)2CoOδ/La1−xSrxCoO3−δ heterostructured thin films. J. Phys. Chem. Lett. 5, 1027–1034 (2014)

    Article  CAS  PubMed  Google Scholar 

  308. Stämmler, S., Merkle, R., Stuhlhofer, B., et al.: Phase constitution, Sr distribution and morphology of self-assembled La–Sr–Co–O composite films prepared by PLD. Solid State Ionics 303, 172–180 (2017)

    Article  CAS  Google Scholar 

  309. Develos-Bagarinao, K., Budiman, R.A., Liu, S.S., et al.: Evolution of cathode-interlayer interfaces and its effect on long-term degradation. J. Power Sources 453, 227894 (2020)

    Article  CAS  Google Scholar 

  310. Choi, H.J., Kim, M., Neoh, K.C., et al.: High-performance silver cathode surface treated with scandia-stabilized zirconia nanoparticles for intermediate temperature solid oxide fuel cells. Adv. Energy Mater. 7, 1601956 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Z. Li acknowledges the financial support from the China Scholarship Council (CSC). M. Li acknowledges the financial support from the HBIS Group and the Australian Research Council (ARC) Linkage Project (LP160101729). Z. Zhu acknowledges the financial support from the ARC Discovery Projects (DP170104660 and DP190101782).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mengran Li or Zhonghua Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Li, M. & Zhu, Z. Perovskite Cathode Materials for Low-Temperature Solid Oxide Fuel Cells: Fundamentals to Optimization. Electrochem. Energy Rev. 5, 263–311 (2022). https://doi.org/10.1007/s41918-021-00098-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-021-00098-3

Keywords

Navigation