Skip to main content
Log in

Materials design for perovskite SOFC cathodes

  • Review
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Abstract

This article focuses on perovskite materials for application as cathode material in solid oxide fuel cells. In order to develop new promising materials it is helpful to classify already known perovskite materials according to their properties and to identify certain tendencies. Thereby, composition-dependent structural data and materials properties are considered. Structural data under consideration are the Goldschmidt tolerance factor, which describes the stability of perovskites with respect to other structures, and the critical radius and lattice free volume, which are used as geometrical measures of ionic conductivity. These calculations are based on the ionic radii of the constituent ions and their applicability is discussed. A potential map of perovskites as a tool to classify simple ABO3 perovskite materials according to their electrical conduction behavior is critically reviewed as a structured approach to the search for new cathode materials based on more complex perovskites with A and/or B-site substitutions. This article also covers the approaches used to influence electronic and the ionic conductivity. The advantage of mixed ionic electronic conductors in terms of the oxygen exchange reaction is addressed and their important properties, namely the oxygen-exchange coefficient and the oxygen diffusion coefficient, and their effect on the oxygen reduction reaction are presented.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gauckler LJ, Beckel D, Buergler BE, Jud E, Muecke UP, Prestat M, Rupp JLM, Richter J (2004) Chimia 58:837–850

    Article  CAS  Google Scholar 

  2. Minh NQ (1993) J Am Ceram Soc 76:563–588

    Article  CAS  Google Scholar 

  3. Steele BCH (2000) Solid State Ionics 134:3–20

    Article  CAS  Google Scholar 

  4. Steele BCH (1994) J Power Source 49:1–14

    Article  CAS  Google Scholar 

  5. Singhal SC, Kendall K (eds) (2003) High temperature solid oxide fuel cells: fundamentals, design and applications, p 405, Elsevier

  6. Singhal SC (2000) Solid State Ionics 135:305–313

    Article  CAS  Google Scholar 

  7. Bucher E, Egger A, Caraman GB, Sitte W (2008) J Electrochem Soc 155:B1218–B1224

    Article  CAS  Google Scholar 

  8. Baumann FS (2006) Ph.D. thesis, Fakultät für Chemie, Universität Stuttgart

  9. Simner SP, Bonnett JF, Canfield NL, Meinhardt KD, Shelton JP, Sprenkle VL, Stevenson JW (2003) J Power Sources 113:1–10

    Article  CAS  Google Scholar 

  10. Petitjean M, Caboche G, Siebert E, Dessemond L, Dufour L-C (2005) J Eur Ceram Soc 25:2651–2654

    Article  CAS  Google Scholar 

  11. Virkar AV, Chen J, Tanner CW, Kim J-W (2000) Solid State Ionics 131:189–198

    Article  CAS  Google Scholar 

  12. Fleig J (2002) J Power Sources 105:228–238

    Article  CAS  Google Scholar 

  13. Jiang SP (2002) Solid State Ionics 146:1–22

    Article  CAS  Google Scholar 

  14. Haile SM (2003) Acta Mater 51:5981–6000

    Article  CAS  Google Scholar 

  15. Mai A, Haanappel VAC, Uhlenbruck S, Tietz F, Stöver D (2005) Solid State Ionics 176:1341–1350

    Article  CAS  Google Scholar 

  16. Simner SP, Bonnett JF, Canfield NL, Meinhardt KD, Sprenkle VL, Stevenson JW (2002) Electrochem Solid-State Lett 5:A173–A175

    Article  CAS  Google Scholar 

  17. Bongio EV, Black H, Raszewski FC, Edwards D, McConville CJ, Amarakoon VRW (2005) J Electroceram 14:193–198

    Article  CAS  Google Scholar 

  18. Petric A, Huang P, Tietz F (2000) Solid State Ionics 135:719–725

    Article  CAS  Google Scholar 

  19. Holc J, Kušcer D, Hrovat M, Bernik S, Kolar D (1997) Solid State Ionics 95:259–268

    Article  Google Scholar 

  20. Mineshige A, Inaba M, Yao T, Ogumi Z, Kikuchi K, Kawase M (1996) J Solid State Chem 121:423–429

    Article  CAS  Google Scholar 

  21. Kostogloudis GC, Ftikos C (1999) Solid State Ionics 126:143–151

    Article  CAS  Google Scholar 

  22. Teraoka Y, Nobunaga T, Okamoto K, Miura N, Yamazoe N (1991) Solid State Ionics 48:207–212

    Article  CAS  Google Scholar 

  23. Shao Z, Haile SM (2004) Nature 431:170–173

    Article  CAS  Google Scholar 

  24. Pena-Martinez J, Marrero-Lopez D, Ruiz-Morales JC, Buergler BE, Nunez P, Gauckler LJ (2006) J Power Sources 159:914–921

    Article  CAS  Google Scholar 

  25. Li S, Lu Z, Wei B, Huang X, Miao J, Liu Z, Su W (2008) J Alloy Compd 448:116–121

    Article  CAS  Google Scholar 

  26. Kostogloudis GC, Vasilakos N, Ftikos C (1997) J Eur Ceram Soc 17:1513–1521

    Article  CAS  Google Scholar 

  27. Mogensen M, Jensen KV, Jørgensen MJ, Primdahl S (2002) Solid State Ionics 150:123–129

    Article  CAS  Google Scholar 

  28. Patrakeev MV, Bahteeva JA, Mitberg EB, Leonidov IA, Kozhevnikov VL, Poeppelmeier KR (2003) J Solid State Chem 172:219–231

    Article  CAS  Google Scholar 

  29. Muller O, Roy R (1974) The major ternary structural families. Springer, Heidelberg

  30. Vyshatko NP, Kharton V, Shaula AL, Naumovich EN, Marques FMB (2003) Mater Res Bull 38:185–193

    Article  CAS  Google Scholar 

  31. Mogensen M, Lybye D, Bonanos N, Hendriksen PV, Poulsen FW (2004) Solid State Ionics 174:279–286

    Article  CAS  Google Scholar 

  32. Inoue IH (2005) Semicond Sci Technol 20:S112–S120

    Article  CAS  Google Scholar 

  33. Roth RS (1957) J Res Natl Bur Stand 58:75–88

    Article  CAS  Google Scholar 

  34. Li C, Soh KCK, Wu P (2004) J Alloy Compd 372:40–48

    Article  CAS  Google Scholar 

  35. Attfield JP (2002) Engineering 5:427–438

    CAS  Google Scholar 

  36. Goldschmidt VM, Barth T, Lunde G, Zachariasen WH, VII: Die Gesetze der Krystallochemie. In: Geochemische Verteilungsgesetze der Elemente (Oslo, 1926)

  37. Zachariasen WH (1931) Z Kristallogr 80:137–153

    CAS  Google Scholar 

  38. Pauling L (1927) J Am Chem Soc 49:765–790

    Article  CAS  Google Scholar 

  39. Ahrens LH (1952) Geochim Cosmochim Acta 2:155–169

    Article  CAS  Google Scholar 

  40. Shannon RD, Prewitt CT (1969) Acta Crystallogr Sect B B25:925–946

    Article  Google Scholar 

  41. Shannon RD, Prewitt CT (1970) J Inorg Nucl Chem 32:1427–1441

    Article  CAS  Google Scholar 

  42. Shannon RD (1976) Acta Crystallogr Sect A A 32:751–767

    Article  Google Scholar 

  43. Hayashi H, Inaba H, Matsuyama M, Lan NG, Dokiya M, Tagawa H (1999) Solid State Ionics 122:1–15

    Article  CAS  Google Scholar 

  44. Trofimenko N, Ullmann H (1999) Solid State Ionics 118:215–227

    Article  CAS  Google Scholar 

  45. Xu S, Moritomo Y, Ohoyama K, Nakamura A (2003) J Phys Soc Jpn 72:709–712

    Article  CAS  Google Scholar 

  46. Sundaresan A, Paulose PL, Mallik R, Sampathkumaran EV (1998) Phys Rev B 57:2690

    Article  CAS  Google Scholar 

  47. Negas T, Roth RS (1970) J Solid State Chem 1:409–418

    Article  Google Scholar 

  48. Fossdal A, Menon M, Waernhus I, Wiik K, Einarsrud M-A, Grande T (2004) J Am Ceram Soc 87:1952–1958

    Article  CAS  Google Scholar 

  49. Attfield JP (2001) Int J Inorg Mater 3:1147–1152

    Article  CAS  Google Scholar 

  50. Stevenson JW, Armstrong TR, Carneim RD, Pederson LR, Weber WJ (1996) J Electrochem Soc 143:2722–2729

    Article  CAS  Google Scholar 

  51. Boivin JC, Mairesse G (1998) Chem Mater 10:2870–2888

    Article  CAS  Google Scholar 

  52. Kuo JH, Anderson HU, Sparlin DM (1990) J Solid State Chem 87:55–63

    Article  CAS  Google Scholar 

  53. van Roosmalen JAM, Cordfunke EHP (1994) J Solid State Chem 110:109–112

    Article  Google Scholar 

  54. Huang X, Pei L, Liu Z, Lu Z, Sui Y, Qian Z, Su W (2002) J Alloy Compd 345:265–270

    Article  CAS  Google Scholar 

  55. Gao W, Sammes NM (1999) An introduction to electronic and ionic materials. World Scientific Publishing, Singapore

  56. He H, Huang X, Chen L (2001) Electrochim Acta 46:2871–2877

    Article  CAS  Google Scholar 

  57. Ranløv J (1995) Ph.D. thesis, Materials Department, Technical University of Denmark

  58. Cherry M, Islam MS, Catlow CRA (1995) J Solid State Chem 118:125–132

    Article  CAS  Google Scholar 

  59. Kilner JA, Brook RJ (1982) Solid State Ionics 6:237–252

    Article  CAS  Google Scholar 

  60. Fukunaga O, Fujita T (1973) J Solid State Chem 8:331–338

    Article  CAS  Google Scholar 

  61. Islam MS, Cherry M, Catlow CRA (1996) J Solid State Chem 124:230–237

    Article  CAS  Google Scholar 

  62. Sammells AF, Cook RL, White JH, Osborne JJ, MacDuff RC (1992) Solid State Ionics 52:111–123

    Article  CAS  Google Scholar 

  63. Cook RL, Sammells AF (1991) Solid State Ionics 45:311–321

    Article  CAS  Google Scholar 

  64. Lybye D, Poulsen FW, Mogensen M (2000) Solid State Ionics 128:91–103

    Article  CAS  Google Scholar 

  65. Ranlov J, Bonanos N, Poulsen FW, Mogensen M (1994) Solid State Phenomena 39–40

  66. Kamata K, Nakamura T, Sata T (1974) Bull Tokyo Instit Technol 120:73–79

    CAS  Google Scholar 

  67. Richter J, Holtappels P, Vogt U, Graule T, Gauckler LJ (2006) Solid State Ionics 177:3105–3108

    Article  CAS  Google Scholar 

  68. van Roosmalen JAM, Huijsmans JPP, Plomp L (1993) Solid State Ionics 66:279–284

    Article  Google Scholar 

  69. Hammouche A, Schouler EJL, Henault M (1988) Solid State Ionics 28–30:1205–1207

    Article  Google Scholar 

  70. Kharton VV, Figueiredo FM, Kovalevski AV, Viskup AP, Naumovich EN, Yaremchenko AA, Bashmakov IA, Marques FMB (2001) J Eur Ceram Soc 21:2301–2309

    Article  CAS  Google Scholar 

  71. Cherif K, Dhahri J, Dhahri E, Oumezzine M, Vincent H (2002) J Solid State Chem 163:466–471

    Article  CAS  Google Scholar 

  72. Eng HW, Barnes PW, Auer BM, Woodward PM (2003) J Solid State Chem 175:94–109

    Article  CAS  Google Scholar 

  73. Mineshige A, Kobune M, Fujii S, Ogumi Z, Inaba M, Yao T, Kikuchi K (1999) J Solid State Chem 142:374–381

    Article  CAS  Google Scholar 

  74. Grundy AN, Hallstedt B, Gauckler LJ (2004) Calphad 28 computer coupling of phase diagrams and thermochemistry 28:191–201

    Article  CAS  Google Scholar 

  75. Harvey AS, Litterst FJ, Yang Z, Rupp JLM, Infortuna A, Gauckler LJ (2009) Phys Chem Chem Phys 11:1–9

    Article  Google Scholar 

  76. Harvey AS, Yang Z, Infortuna A, Beckel D, Purton JA, Gauckler LJ (2009) J Phys Condens Matter 21 (in press). doi:10.1088/0953-8984/21/1/015801

  77. Braun A, Bayraktar D, Harvey AS, Beckel D, Purton JA, Holtappels P, Gauckler LJ, Graule T (2009) Appl Phys Lett (accepted)

  78. Kostogloudis GC, Ftikos C (2000) Solid State Ionics 135:537–541

    Article  CAS  Google Scholar 

  79. Fujimori A (1992) J Phys Chem Solids 53:1595–1602

    Article  CAS  Google Scholar 

  80. Prestat M, Koenig J-F, Gauckler L (2007) J Electroceram 18:87–101

    Article  Google Scholar 

  81. Prestat M, Koenig JF, Gauckler JL (2007) J Electroceram 18:111–120

    Article  CAS  Google Scholar 

  82. Ullmann H, Guth U, Vashook VV, Burckhardt W, Götz R, Bülow M (2005) Keramische Zeitschrift 2:72–78

    Google Scholar 

  83. Kilner JA, de Souza RA, Fullarton IC (1996) Solid State Ionics 86–88:703–709

    Article  Google Scholar 

  84. Yasuda I, Hikita T (1994) J Electrochem Soc 141:1268–1273

    Article  CAS  Google Scholar 

  85. Bucher E (2003) Dissertation Montanuniversität Leoben

  86. Carter S, Selcuk A, Chater RJ, Kajda J, Kilner JA, Steele BCH (1992) Solid State Ionics 53–56:597–605

    Article  Google Scholar 

  87. van Doorn RHE, Fullarton IC, de Souza RA, Kilner JA, Bouwmeester HJM, Burggraf AJ (1997) Solid State Ionics 96:1–7

    Article  Google Scholar 

  88. de Souza RA, Kilner JA (1998) Solid State Ionics 106:175–187

    Article  Google Scholar 

  89. de Souza RA, Kilner JA (1999) Solid State Ionics 126:153–161

    Article  Google Scholar 

  90. Steele BCH (1995) Solid State Ionics 75:157–165

    Article  CAS  Google Scholar 

  91. ten Elshof JE, Lankhorst MHR, Bouwmeester HJM (1997) J Electrochem Soc 144:1060–1067

    Article  Google Scholar 

  92. Lane JA, Benson SJ, Waller D, Kilner JA (1999) Solid State Ionics 121:201–208

    Article  CAS  Google Scholar 

  93. Lane JA, Kilner JA (2000) Solid State Ionics 136–137:997–1001

    Article  Google Scholar 

  94. Wang S, van der Heide PAW, Chavez C, Jacobson AJ, Adler SB (2003) Solid State Ionics 156:201–208

    Article  CAS  Google Scholar 

  95. Adler SB (1998) Solid State Ionics 111:125–134

    Article  CAS  Google Scholar 

  96. Cox PA (1987) The electronic structure and chemistry of solids. Oxford University Press, Oxford

  97. Bak T, Nowotny J, Rekas M, Sorrell CC, Vance ER (2000) Solid State Ionics 135:563–565

    Article  CAS  Google Scholar 

  98. Badwal SPS, Bak T, Jiang SP, Love J, Nowotny J, Rekas M, Sorrell CC, Vance ER (2001) J Phys Chem Solids 62:723–729

    Article  CAS  Google Scholar 

  99. Bak T, Nowotny J, Rekas M, Sorrell CC (2001) J Phys Chem Solids 62:737–742

    Article  CAS  Google Scholar 

  100. Bak T, Nowotny J, Rekas M, Sorrell CC, Vance ER (2000) Solid State Ionics 135:557–561

    Article  CAS  Google Scholar 

  101. Yoo J, Verma A, Wang S, Jacobson AJ (2005) J Electrochem Soc 152:A497–A505

    Article  CAS  Google Scholar 

  102. Vashook VV, Al Daroukh M, Ullmann H (2001) Ionics 7:59–66

    Article  CAS  Google Scholar 

  103. Preis W, Bucher E, Sitte W (2002) J Power Sources 106:116–121

    Article  CAS  Google Scholar 

  104. Bouwmeester HJM, Den Otter MW, Boukamp BA (2004) J Solid State Electrochem 8:599–605

    Article  CAS  Google Scholar 

  105. Wang H, Cong Y, Yang W (2002) J Membr Sci 210:259–271

    Article  CAS  Google Scholar 

  106. Lu H, Cong Y, Yang WS (2006) Solid State Ionics 177:595–600

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Werner Sitte, Montanuniversität Leoben, and Peter Ried, Montanuniversität Leoben and Empa, Laboratory for High Performance Ceramics, for their input on the oxygen exchange and transport properties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Holtappels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, J., Holtappels, P., Graule, T. et al. Materials design for perovskite SOFC cathodes. Monatsh Chem 140, 985–999 (2009). https://doi.org/10.1007/s00706-009-0153-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-009-0153-3

Keywords

Navigation