Skip to main content
Log in

Effect of AO Segregation on Catalytical Activity of La0.7A0.3MnO3±δ (A = Ca, Sr, Ba) Regarding Oxygen Reduction Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Oxygen surface exchange kinetics of La0.7A0.3MnO3±δ has been studied by the isotope exchange method with gas phase equilibration using a static circulation experimental rig at the temperature of 850 °C and oxygen pressure of 1 kPa. Oxides of La0.7A0.3MnO3±δ with different dopant at one level of doping were considered. Rates of elementary acts of the oxygen exchange were found to change differently. So, the oxygen dissociative adsorption rate increased, the oxygen incorporation rate decreased, and the increase in the cation radius did not influence the interphase exchange rate. These trends are associated with the AO segregation processes at the surface and the appropriate mechanism of oxygen reduction is considered.

Graphical Abstract

The oxygen dissociative adsorption rate increased, the incorporation rate decreased, and the increase in the cation radius did not influence the interphase exchange rate. These trends are associated with the AO segregation processes at the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lee W, Han JW, Chen Y, Cai Zh, Yildiz B (2013) J Am Chem Soc 135:7909–7925

    Article  CAS  PubMed  Google Scholar 

  2. Chen Y, Téllez H, Burriel M, Yang F, Tsvetkov N, Cai Zh, Mc Comb DW, Kilner JA, Yildiz B (2015) Chem Mater 27(15):5436–5450

    Article  CAS  Google Scholar 

  3. T´ellez H, Druce J, Kilner JA, Ishihara T (2015) Faraday Discuss 182:145–157

    Article  CAS  Google Scholar 

  4. Druce J, T´ellez H, Ishihara T, Kilner JA (2015) Faraday Discuss 182:271–288

    Article  CAS  PubMed  Google Scholar 

  5. Fuilarton l IC, Jacobs J-P, van Benthem HE, Kilner JA, Brongersma HH, Scanlon PJ, B.C.H. Steele (1995) Ionics 1:51–58

    Article  Google Scholar 

  6. Kilner JA, Skinner SJ, Brongersma HH (2011) J Solid State Electrochem 1:861–876

    Article  CAS  Google Scholar 

  7. T´ellez H, Aguadero A, Druce J, Burriel M, Fearn S, Ishihara T, McPhaila DS, Kilner JA (2014) J Anal At Spectrom 29:1361–1370

    Article  Google Scholar 

  8. Druce J, Ishihara T, Kilner J (2014) Solid State Ion 262:893–896

    Article  CAS  Google Scholar 

  9. Ananyev MV, Tropin ES, Eremin VA, Farlenkov AS, Smirnov AS, Kolchugin AA, Porotnikova NM, Khodimchuk AV, Berenov AV, Kurumchin EKh (2016) Phys Chem Chem Phys 18:9102–9111

    Article  CAS  PubMed  Google Scholar 

  10. Ananyev MV, Eremin VA, Tsvetkov DS, Porotnikova NM, Farlenkov AS, Zuev AYu, Fetisov AV, Kurumchin EKh (2017) Solid State Ion 304:96–106

    Article  CAS  Google Scholar 

  11. Li Ch, Pramana SS, Ni N, Kilner JA, Skinner SJ (2017) ACS Appl Mater Interfaces 9(35):29633–29642

    Article  CAS  PubMed  Google Scholar 

  12. Porotnikova NM, Khodimchuk AV, Ananyev MV, Eremin VA, Tropin ES, Farlenkov AS, Pikalova EYu, Fetisov AV (2018) J Solid State Electrochem 22:2115–2126. https://doi.org/10.1007/s10008-018-3919-x

    Article  CAS  Google Scholar 

  13. Tropin ES, Ananyev MV, Farlenkov AS, Khodimchuk AV, Berenov AV, Fetisov AV, Eremin VA, Kolchugin AA (2018) J Solid State Chem 262:199–213

    Article  CAS  Google Scholar 

  14. Wad UP, Ogale AS, Ogale SB, Venkatesan T (2002) Appl Phys Lett 81(18):3422–3424

    Article  CAS  Google Scholar 

  15. Jalili H, Han JW, Kuru Y, Cai Zh, Yildiz B (2011) J Phys Chem Lett 2:801–807

    Article  CAS  Google Scholar 

  16. Katsiev K, Yildiz B, Balasubramaniam K, Salvador PA (2009) Appl Phys Lett 95:092106

    Article  CAS  Google Scholar 

  17. Fister TT, Fong DD, Eastman JA, Baldo PM, Highland MJ, Fuoss PH, Balasubramaniam KR, Meador JC, Salvador PA (2008) Appl Phys Lett 93:151904

    Article  CAS  Google Scholar 

  18. Katsiev K, Yildiz B, Kavaipatti B, Salvador P (2009) ECS Trans 25(2):2309–2318

    CAS  Google Scholar 

  19. Huber A-K, Falk M, Rohnke M, Luerssen B, Amati M, Gregoratti L, Hesse D, Janek J (2012) J Catal 294:79–88

    Article  CAS  Google Scholar 

  20. Van Roosmalen JAM, Cordfunke EHP (1994) J Solid State Chem 110(1):106–108

    Article  Google Scholar 

  21. Harrison WA (2010) Phys Rev B 81:045433

    Article  CAS  Google Scholar 

  22. Harrison WA (2011) Phys Rev B 83:155437

    Article  CAS  Google Scholar 

  23. Kuklja MM, Kotomin EA, Merkle R, Mastrikov YuA, Maier J (2013) Phys Chem Chem Phys 15:5443–5471

    Article  CAS  PubMed  Google Scholar 

  24. Ananyev MV, Kh E. Kurumchin (2010) Russ J Phys Chem 84:1039–1044

    Article  CAS  Google Scholar 

  25. Kurumchin EKh, Anan’ev MV, Porotnikova NM, Eremin VA, Farlenkov AS (2014) RF Patent 144462

  26. Bershitskaya NM, Ananyev MV, Kurumchin EKh, Gavrilyuk AL, Pankratov AA (2013) Russ J Electrochem 49(10):963–974

    Article  CAS  Google Scholar 

  27. Porotnikova NM, Anan’ev MV, Kurumchin EKh (2011) Russ J Electrochem 47(11):1250–1256

    Article  CAS  Google Scholar 

  28. Muzykantov VS, Panov GI, Boreskov GK (1973) Kinet Catal 14:948–951

    CAS  Google Scholar 

  29. Muzykantov VS, Panov GI (1970) Kinet Catal 13:350–357

    Google Scholar 

  30. Muzykantov VS, Boreskov GK, Panov GI (1974) React Kinet Catal Lett 1:315–319

    Article  CAS  Google Scholar 

  31. Otter MW, Boukamp BA, Bouwmeester HJM (2001) Solid State Ion 139:89–94

    Article  Google Scholar 

  32. Melo DMA, Borges FMM, Ambrosio RC, Pimentel PM, da Silva CN Jr., Melo MAF (2006) Chem Phys 322(3):477–484

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The facilities of the shared access centers “Composition of Compounds” of IHTE UB RAS “Siberian Synchrotron and Terahertz Radiation Centre (SSTRC)” based on BINP SB RAS were used in this work. The work was done using Unique scientific setup “Isotopic exchange” of the Shared access center “Composition of Compounds”. The part of the work related to the measurements of spectra and the exposure of samples was performed using the infrastructure of the Shared-Use Center “Siberian Synchrotron and Terahertz Radiation Center (SSTRC)” based on VEPP-3/VEPP-4M/NovoFEL of BINP SB RAS. The isotope exchange study is supported by the grant of the Russian Science Foundation (Project Number 16-13-00053) and Scholarship of Russian President 2018–2020 СП-2316.2018.1 and President Grant МД-6758.2018.3. The educational activities of Ph.D. and master students involved into this work are supported by the Act 211 of the Government of the Russian Federation, Agreement No. 02.A03.21.0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia M. Porotnikova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porotnikova, N.M., Eremin, V.A., Farlenkov, A.S. et al. Effect of AO Segregation on Catalytical Activity of La0.7A0.3MnO3±δ (A = Ca, Sr, Ba) Regarding Oxygen Reduction Reaction. Catal Lett 148, 2839–2847 (2018). https://doi.org/10.1007/s10562-018-2456-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2456-7

Keywords

Navigation